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Abstract Overlapping generations models may have a continuum of equilibria.
Previous studies have been largely confined to the local analysis that linearizes the
model around the steady state. However, what is true of the linearized system only
applies for an unknown-sized open neighborhood of the steady state. In this paper I
develop a method to diagnose the indeterminacy in overlapping generations models by
computing the set of all equilibria. I also provide a procedure to simulate the economy
with indeterminate equilibrium.
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1 Introduction

This paper studies how to diagnose indeterminacy of equilibrium in overlapping gen-
erations (OLG) models and how to simulate the economy when there is indeterminacy
of equilibrium. It is well known that an overlapping generations economy may have
a continuum of equilibria. There are well-established results that provide sufficient
conditions for the uniqueness of the equilibrium in these economies. Gale (1973)
has demonstrated that gross substitution in consumption precludes indeterminacy in
OLG models with one good in each period and a single two-period-lived consumer
in each generation. This result has been extended to a multi-commodity economy
where a single two-period-lived consumer is characterized by log-linear preference
(Balasko and Shell 1980) and inter-temporally separable preferences (Geanakoplos
and Polemarchakis 1984; Kehoe and Levine 1984). Kehoe et al. (1991) further extend
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these results to a multi-commodity, multi-agent, non-monetary, pure-exchange econ-
omy and show that gross substitutability of excess demand ensures the determinacy of
perfect-foresight equilibria. Unfortunately, the condition for uniqueness in the model
of the type that has been widely used in the macro literature, like the model discussed
in this paper, is not guaranteed based on the empirical evidences provided in Mankiw
et al. (1985).

We can identify the existence of indeterminacy by linearizing the model around the
steady state when the model is deterministic. However, what is true of the linearized
system only applies for an open neighborhood of the steady state. In practice, we do
not know the size of this open neighborhood as pointed out by Kehoe and Levine
(1990). Furthermore, we can not say anything outside of this neighborhood based on
this linearized system. The existence of indeterminate equilibria still poses challenge
for the economists who are interested in conducting comparative statics analysis, since
there exists no simulation method for this type of economy.

In this paper, I provide a global analysis by computing all Markovian equilibria
using the numerical procedure set forth in Feng et al. (2011). Therefore, my approach
provides a straightforward way to diagnose the indeterminacy by simply checking
the numerically obtained set of equilibria. The analysis departs from the economy
considered by Kehoe and Levine (1990), in which we know that the economy has
indeterminate equilibria around one steady state. I verify the existence of indetermi-
nacy by computing the set of all Markov equilibria.

It has been theoretized that a continuum of equilibria will all converge to the same
steady state asymptotically in a deterministic OLG model with indeterminate equilib-
rium (see Spear et al. 1990; Wang 1993). To my best knowledge, this has not been
verified due to the lack of a robust algorithm to compute the equilibrium set of these
models. I simulate these economies by computing all Markov equilibrium in the spirit
of Feng et al. (2011). I then study whether or not and how the existence of inde-
terminacy may affect the long run behavior of the economy. Numerical simulations
indicate that in a deterministic OLG model considered by this study, all equilibrium
paths asymptotically converge to the same steady state. However the choice of initial
conditions will translate into different equilibrium paths before they converge to the
long-run equilibrium.

I proceed as follows. In Sect. 2, I explain the economic model. Section 3 present a
numerical method to identify indeterminacy in these economies. I also consider two
examples to illustrate the application. In Sect. 4, I explain how to simulate the OLG
models with indeterminate equilibria. I also discuss how the indeterminacy may affect
the long run behavior of the economy. Some further comments and extensions follow
in the final section.

2 Model

The economy is conformed by a sequence of overlapping generations. Time is discrete.
At every time period t = 0, 1, 2, . . ., a new generation is born. Each generation is
made up of a representative agent, who is present in the economy for three periods. The
individual is identified by the date of her birth, t , and her age a = 0, 1, 2. The agent
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born at time t consumes and has endowments at all time periods t + a, a = 0, 1, 2.
Let ca

t and ea
t denote her consumption and endowment when her age is a. An agent’s

individual endowments only depend on her age, i.e. for all a = 0, 1, 2, ea
t = ea .

At each period t , there exist spot markets for the consumption good. There is one
bond in zero net supply. The bond pays one unit consumption good next period. Price
of the bond is qt ∈ R and agent a’s bond holding is θa

t ∈ R. At t = 0, the initial
conditions of the economy are determined by the bond holding of the initially alive
agents of ages a = 1, 2.

For simplicity, I assume that each agent’s utility function U is separable over con-
sumption of different dates. The inter-temporal objective U is defined as

U (c) =
2∑

a=0

βau(ca
t ) (1)

The one-period utility u satisfies the following conditions:

Assumption 2.1 The one-period utility function u(·) : R+ → R ∪ {−∞} is increas-
ing, strictly concave, and continuous. This function is also continuously differentiable
at every interior point c > 0.

Definition 1 A sequential competitive equilibrium (SCE) is given by a collection of
prices and choices of individuals {qt , (ca

t , θa
t )a=0,1,2}t such that for each t :

(i) financial market clearing:

2∑

a=0

θa
t = 0 (2)

(ii) individual maximizes utility:

(ca
t , θa

t ) ∈ arg max U (c), s.t. (3)

c0
t + qt · θ0

t ≤ e0
t (4)

c1
t + qt+1 · θ1

t ≤ e1
t + θ0

t (5)

c2
t ≤ e2

t + θ1
t (6)

The existence of a SCE can be established by standard methods (e.g., Balasko and
Shell 1980; Schmachtenberg 1998). Moreover, by similar arguments used by these
authors it is easy to show that every sequence of equilibrium asset prices (qt )t≥0 is
bounded.

2.1 Indeterminacy in OLG models

It is well known that an overlapping generations economy may have a continuum of
equilibria. Unfortunately, the existing studies have been largely confined to the local
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analysis that linearizes the model around the steady state. More specifically, econ-
omists linearize the equilibrium conditions around a steady state and then solve the
linearized version of the model.

It is convenient to build market-clearing into the first order conditions and the steady
state can be characterized by the solutions of the following equations.

uc(e
0
t + qtθt−1) − βuc(e

1
t − θt − qt+1θt+1) = 0 (7)

uc(e
1
t − θt − qt+1θt+1) − βuc(e

2
t + θt+1) = 0 (8)

qt = qt+1 = q∗ (9)

θt−1 = θt = θt+1 = θ∗ (10)

where I have build in the bond market clearing condition.
Evidently, the system always has a solution with q∗ = 1, corresponding to the

golden rule monetary steady state. However, it is more interesting to check how many
other solutions, referred to as real steady states in Kehoe and Levine (1990), exist in
the economy. Following Kubler and Schmedders (2010), I isolate the variable q and
characterize all real steady states as the positive real solution (q∗ 	= 1) to the following
equation,

f (q) = 0. (11)

It is convenient to rewrite the equilibrium conditions (7) and (8) as

F(θt−1, θt , θt+1) = 0 (12)

Then I linearize the system as

D1 Fθt−1 + D2 Fθt + D3 Fθt+1 = 0 (13)

Here Di F is the derivative of F evaluated at the steady state (q∗, θ∗). Rewriting this
linearized equilibrium condition as a first-order difference equation, I obtain:

[
θt+1
θt

]
=

[−D1 F1 · D2 F−1
1 0

0 −D1 F2 · D2 F−1
2

] [
θt

θt−1

]
(14)

Indeterminacy of the linearized system manifests itself as too many stable eigen-
values of the matrix in (14). The advantage of this approach is that indeterminacy of
the linearized system is easy to diagnose. However, this approach cannot provide any
information about the economy away from the steady state since it is only valid for
an unknown-sized open neighborhood around the steady state. One task of this paper
is to provide a general approach to identify the existence of indeterminacy for OLG
models. As I describe the approach in the following section, I will also explain a global
analysis for the impact of indeterminacy on the long-run behavior of the economy.
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3 Diagnose of indeterminacy

Feng et al. (2011) develop a method to approximate the set of all Markovian equilibria
for dynamic equilibrium models. Their study suggests that one can identify the exis-
tence of continuous Markov equilibrium by computing the boundary of the set of all
Markov equilibria. The numerical example in section (6.3) of their paper shows that
the distance between the upper boundary and the lower one will go to zero whenever
the equilibrium is unique. This result has important implications for diagnosing the
indeterminacy in OLG models.

In this section, I first briefly explain the main results in their paper. I then detail
the procedure of computing the correspondence that contains the set of all Markov
equilibria. Based on this approximation, two propositions will be derived to identify
the indeterminacy.

3.1 Markov equilibrium correspondence

In the model economy, the equilibrium equations consist of first order conditions,
budget constraints, and market-clearing conditions. It is useful to build market-clear-
ing into the endogenous choice of security θ0, θ1. Then the natural state space �

consists of beginning-of-period bond-holding of the middle aged θ . Let m denote the
consumption of the middle-aged1

m = c1. (15)

The Markov equilibrium correspondence V∗ : � → R is defined as

V∗ (θ0) = {
m : (

q, (ca, θa)a=0,1,2
)

is a SCE
}
. (16)

The above results on the existence of SCE for OLG economies leads to the following
proposition.

Proposition 1 Correspondence V∗ is nonempty, compact-valued, and upper semi-
continuous.

From this correspondence V∗, I can generate recursively the set of equilibria since
V∗ is the fixed point of an operator B : V → B(V) that links state variables to future
equilibrium states. This operator embodies all equilibrium conditions. More precisely,
let B(V)(θ) be the set of all values m with the following property: for any given θ

there exists θ+ = gm(θ, m) and m+(θ+) ∈ V(θ+) such that

q · uc(c
0) = βuc (m+(θ+)) (17)

1 In their original paper, m is defined as the vector of shadow values of the marginal return to investment
for all assets: m = qu′(c1). Here I define m as c for the purpose of computation only. It turns out to be
equivalent in all examples I considered in this paper.
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and market clearing conditions.2 The following result is proved in Feng et al. (2011).

Theorem 2 (convergence) Let V0 be a compact-valued correspondence such that
V0 ⊃ V∗. Let Vn = B (Vn−1) , n ≥ 1. Then, Vn → V∗ as n → ∞. Moreover, V∗ is
the largest fixed point of the operator B, i.e., if V = B(V), then V ⊂ V∗.

3.2 Numerical approximation of V∗

The numerical implementation of the operator B consists of two parts. In the first step,
I construct an operator Bh,μ and obtain a convex-valued correspondence Ṽ∗ contain-
ing the equilibrium set V∗. Then, a discretized operator Bh,μ,N will be developed to
approximate V∗ in the next section.

The algorithm starts with an initial correspondence Ṽ0 ⊇ V∗. I pick an arbitrary
small positive number h, μ, and I partition the state space � into N closed intervals �i

of uniform length h such that ∪i�
i = � and int (�i1) ∩ int (�i2) = ∅ for every pair

�i1,�i2 , where i1, i2 ∈ {1, 2, ..., N }. I use N right rectangular parallelepiped Ṽi
0 :=

�i ×
[
infθ∈�i Ṽ0(θ), supθ∈�i Ṽ0(θ)

]
to approximate Ṽ0 = ∪i Ṽi

0. It turns out to be

convenient to characterize Ṽi
0 by two functions msup

0 (θ) = supθ∈�i Ṽ0(θ), minf
0 (θ) =

infθ∈�i Ṽ0(θ). Then Ṽi
0 is defined as Ṽi

0 := {
m|θ ∈ �i , m ∈ [

minf
0 (θ), msup

0 (θ)
]}

.
Consider then any element �i of the state space partition and the corresponding

Ṽ j
0. Given θ ∈ �i , I test whether there exists m ∈ [

minf
0 (θ), minf

0 (θ) + μ
]

such that
the one period temporary equilibrium conditions can be satisfied for some arbitrary
small constant ε > 0. If the answer is yes, then I set minf

1 (θ)= minf
0 (θ), otherwise, I

set minf
1 (θ)= minf

0 (θ) + μ. A symmetric operation is performed for the case θ ∈ �i ,

m ∈ [
msup

0 (θ) − μ, msup
0 (θ)

]
. At the end of this operation, an approximation of V∗

will be given by Ṽ∗ = ∪i Ṽ∗
θ∈�i (θ). The details of the algorithm can be found in the

appendix.

3.3 Sufficient condition for determinacy in OLG economy

A straightforward application of Theorem 2 is that we cannot rule out the possibility
of indeterminacy if the above procedure converges to a convex-valued set Ṽ∗ that the
distance between the upper boundary and the lower one is strictly greater than zero.

Proposition 2 (indeterminacy) If there is indeterminacy in the model economy, then

there exists δ≥μ such that max
(θ,s)∈�×S

{
msup∗

(θ, s) − minf∗
(θ, s)

}
>δ as h → 0,

μ → 0.

2 For any given θ and m ∈ V, θ+ is determined as the solution to the following equations

m = e1 + θ − qθ+ (18)
q · uc(m) = βuc(e

2 + θ+). (19)
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Proposition 3 (determinacy) There is no indeterminacy in the model economy if for

any arbitrary δ > 0, max
(θ,s)∈�×S

{
msup∗

(θ, s) − minf∗
(θ, s)

}
≤ δ as h → 0, μ → 0.

Proof In the limit, we have max
(θ,s)∈�×S

{
msup∗

(θ, s) − minf∗
(θ, s)

}
= 0. This imme-

diately implies that any perturbation will lead the economy off from the equilibrium
path. ��

Proposition 2 says that we can not rule out the possibility of existence of indeter-

minacy if there exists δ ≥ μ, such that max
θ∈�

∥∥∥msup∗
(θ)−minf∗

(θ)

∥∥∥ > η. Similarly,

the application of proposition 3 is that there is no indeterminacy in the model if

max
θ∈�

∥∥∥msup∗
(θ)−minf∗

(θ)

∥∥∥ ≤ μ, for any μ > 0.

3.4 Numerical specifications

I apply the above algorithm to two examples, and illustrate the application of the
sufficient condition for determinacy.

3.4.1 Example 1

I consider the parametrization studied by Kehoe and Levine (1990). More specifi-
cally, the preference is given by u(c) = c1−γ −1

1−γ
. I choose β = 0.5, γ = 4, and

{ea(st+a)}2
a=0 = {e0, e1, e2} = {3, 12, 1}. There is only one short-lived bond θ avail-

able and the price is given by qt .
As Kehoe and Levine (1990) pointed out this economy has three real steady states

with prices and bond-holdings given by q∗
1 = 0.176, θ∗

1 = 5.772, q∗
2 = 0.793,

θ∗
2 = 3.732, and q∗

3 = 44.634, θ∗
3 = 0.183. They show that close to the middle steady

state there must be a continuum of equilibria.
In our example, I start from a big set Ṽ0(θ) = {c1

min ≤ m ≤ c1
max}. I apply Bh,μ to

Ṽ0(θ) and end up with the area in the left panel of Fig. 1. The right panel represents
the corresponding mapping from today’s bond holding of middle age θt to tomorrow’s
holding θt+1.

As in this example, the maximum distance between the boundaries of the limit of
the sequence Ṽn+1 is given by a constant d � μ. Proposition 2 suggests that we can
not rule out the possibility of indeterminacy in this model economy.

3.4.2 Example 2

When the distribution of endowments is given by {ea(st+a)}2
a=0 = {e0, e1, e2} =

{3.5, 6, 1.5}, one can verify that there is only one real steady state. I apply the above
algorithm for different values of μ. The algorithm always converges to the case that

maxθ∈�

∥∥∥msup∗
(θ) − minf∗

(θ)

∥∥∥≤ μ. Proposition 3 implies that there may not exist

indeterminacy in the model economy (Fig. 2).
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Fig. 1 The equilibrium set of economy 1
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Fig. 2 The equilibrium set of economy 2

4 Simulation of OLG models with equilibrium indeterminacy

The correspondence Ṽ∗ obtained in the previous section provides important infor-
mation from which we can diagnose the existence of indeterminacy. However, this
correspondence has limited application for us to conduct simulations. This is because
it may contain non-equilibrium points. It would be misguiding to start the simulation
from those non-equilibrium points. Therefore it is necessary to compute the exact
equilibrium set, rather than the convex hull that contains the set. In this section, I fully
discretize Ṽ∗ and obtain an outer-approximation of V∗ by constructing an operator
Bh,μ,N , which is a discrete version of Bh,μ. It has been shown that the fixed point of
the operator Bh,μ,N converges to V∗ uniformly (c.f. Feng et al. 2011). Please refer to
the appendix for the details of the operator Bh,μ,N (Fig. 3) .
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Fig. 3 The equilibrium set of economy 1 and the set computed by shooting method

Previous studies conjectured that a continuum of equilibria will all converge to the
same steady state asymptotically (see Spear et al. 1990; Wang 1993). However this
hypothesis has never been tested because there is no robust algorithm to compute the
set of all equilibria for this type of economies. One contribution of this paper is that
I test the validity of this statement in one example by computing the equilibrium set
and conducting simulations. In what follows, I detail the simulation algorithm based
on the equilibrium correspondence V̂μ,ε∗

obtained through the operator Bh,μ,N .
Assume that the economy begins with an initial bond-holding by the middle aged

θ−1 ∈ �̂ at time 0.

• At period t = 0, I pick an arbitrary m0 ∈ V̂μ,ε∗
(θ−1)̇. Given {θ−1, m0} , {q0, θ0}

can be solved from the following equations

m0 = e1 + θ−1 − q0θ0 (20)

q0 · uc(m0) = βuc(e
2 + θ0), (21)

and then the value of m1 is derived by using the first order condition for bond
holding of the current young agent:

q0 · uc(e
0 − q0θ0) = βuc(m1). (22)

• At period t > 0, I can solve for {qt , θt } at given {θt−1, mt } from equations

mt = e1 + θt−1 − qtθt (23)

qt · uc(mt ) = βuc(e
2 + θt ), (24)

and infer mt+1 from

qt · uc(e
0 − qtθt ) = βuc(mt+1). (25)

• Repeat this procedure to generate the sequence of {θt , qt }T
t=0.
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Fig. 4 Simulations of economy 1 with different initial conditions

For the economy described in Example 1, I start with θ−1 = 2.0. As we can see from
the left panel of Fig. 4, all simulated paths lead to the steady state θ∗ = 3.73238
as long as we pick m0 ∈ [4.0182, 6.0364] ⊆ V̂μ,ε∗

(θ−1 = 2), which implies that
θ0 ∈ [1.3126, 4.1277].

The indeterminacy in this simulation exercise illustrates that existence of numerous
equilibrium paths in a deterministic OLG model can be indexed by the initial condi-
tions for the shadow value of investment in bond m0 ∈ V̂μ,ε∗

(θ−1)̇, which gives rise
to the prices. After that, the Euler equation will uniquely pin down the equilibrium
path. More specifically, the temporary equilibrium conditions yield a unique value of
mt+1 for any given θt , mt as in equation (25), hence the sequence of {θt , qt , mt }.

Now imagine there are two different economies with exactly the same initial condi-
tion θ−1. If their parameterizations are given by the one described in example 2, then
they will converge to the steady state with the same speed and the same volatility as
there is only one path leading to the long-run equilibrium. However, they may behave
quite different if there is indeterminacy as in the above economy. The freedom of choos-
ing m0 makes them distinct equilibrium paths that lead to the same steady state. As a
matter of fact, the economy that chooses m0 = 4.0182 (A henceforth) will converge
to the steady state in 105 periods with mean(θt ) = 3.7088, and mean(qt ) = 0.8328.
While the economy with m0 = 6.0364 (B henceforth) will converge to the steady
state in 109 periods with mean(θt ) = 3.7799, and mean(qt ) = 0.7740.3

I also provide the welfare analysis by computing the consumption equivalent varia-
tion (CEV) along the transition path. I quantify the welfare effect by asking how much
consumption has to be increased for all generations in each date in order to equate
expected utilities to a benchmark economy. Without loss of generality, I choose econ-

3 As the referee pointed out, all variables converge to a constant, for a sufficiently long simulated series.
The standard errors of the simulations should converge to zero. However we report different statistics in
Table 1. This is because convergence can only be defined as

∥∥θt − θ∗∥∥ ≤ ε, where ε is a small positive
number subject to machine precision. We also have to stop the simulation in finite time. Furthermore, we
want to highlight the differences transition paths with distinct initial conditions before the convergence has
reached. Hence we choose ε = 10−12.
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Table 1 Simulation for OLG without uncertainty

SD(θ) Mean(θ) SD(p) Mean(p) Mean(u) Max(ee)

Simulation A 0.3644 3.7088 0.3959 0.8328 −0.0073 1.52 × 1e−12

Simulation B 0.3725 3.7799 0.1123 0.7740 −0.0071 1.44 × 1e−12

omy B as benchmark, in which the social planner chooses a lower price (higher interest
rate) to achieve smoother consumption across generations along the transition path.
There will be a welfare gain of 1.2 % when the economy switches from A to B. In
other words, more volatile prices along the transition path will translate into a welfare
loss equivalent to reducing consumption of all agents by 1.2 % before the economy
enters the steady state.

5 Concluding remarks

In this paper, I study the indeterminacy of equilibria in OLG models. I adopt the numer-
ical method developed in Feng et al. (2011) and provide a general approach to identify
the existence of indeterminacy by computing the boundary of the equilibrium set of
the above economy. I implement this method for an OLG economy with two different
parameterizations. In one case, the upper boundary of the computed equilibrium set is
always bigger than the lower boundary in the limit of the numerical procedure, which
implies that we can not rule out the existence of indeterminacy. The indeterminacy
was ruled out in another example as the upper boundary is identical to the lower one.

In order to derive the implication of the indeterminacy on the long-run behavior of
the economy, I solve the model numerically by finding all Markov equilibria and pro-
pose a way to simulate the OLG economy with a continuum of equilibria. Numerical
results suggest that the economy endowed with the same initial condition may con-
verge to the long-run equilibrium along different paths, and with different volatility
when the economy has equilibrium indeterminacy. It would be interesting to study
whether uncertainty will bring extra indeterminacy into the model as the household
may have the freedom to select the transition and policy functions from the equilibrium
correspondence. I leave this for future research.
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Appendix

Outer approximation of V∗ with operator Bh,μ

1. At each given �i , I set minf
1 (θ)≡ Bh,μ

(
minf

0 (θ)
) = minf

0 (θ) if either
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min
m∈[

minf
0 (θ),minf

0 (θ)+μ
]

θ∈�i , m+(θ+)∈Ṽ0(θ+(m))

∥∥∥q · uc(e
0 − qθ+(m)) − β · uc(m+(θ+))

∥∥∥ ≤ ε (26)

or minf
0 (θ)+μ> msup

0 (θ). If any of these two conditions does not hold, then I set
minf

1 (θ)≡ Bh,μ
(
minf

0 (θ)
)= minf

0 (θ) + μ. A symmetric procedure can be used to
define msup

1 (θ)≡ Bh,μ
(
msup

0 (θ)
)
.

Notice, given θ and m, I can determine the values for q, θ+ by solving the fol-
lowing functions.

m − (e1 − θ + qθ+) = 0 (27)

q · uc(m) − β · uc(e
2 − θ+) = 0 (28)

In case of no solution exists, the operator Bh,μ skips the above proce-
dure and set Bh,μ

(
minf

0 (θ)
)= minf

0 (θ) + μ when m∈ [
minf

0 (θ), minf
0 (θ) + μ

]
,

Bh,μ
(
msup

0 (θ)
)= msup

0 (θ) − μ when m ∈ [
msup

0 (θ) − μ, msup
0 (θ)

]
.

2. Repeat step 1 until the sequence of minf
n (θ), msup

n (θ) have converged to their limit
minf∗

(θ), msup∗
(θ).

Note that Bh,μ is monotone decreasing by construction, and generates a convergent
sequence of convex-valued correspondences containing the equilibrium correspon-
dence V∗. At the limit of the procedure, I obtain the smallest possible convex

hull Ṽ∗
θ∈�i (θ) that contains V∗

θ∈�i (θ), where Ṽ∗
θ∈�i (θ) :=

{
m(θ)|θ ∈ �i ,

m ∈
[
minf∗

(θ), msup∗
(θ)

] }
. Finally I have Ṽ∗ = ∪i Ṽ∗

θ∈�i (θ).

Discretization of operator Bh,μ

I then use Ṽ∗ as initial condition for an operator on discrete correspondences defined
as follows:

The vector of possible values for bond-holding and shocks are given by ˆ� ={
θ i

0

}Nθ

i=1, and for each θ i
0, I also define a finite vector of possible values for V̂μ,ε

0

(
θ i

0

) =
{

mi, j
0

}Nv

j=1
. Notice, limNθ→∞ ˆ� = �, limNv→∞ V̂μ,ε

0

(
θ i

0

) = Ṽμ,ε
0

(
θ i

0

)
. Finally, I

construct the discrete version of operator Bh,μ,N by eliminating points that cannot be
continued (in the Euler equation, for a pre-determined tolerance ε > 0) as follows:

1. Given θ i
0, pick a point mi, j

0 in the vector V̂μ,ε
0

(
θ i

0

)
. From mi, j

0 I can determine

the values of
(
θ

i, j
+ , qi, j

)
by solving for

mi, j
0 −

(
e1 + θ i

0 − qi, jθ
i, j
+

)
= 0. (29)

qi, j · uc

(
mi, j

0

)
− βuc

(
e2 + θ

i, j
+

)
= 0 (30)
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Thus, if for all m+ ∈ V̂μ,ε
0 (θ

i, j
+ , s+) =

{
ml+(θ

i, j
+ , s+)

}NV

l=1
I have

min
m+∈{

ml+
}NV

l=1

∥∥∥qi, j · uc

(
e0 − qi, jθ

i, j
+

)
− βu (m+)

∥∥∥ > ε (31)

then V̂μ,ε
1

(
θ i

0

) = V̂μ,ε
0

(
θ i

0

) − mi, j
0 .

2. Iterate over all possible values mi, j
0 ∈ V̂μ,ε

0

(
θ i

0

)
, and all possible θ i

0 ∈ �̂.

3. Iterate until convergence is achieved sup
∥∥∥V̂μ,ε

n − V̂μ,ε
n−1

∥∥∥ = 0.

At the limit of the above algorithm, I have limn→∞ V̂μ,ε
n = V̂μ,ε∗

.
I apply the operator Bh,μ,N to the model economy in Example 1. I use Ṽn+1 as the

initial condition for our iteration procedure. Our numerical result indicates that Ṽn+1
is the fixed point of Bh,μ,N . As shown in the left panel of Fig. 3, the area between
two solid lines represent the approximate solution. I also include the solution obtained
from backward shooting algorithm in the same graph, which is presented by dots.
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