ONLINE TECHNICAL APPENDIX

Proof of Proposition 1

First, we derive the firms’ profits in the subgames for the benchmark case. Table 2 shows the resulting profits, prices and quantities. Below, we derive the profits in the B-B subgame for expositional purposes. The profits in the other subgames are derived in the same manner.

In the B-B subgame, two products are available in the market, since both firms offer the base product only. This implies there exist at most three potential consumer segments. The segment \([x_1, 1]\) buys the highest quality product, which is the base product of firm \(H\), \((m_h)\), the segment \([x_2, x_1]\) buys the lowest quality product \((m_l)\), and the segment \([0, x_2]\) buys nothing. The threshold consumers \(x_1\) and \(x_2\) are indifferent between adjacent quality levels, thus satisfying the equations:

\[
(m_h)x_1 - p_{hb} = (m_l)x_1 - p_{lb} \quad \text{and} \quad (m_l)x_2 - p_{lb} = 0
\]

Hence, \(x_1 = \frac{p_{hb} - p_{lb}}{d}\) and \(x_2 = \frac{p_{lb}}{m_l}\). The quantities sold by the firms are: \(q_{hb} = 1 - x_1\) and \(q_{lb} = x_1 - x_2\); and the objective functions of the firms can be expressed as follows:

\[
\text{Max}_{p_{hb}} \pi_{H}^{B-B} = p_h \left(1 - \frac{p_{hb} - p_{lb}}{d}\right)
\]

\[
\text{Max}_{p_{lb}} \pi_{L}^{B-B} = p_l \left(\frac{p_{hb} - p_{lb}}{d} - \frac{p_{lb}}{m_l}\right)
\]

Differentiating (A.2) with respect to \(p_h\) and (A.3) with respect to \(p_l\) and setting the derivatives equal to zero yields the following solution for equilibrium prices:

\[
p_{hb} = \frac{2d(1+d)}{3+4d} \quad \text{and} \quad p_{lb} = \frac{d}{3+4d}.
\]

(Note that the second order conditions for the maximizations in (A.2) and (A.3) are satisfied because \(\frac{\partial^2 \pi_{H}^{B-B}}{\partial p_{hb}^2} = -\frac{2}{d} < 0\), \(\frac{\partial^2 \pi_{L}^{B-B}}{\partial p_{lb}^2} = -2 - \frac{2}{d} < 0\).)

Substituting the equilibrium prices into the expressions derived for \(x_1\) and \(x_2\), allows us to solve for the quantities sold of each type of product as follows:

\[
q_{hb} = \frac{2(1+d)}{3+4d}, \quad q_{lb} = \frac{1+d}{3+4d}.
\]

Substituting the equilibrium prices and quantities in the profit functions given in (A.2) and (A.3) yields the equilibrium profits, \(\pi_{H}^{B-B} = \frac{4d(1+d)^2}{(3+4d)^2}\) and \(\pi_{L}^{B-B} = \frac{4d(1+d)^2}{(3+4d)^2}\). Similarly, we derive the profits of firm \(H\) and \(L\) in all other subgames.
The assumptions to ensure a positive amount of sales for all products in the benchmark equilibrium are as follows. In the \(B-F \) equilibrium, \(c < \frac{2(1+\alpha)(1+(1+\alpha)d)}{1+2(1+\alpha)d} \); in the \(F-B \) equilibrium, \(c < \frac{(1-\alpha)(1+\alpha)d}{1+(2-\alpha)d} \); and in the \(F-F \) equilibrium, \(c < \frac{1+\alpha d}{2} \).

We now establish the equilibrium conditions for the strategy combinations.

\textbf{B-B}

We examine firms’ incentive to deviate from the \(B-B \) subgame. First, considering firm H’s deviation from \(B-B \) to \(B-F \) by examining \(\pi_{H}^{B-B} - \pi_{H}^{B-F} \),
\[
\pi_{H}^{B-B} - \pi_{H}^{B-F} = \frac{1}{144} [72c - 36\alpha d - \frac{27}{(3+4d)^2} - \frac{45}{3+4d} - \frac{16c^2}{(3+4(1+\alpha)d)^2} + \frac{3(3-4c)^2}{3+4(1+\alpha)d} + \frac{45-80c^2}{3+4(1+\alpha)d}] \tag{A.6}
\]

The right-hand side of (A.6) is positive for \(c > \lambda_{3}^{BM} \), where \(\lambda_{3}^{BM} = \frac{1}{2} + (1 + \alpha)d - \frac{1}{2+4(1+\alpha)d} \). Considering firm L’s deviation, we have
\[
\pi_{L}^{B-B} - \pi_{L}^{B-F} = \frac{d(1+d)(3+4(1+\alpha)d)}{(3+4d)^2} \left[\frac{(1+d)(c+2(1-\alpha)d-(1-\alpha)d(1+\alpha)d)^2}{(1-\alpha)d(3+4-\alpha)d^2(1+\alpha)d} \right] \tag{A.7}
\]

The right-hand side of (A.7) is positive for \(c > \lambda_{4}^{BM} \), where \(\lambda_{4}^{BM} = \frac{(1-\alpha)(1+\alpha)d}{1+(2-\alpha)d} \). Note that \(\lambda_{4}^{BM} < \lambda_{3}^{BM} \). Thus, \(B-B \) is an equilibrium when \(c > \lambda_{3}^{BM} \).\(^{10}\)

\textbf{B-F}

Similar to above, we consider firms’ potential deviation from \(B-F \) equilibrium. First, (A.6) shows that firm \(H \) chooses \(B-F \) over \(B-B \) for \(c < \lambda_{3}^{BM} \). Considering firm \(L \) deviation from \(B-F \) to \(F-F \),
\[
\pi_{L}^{B-F} - \pi_{L}^{B-F} = \frac{1+(1+\alpha)d}{d} \left[\frac{(c+(1+\alpha)d)^2}{(1+\alpha)(3+4(1+\alpha)d)^2} - \frac{d^2(1+\alpha d-2c)^2}{(1+\alpha d)(3+4+3\alpha d)^2} \right] \tag{A.8}
\]

The right-hand side of (A.8) is positive if \(c > \lambda_{2}^{BM} \), where
\[
\lambda_{2}^{BM} = \frac{(1+\alpha)(1+\alpha)[9+(42+18\alpha+64\alpha+9(8+\alpha)d+32(1+\alpha)^2d^2)]d-3(3+4(1+\alpha)d)(1+2+3\alpha)d(3+(4+3\alpha)d)d\sqrt{(1+\alpha)(1+\alpha)}[64(1+\alpha)^3d^2+(96+176+9(8-\alpha)\alpha)d^2-4(6-5d)-27\alpha-3\alpha(4+9\alpha)d]d-9}{64(1+\alpha)^3d^2+(96+176+9(8-\alpha)\alpha)d^2-4(6-5d)-27\alpha-3\alpha(4+9\alpha)d]d-9}
\]

Further, the technical condition to guarantee \(q_{hf} > 0 \) is \(c < \frac{2(1+\alpha)(1+(1+\alpha)d)}{1+2(1+\alpha)d} \). Comparing it with

\(^{10}\)Note that the technical conditions for positive sales are always satisfied.
\(\chi_3^{BM} \), we have \(\chi_3^{BM} - \frac{2(1+\alpha)(1+\alpha)d}{1+2(1+\alpha)d} = -2 \sqrt{\frac{(1+\alpha)(1+d)^2(3+4+4(1+\alpha)d)^2d^2}{(3+4d^2(1+2(1+\alpha)d)^2}} < 0 \). Thus, \(B-F \) is an equilibrium when \(\chi_2^{BM} < c < \chi_3^{BM} \).

F-B

(A.7) shows that firm \(L \) chooses \(F-B \) over \(B-B \) for \(c < \chi_4^{BM} \). Considering firm \(H \)'s potential deviation from \(F-B \) to \(F-F \),

\[
\pi_H^{F-B} - \pi_H^{F-F} = \frac{4(2(1-\alpha)+c)^2}{(7-\alpha)^2(1-\alpha)} - \frac{(2(2+\alpha)-c)^2}{(7+3\alpha)^2} \tag{A.9}
\]

The right-hand side of (A.9) is positive when \(c > \chi_1^{BM} \), where

\[
\chi_1^{BM} = 2d\left[\frac{1}{9+3(2+d)23a^2d(3+4d)+3(4+3d)(2+5+4d)d\alpha+42+a^3d^2d)} - \frac{1}{9+3(2+d)23a^2d(3+4d)+3(4+3d)(2+5+4d)d\alpha+42+a^3d^2d)}\right].
\]

Note that \(\chi_1^{BM} > \chi_4^{BM} \). Thus, \(F-B \) cannot arise as equilibrium.

F-F

(A.9) shows that firm \(H \) chooses \(F-F \) over \(F-B \) for \(c < \chi_1^{BM} \), and (A.8) shows that firm \(L \) chooses \(F-F \) over \(B-F \) for \(c < \chi_2^{BM} \). The technical condition to guarantee positive sales for both products is \(c < \frac{1+\alpha d}{2} \). Comparing it with \(\chi_1^{BM} \) and \(\chi_2^{BM} \), we have \(\frac{1+\alpha d}{2} > \chi_1^{BM} \) and \(\frac{1+\alpha d}{2} > \chi_2^{BM} \).

Therefore, \(F-F \) is an equilibrium for \(c < \min(\chi_1^{BM}, \chi_2^{BM}) \). To show the existence of the equilibria in Proposition 1, consider an example with \(d = 1 \) and \(\alpha = 0.5 \). Then, we have \(\chi_1^{BM} = 0.2769, \chi_2^{BM} = 0.0283 \) and \(\chi_3^{BM} = 0.3008 \), showing existence of the equilibria for appropriate values of \(c \). For this example, the technical condition required for positive sales of both firms in all equilibria is \(c < 0.75 \), which holds because \(c < \alpha = 0.5 \), by assumption.

Proof of Lemma 1

First, we derive the profits in the nine subgames listed in Table 1. We present below the analysis of the \(B-BF \) subgame. The derivations for the other subgames are similar and are omitted.

In \(B-BF \), three products are available in the market; firm \(L \) offers a base product only, and firm \(H \) offers both a base product and a feature-added one. Thus, there exist at most four consumer segments. The segment \([x_0, 1]\) buys the highest quality product, which is the product with feature of firm \(H (m_h + ad) \), the segment \([x_1, x_0)\) buys the intermediate quality product, the base product of firm \(H (m_h) \), the segment \([x_2, x_1)\) buys the lowest quality product, the base product of firm \(L \)
(m_h) and the segment $[0,x_2)$ nothing. The threshold consumers, x_0, x_1 and x_2, are indifferent between adjacent quality levels, thus satisfying the equations:

$$(m_h + ad)x_1 - p_{hf} = (m_h)x_1 - p_{hb} \quad , \quad (m_h)x_2 - p_{hb} = (m_l)x_2 - p_{lb} \quad \text{and} \quad (m_l)x_3 - p_{lb} = 0 \quad (A.10)$$

Solving, we get $x_0 = \frac{p_{hf} - p_{hb}}{ad}$, $x_1 = \frac{p_{hb} - p_{lb}}{d}$, and $x_2 = \frac{p_{lb}}{m_l}$. The quantities sold by the firms are: $q_{hf} = 1 - x_0$, $q_{hb} = x_0 - x_1$ and $q_{lb} = x_1 - x_2$; and the objective functions of the firms can be expressed as follows:

$$\max_{p_{hf}, p_{hb}} \pi^{B-BF}_H = (p_{hf} - c) \left(1 - \frac{p_{hf} - p_{hb}}{ad}\right) + (p_{hb}) \left(\frac{p_{hf} - p_{hb}}{ad} - \frac{p_{hb} - p_{lb}}{d}\right), \quad (A.11)$$

$$\max_{p_{lb}} \pi^{B-BF}_L = (p_{lb}) \left(\frac{p_{hb} - p_{lb}}{d} - \frac{p_{lb}}{m_l}\right). \quad (A.12)$$

Differentiating (A.11) with respect to p_{hf}, p_{hb} and (A.12) with respect to p_{lb} and setting the derivatives equal to zero, yields the following solution for equilibrium prices:

$$p_{hf} = \frac{c(3 + 4d) + d(4 + 3a + 4(1+a)d)}{6 + 8d}, p_{hb} = \frac{2d(1+d)}{3 + 4d}, \text{ and } p_{lb} = \frac{d}{3 + 4d} \quad (A.13)$$

Note that the second order conditions for the maximizations in (A.11) and (A.12) are satisfied because

$$\frac{\partial^2 \pi^{B-BF}_H}{\partial p_{hf}^2} = -\frac{2}{ad} < 0, \quad \frac{\partial^2 \pi^{B-BF}_H}{\partial p_{hb}^2} = -\frac{2}{ad} < 0, \quad \frac{\partial^2 \pi^{B-BF}_L}{\partial p_{lb}^2} = -2 - \frac{2}{d} < 0$$

Substituting the equilibrium prices into the expressions derived for x_1, x_2 and x_3 allows us to solve for the quantities sold of each type of product as follows:

$$q_{hf} = \frac{1}{2} - \frac{c}{2ad}, \quad q_{hb} = \frac{3c + ad + 4cd}{6ad + 8ad^2}, \quad q_{lb} = \frac{1 + d}{3 + 4d} \quad (A.14)$$

Substituting the equilibrium prices and quantities back into the objectives (A.11) and (A.12) yields the equilibrium profits, $\pi^{B-BF}_H = \frac{1}{16} \frac{4c^2}{ad} + \frac{4d(16(1+d)^2 + a(3+4d)^2)^2}{(3+4d)^2} - 8c$ and $\pi^{B-BF}_L = \frac{d(1+d)}{(3+4d)^2}$.

Table 3 summarizes the equilibrium profits, prices and quantities for all subgames. We now determine which subgames fail to become an equilibrium by comparing the profits. First, for the B-B subgame, we examine if firm H has any incentive to deviate from its strategy.

$$\pi^{B-B}_H - \pi^{B-BF}_H = -\frac{(c-ad)^2}{4ad} \quad (A.15)$$
The right-hand side of (A.15) is negative. Thus, B-B fails to become equilibrium. Likewise, for the subgames BF-B and F-B, we examine firm H’s potential deviation.

\[
\pi_H^{BF-B} - \pi_H^{BF-BF} = -\frac{(c-ad)^2}{4ad} < 0 \tag{A.16}
\]

\[
\pi_H^{B-B} - \pi_H^{B-BF} = -\frac{(c-ad)^2}{4ad} < 0 \tag{A.17}
\]

(A.16) and (A.17) show that both BF-F and F-B cannot become equilibrium. For the subgames F-BF and F-F, we examine firm L’s potential deviation.

\[
\pi_L^{F-BF} - \pi_L^{BF-BF} = -\frac{c^2}{4ad+4\alpha^2d^2} < 0 \tag{A.18}
\]

\[
\pi_L^{F-F} - \pi_L^{BF-F} = -\frac{c^2}{4\alpha d+4\alpha^2 d^2} < 0 \tag{A.19}
\]

Thus, F-BF and F-F cannot arise as equilibrium.

Proof of Proposition 2

Given the equilibrium profits in Table 3, we establish the equilibrium regions for the assuming \(d = 1\).

B-BF

By examining firm H’s deviation between B-BF and B-F, we have the following:

\[
\pi_H^{B-BF} - \pi_H^{B-BF} = \frac{16}{49} + \frac{\alpha}{4} - \frac{(4+2(3+\alpha-c)(\alpha-3\alpha)^2}{(1+\alpha)(7+4\alpha)^2} - \frac{c}{2} + \frac{c^2}{4\alpha} \tag{A.20}
\]

The right-hand side of (A.20) is positive if \(c > \chi_2 = \frac{1}{7}[2\sqrt{3} \sqrt{\frac{\alpha^2(1+\alpha)^2(7+4\alpha)^2(24+19\alpha)}{49+3\alpha(23+8\alpha)^2}} + \frac{7\alpha(1+\alpha)}{49+3\alpha(23+8\alpha)}]\).

Now, we examine if firm L has any incentive to deviate to BF-BF from B-BF when \(c > \chi_2\). By comparing firm L’s profits in B-BF and BF-BF, we have the following:

\[
\pi_L^{B-BF} - \pi_L^{BF-BF} = \frac{4(25\alpha-7)(\alpha+196(3-\alpha)c}{49(7-\alpha)^2} - \frac{(49-\alpha(40-7\alpha)c^2}{4\alpha(7-\alpha)^2(1-\alpha)} \tag{A.21}
\]

The right-hand side of (A.21) is positive for \(c > \chi_3\), where \(\chi_3 = \frac{4}{7}\sqrt{\frac{14(3-\alpha)(1-\alpha)\alpha}{49-(40-7\alpha)^2} - \sqrt{\frac{(7-\alpha)^2(1-\alpha)(29-21\alpha)}{49-(40-7\alpha)^2}}]}\). Note that \(\chi_2 > \chi_3\) for \(0 < \alpha < d\). Moreover, the technical condition to guarantee \(q_{hf} > 0\) is \(c < \alpha\). Thus, B-BF is an equilibrium when \(c > \chi_2\).
B-F

(A.20) shows that firm H chooses $B-F$ over $B-BF$ if $c < \chi_2$. For firm L, examining

$$\pi_L^{B-F} - \pi_L^{B-F-F}$$
gives

$$\pi_L^{B-F} - \pi_L^{B-F-F} = \frac{(2+\alpha)(1+\alpha+c)^2}{(1+\alpha)(7+4\alpha)^2} - \frac{4\alpha(1+\alpha)(2+\alpha)-16\alpha(2+\alpha)c+(49+25\alpha)c^2}{4\alpha(7+3\alpha)^2}$$

(A.22)

The right-hand side of (A.22) is positive if $c > \chi_1$, where

$$\chi_1 = \frac{2(1+\alpha)(2+\alpha)}{1+2(1+\alpha)}$$

The technical condition for $q_{hf} > 0$ is

$$c < \frac{2(1+\alpha)(2+\alpha)}{1+2(1+\alpha)}$$

Thus, $B-F$ is an equilibrium if $\chi_1 < c < \chi_2$.

BF-F

(A.22) shows that firm L chooses $BF-F$ over $B-F$ if $c < \chi_1$. For firm H, we examine whether firm H has any incentive to deviate from $BF-F$ to $BF-BF$ if $c < \chi_1$.

$$\pi_H^{BF-F} - \pi_H^{BF-BF} = \frac{(4+2\alpha-c)^2}{(7+3\alpha)^2} + \frac{2(17-(14-\alpha)\alpha)c-64+(15-\alpha)(1+\alpha)a}{4(7-\alpha)^2} - \frac{[49-(47-(15-\alpha)\alpha)a]c^2}{(4(7-\alpha)^2(1-\alpha)a)}$$

(A.23)

The right-hand side of (A.23) is positive for $c < \chi_1$. The technical condition to ensure

$$q_{hf}, q_{lf} > 0$$
is

$$c < \frac{2(2+\alpha)}{7+4\alpha} \cdot \frac{2(2+\alpha)}{7+4\alpha} > \chi_1$$

because $\chi_1 - \frac{2(2+\alpha)}{7+4\alpha} > 0$ for $0 < \alpha < 1$. Thus $BF-F$ is an equilibrium if $c < \chi_1$.

BF-BF

(A.23) shows that firm H chooses $BF-BF$ over $BF-F$ if $c > \chi_1$, and (A.21) shows that firm L chooses $BF-BF$ over $B-BF$ if $c < \chi_3$. However, $\chi_3 < \chi_1$ if $0 < \alpha < d$. Thus, $BF-BF$ cannot arise as equilibrium.

To show the existence of the equilibrium strategies, consider the example where $\alpha = 0.5$. Then, we have $\chi_1 = 0.0298$ and $\chi_2 = 0.0184$, showing that all equilibria can exist for appropriate values of c. The technical conditions are $c < 0.278$ for $BF-F$, $c < 1.875$ for $B-F$, and $c < 4$ for $B-BF$, which are all satisfied.

Proof of Result 1
The right-hand side of (A.24) is positive.

\[
\frac{\partial x_2}{\partial \alpha} = \frac{(7+5\alpha)(7+9\alpha)}{(49+3(23+8\alpha)\alpha)^2} + \frac{3\sqrt{3}(5488+(21021+(31387+2(11513+8(523+76\alpha)\alpha)\alpha)\alpha)}

A.24

The right-hand side of (A.25) is positive for \(0 < \alpha < 1\).

\[
\frac{\partial x_1}{\partial \alpha} = \frac{196(6-\sqrt{29})+4(1498-245\sqrt{29}+(2073-330\sqrt{29}+(1108-170\sqrt{29}+5(41-6\sqrt{29})\alpha)\alpha)\alpha)}{2401+(5978+(5621+4(586+91\alpha)\alpha)\alpha)\alpha}

A.25

\]

The right-hand side of (A.27) is positive, implying \(x_1 > \min(x_1^{BM}, x_2^{BM})\).

\[
\pi_L^{BF-F} - \pi_L^{F-F} (BM) = \frac{c^2}{4\alpha(1+\alpha)}

A.28

The right-hand side of (A.28) is positive, meaning firm L’s profit is higher in the BF-F equilibrium of the main analysis. Now considering firm H’s profit, Tables 2 and 3 show that \(\pi_H^{BF-F} = \pi_H^{F-F} (BM)\).

Second, when \(\min(x_1^{BM}, x_2^{BM}) < c < x_1\), we compare firms’ profit in the BF-F equilibrium with that in the B-F benchmark equilibrium. For firm L,

\[
\pi_L^{BF-F} - \pi_L^{F-F} (BM) = \frac{(49+25\alpha)c^2+4(1+\alpha)(2+\alpha)\alpha-16(2+\alpha)\alpha c}{4\alpha(7+3\alpha)^2} - \frac{(2+\alpha)(1+\alpha+c)^2}{(1+\alpha)(7+4\alpha)^2}

A.29

The right-hand side of (A.29) is positive for \(c < x_1\), showing firm L has a higher profit in the BF-F equilibrium of the main analysis. Now, considering firm H’s profit, we examine \(\pi_H^{BF-F} - \pi_H^{F-F}\).
The right-hand side of (A.30) is negative. Thus, firm H’s profit in the BF-F equilibrium is lower than the profit in the B-F benchmark equilibrium.

We now consider the case when firm H expands its product line (i.e., when \(c \) is sufficiently large). First, when \(\chi_{3}^{BM} < c \), we compare firm H’s profit in the B-BF equilibrium of the main analysis with that in the B-B benchmark equilibrium.

\[
\pi_{H}^{B-BF} - \pi_{H}^{B-B} (BM) = \frac{(a-c)^2}{4a} \tag{A.31}
\]

The right-hand side of (A.31) is positive, meaning firm H’s profit is higher in the B-BF equilibrium of the main analysis. Now, considering firm L’s profit, Table 1 and 2 show \(\pi_{L}^{B-BF} = \pi_{L}^{B-B} (BM) \).

Second, when \(\chi_{2} < c < \chi_{3}^{BM} \), comparing firm H’s profit with that in the B-F benchmark equilibrium,

\[
\pi_{H}^{B-BF} - \pi_{H}^{B-F} (BM) = \frac{16}{49} + \frac{a}{4} + \frac{c^2}{4a} - \frac{[4+2(3+a-c)a-3c]^2}{(1+a)(7+4a)^2} - \frac{c}{2} \tag{A.32}
\]

The right-hand side of (A.32) is positive for \(c \geq \chi_{2} \), showing firm H has a higher profit in the B-BF equilibrium of the main analysis. Considering firm L’s profit,

\[
\pi_{L}^{B-BF} - \pi_{L}^{B-F} (BM) = \frac{d(1+d)}{(3+4d)^2} - \frac{(1+d+ad)(c+d+ad)^2}{(1+a)d(3+4(1+a)d)^2} \tag{A.33}
\]

The right-hand side of (A.33) is negative. Thus, firm L cannot receive higher profit in the B-BF equilibrium than the B-B and B-F benchmark equilibria.