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1 Introduction

In this paper we propose a reliable recursive equilibrium algorithm for the numerical sim-

ulation of nonoptimal dynamic economies, and study its convergence and accuracy prop-

erties. Numerical simulation of these economies is usually a formidable task because of

various technical issues that preclude direct application of standard dynamic programming

techniques. We apply our numerical algorithm to various models with heterogeneous agents

and real and financial frictions. The quantitative analysis of these models becomes critical

to advance our understanding in several basic areas of macroeconomics and finance.

Standard solution methods search for a continuous equilibrium function over a natural

state space of exogenous and endogenous state variables. Since the seminal work of Kydland

and Prescott (1980), it is well known that equilibria of nonoptimal economies may not

admit a recursive representation over this natural state space. These authors consider

a game of optimal taxation, and rewrite their model in a recursive form by appending a

Lagrange multiplier to the original state space so as to characterize the exact solution. Their

simple model comprises a representative household, and the set of continuation Lagrange

multipliers is unique. This uniqueness property is a rather limiting condition for many

other economies.

Our recursive equilibrium algorithm applies to a broad range of dynamic competitive-

markets economies. We consider an abstract framework, and provide a characterization of

Markovian equilibrium representations towards the numerical simulation of these economies.

While some characterizations of Markovian equilibria for nonoptimal economies are avail-

able, these characterizations are model-dependent. Moreover, the numerical implementa-

tion of the proposed algorithms together with their approximation properties have never

been analyzed in the literature.

Numerical simulation of nonoptimal economies by standard solution methods may result

in substantial approximation errors. For instance, we simulate below a simple overlapping

generations (OLG) model by an established algorithm under a continuous equilibrium func-
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tion. The computed solution may present large approximation errors, and fail to mimic the

true dynamics. In spite of these large approximation errors, the algorithm can be quite

deceptive as it produces small Euler equation residuals, or may do well under some other

independent accuracy checks. Peralta-Alva and Santos (2010) discuss some of the pitfalls

in the computation of equilibrium solutions for an economy with distortionary taxation.

Positive results on existence of a continuous equilibrium over a natural state space rely

upon certain monotonicity properties of the equilibrium dynamics [e.g., see Bizer and Judd

(1989), Coleman (1991), and Datta, Mirman and Reffett (2002)]. For the canonical one-

sector growth model with taxes and externalities, monotone dynamics follow from fairly

mild restrictions on the primitives. But monotone dynamics are much harder to obtain in

multi-sector models with heterogeneous agents and real and financial frictions.

Several papers are concerned with the characterization of recursive equilibria for nonop-

timal economies. As already pointed out, these characterizations are model-dependent,

and do not consider numerical implementation and approximation properties of these algo-

rithms. Abreu, Pierce, and Stacchetti (1990) introduce continuation utility values to find a

recursive representation of sequential equilibria for dynamic games. This characterization

of equilibrium seems quite natural in repeated games, but it may become computationally

demanding in some other models. Duffie et al. (1994) search for general representations of

stationary equilibria over an expanded state space that includes all endogenous variables

such as asset prices and individual consumptions. Again, expanding the state space over

all state variables may slow down the computation process. Building upon these meth-

ods, Kubler and Schmedders (2003) show existence of a Markovian equilibrium for a class

of financial economies with collateral requirements. Their computations are based on a

projection-type algorithm iterating in the space of continuous functions. This computa-

tional procedure cannot guarantee convergence to the true solution. Marcet and Marimon

(2010) study a general class of contracting problems with incentive constraints. Following

Kydland and Prescott (1980), they enlarge the state space with a vector of weights for the
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utility of each agent, and compute a transition for such weights from the shadow values of

the agents’ participation constraints. They assume that equilibrium solutions can be char-

acterized by convex social planning problems. By construction this method cannot capture

multiple equilibria, but seems to be more operative for the computation of various dynamic

incentive problems written in a Pareto-welfare form.

Our work is closest to Kubler and Schmedders (2003), but we consider a broader family

of economies that may include endogenous and exogenous borrowing constraints. In the

numerical implementation, we discretize our algorithm to preserve its convergence proper-

ties. Thus, unlike Kubler and Schmedders (2003), we iterate over candidate equilibrium

sets – rather than functions – to guarantee convergence to the original equilibrium set. We

can thus compute the set of all competitive equilibria. As discussed below, this reliable dis-

cretization procedure can successfully be applied to various types of models, and it seems

particularly useful for OLG models and some other infinite-horizon models with various

types of real and financial frictions.

Section 2 considers two simple examples intended to highlight some major computational

issues and the workings of our algorithm. Section 3 introduces our framework of analysis.

We provide a general characterization of Markov equilibria for nonoptimal economies. The

set of Markov equilibria is computed as the fixed-point of a monotone operator embedding

all short-run equilibrium conditions. This operator has good convergence and stability

properties, and hence it provides the foundations for the formulation of our reliable recursive

equilibrium algorithm. Section 4 studies the numerical implementation of our algorithm

and its approximation properties. We apply these numerical procedures to two types of

models. Sections 5 is devoted to the numerical simulation of a simple OLG model, and

Section 6 considers a model of international trading with various market frictions. We

conclude in Section 7.
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2 Two Illustrative Examples

2.1 An Overlapping Generations Economy

Time is discrete, t = 0, 1, 2, · · · . At each date t a new consumer appears in the economy.

Each consumer receives an endowment e1 of a perishable good when young, and e2 when

old. There is a single asset called money that can be held for trading. This asset pays zero

dividends, and it belongs to the initial old generation starting the economy. The money

supply M remains constant over time.

Let Pt be the price of money in terms of the aggregate good at date t. Then, a typical

consumer born in period t solves the following optimization problem:

maxu(ctt) + v(ctt+1)

s.t.

ctt + Mt
Pt

= e1

ctt+1 = e2 + Mt
Pt+1

.

Note that cts denotes consumption at date s of the agent born at time t, for s = t, t + 1,

and Mt is the amount of money demanded at time t.

A sequential competitive equilibrium for this economy is a sequence of prices {Pt} and

sequences of optimal choices {ctt, ctt+1,Mt} for the given prices, such that both commodity

and money markets clear at all times:

ctt + ct−1
t = e1 + e2

Mt = M,

for all t ≥ 0. For interior solutions, under the concavity of the objective function, the

budget-constrained optimal choice {ctt, ctt+1,Mt} is fully characterized by the first-order
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conditions:

u′(ctt) = λt

v′(ctt+1) = λt+1

λt
Pt

= λt+1

Pt+1
,

where λt is a Lagrange multiplier at time t.

To analyze the dynamics of the model, we can indistinctly consider any of the following

three (state) variables: Consumption, ctt, the price level, Pt, or the amount of real money

balances, bt ≡ M/Pt. That is, all these three variables provide the same information.

Then, rearranging all the above equations, equilibrium sequences {ctt, ctt+1,Mt, Pt} can be

fully characterized by the equation:

btu
′(e1 − bt) = bt+1v

′(e2 + bt+1). (1)

A standard approach for computing equilibrium solutions would be to search for a

continuous function g : X → X with bt+1 = g(bt) for all t ≥ 0 and

btu
′(e1 − bt) = g(bt)v

′(e2 + g(bt)). (2)

We would like to stress that existence of a continuous equilibrium function bt+1 =

g(bt) requires further assumptions on the model primitives. More specifically, a continuous

equilibrium function bt+1 = g(bt) occurs under monotone equilibrium dynamics: An upward

sloping offer curve arising under the assumption of gross substitutes in consumption. But

if the offer curve is backward bending, then bt+1 = g(bt) is just a correspondence, which

may not have a continuous selection.

For instance, as is well known [Grandmont (1985)] the offer curve is backward bending

for the following parameterization:

u (c) = c0.45, v (c) = −0.8

7
c−7, M0 = 1, e1 = 2, e2 = 26/7 − 21/7.
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See Figure 1. Here, the upper and lower arms are two continuous equilibrium selections. As

illustrated in Section 5, there are other cases in which no continuous equilibrium selection

does exist.

For this parameterization, we applied a version of the projection method over (2) to

compute a continuous policy bt+1 = g(bt). Depending on the initial guess, the numerical

approximation converges either to the upper or the lower arm of the offer curve, or to some

other hybrid solution. This strong dependence on initial conditions is a rather undesirable

feature of this computational method. In particular, if we only consider the lower arm of

the actual equilibrium correspondence then all competitive equilibria converge to autarchy

(zero monetary holdings). But if we iterate over the upper arm of the offer curve, we

find that money holdings converge monotonically to the stationary solution M̄
p = 0.4181.

Hence, even in the deterministic version, we need a global approximation of the equilibrium

correspondence to analyze the various predictions of the model. As a matter of fact, none

of these two selections would capture a two-period equilibrium cycle in which real money

holdings oscillate between 0.8529 and 0.0953 (see Figure 2). It is also known that the model

has a three-period cycle.

As shown in Section 5, for certain parameterizations an OLG economy may not admit

an equilibrium function over the natural space of state variables. To compute the equilib-

rium set, we could consider additional auxiliary variables. One possible choice is to select

continuation utilities over the multiple equilibrium paths. Continuation utilities, however,

will force us to discard the first-order condition (1). Thus, from a computational point of

view it seems optimal to build an efficient numerical algorithm based upon (1).

Let us then define mt+1 as mt+1 = bt+1

bt
v′(e2 + bt+1). Now, equation (1) reduces to

u′(e1 − bt) = mt+1. This simple equation seems much easier to compute. Accordingly, we

propose to compute the set of all equilibrium paths over an expanded state space (bt,mt).

In this expanded state space we will define an equilibrium correspondence that generates all

equilibrium paths. With this background in place, let us further illustrate our computational
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method in the following example.

2.2 Optimal Growth

Consider the infinite-horizon optimization problem

max{ct,kt+1}
∑∞

t=0 β
tu(ct)

s.t.

ct + kt+1 = F (kt, 1) + (1− δ)kt

given k0, 0 < β < 1, 0 < δ ≤ 1.

Under standard conditions for u and F, the solution to the above problem can be fully

characterized by the (infinite) set of Euler equations:

u′(F (kt, 1) + (1− δ)kt − kt+1) = βu′(F (kt+1, 1) + (1− δ)kt+1 − kt+2)(Fk(kt+1, 1) + 1− δ).

A common approach is to search for a continuous function kt+1 = g(kt) over this time-

homgeneous non-linear system:

u′(F (kt, 1) + (1− δ)kt − g(kt)) = (3)

βu′(F (g(kt), 1) + (1− δ)g(kt)− g(g(kt)))(Fk(g(kt), 1) + 1− δ)

for all t ≥ 0.

Under some specifications for the production function F , a continuous solution g may

not exist [cf. Boldrin and Rustichini (1994)]. For instance, in models with externalities,

function F may be written as F (k, 1) = f(k̂, k, 1), with k̂ = k at every equilibrium solution.

As a matter of fact, in non-convex programming the Euler equation may pick sub-optimal

solutions. In those cases, the set of optimal solutions may be characterized by continuation

utilities or some other auxiliary variables.

For simplicity, let us assume that the system of Euler equations (3) determines all equi-

librium solutions. Then, we cannot hope to find a recursive representation of equilibrium
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by conditioning on variable k only. Indeed, for every k0 there is a continuum of vectors

(k1, k2) that satisfy the above Euler equation (3). A recursive characterization of equi-

librium, however, can readily be obtained by letting the state space comprise equilibrium

pairs (c, k). That is, for each (k0, c0) the resource constraint determines k1; further, c1 can

be solved from the Euler equation. Therefore, for each equilibrium pair (c, k) the Euler

equation (3) generates a unique continuation value (k+, c+). We would like to stress that

for computational purposes it may be more operative to expand the state space with auxil-

iary variable m ≡ u′(c)(Fk(k, 1) + 1− δ), i.e. the shadow return of one unit of investment.

As in the preceding example, the Euler equation is linear in m. This will be useful in the

computation stage.

Let K be the domain of possible values for the capital stock and M the set of possible

values form. We could start with spaceK×M as an initial guess for all starting equilibrium

values. Usually, this universal set is too broad: Many pairs (k,m) may lack continuation

values (k+, c+) over the above Euler equation (3). Each initial guess will be refined under

the action of the following operator B embedding all short-run equilibrium conditions.

Let V : K → M be a large enough correspondence of potential continuation values

(k+,m+). For every k, let m ∈ BV (k) if there exists (c, k+,m+) with m+ ∈ V (k+) such

that

c+ k+ = F (k, 1) + (1− δ)k

u′(c) = βm+.

where m ≡ u′(c)(Fk(k, 1) + 1− δ). Correspondence V is chosen large enough1 so that the

new correspondence B(V ) is a subset of V . Then, by construction we obtain a decreasing

sequence of correspondences Vn+1 = B(Vn) that converge to the equilibrium correspondence

V ∗. Therefore, starting from each pair (k,m) ∈ graph(V ∗) we can generate a sequence of

equilibrium solutions {ct, kt+1} satisfying the above equation system at all times. As a
1Our method works under the weaker condition that V contains equilibrium correspondence V ∗ presently

defined.
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matter of fact, every sequential equilibrium solution can be generated under some initial

equilibrium pair (k,m) ∈ graph(V ∗).

To summarize, under the action of operator B, the recursive equilibrium algorithm

finds a Markov equilibrium correspondence V ∗ that can generate all (sequential) equilibrium

solutions.

There are three main points to be emphasized from this exercise. First, the equilibrium

correspondence is the maximal fixed point of operator B. That is, V ∗ = B(V ∗) and V ′ ⊂ V ∗

for any other fixed point V ′ = B(V ′). Hence, under a proper formulation of the state space

the existence of a fixed point V ∗ is tantamount to the existence of a sequential equilibrium

solution. Second, the iteration process under operator B proceeds over correspondences

rather than functions. While iteration over correspondences may be computationally more

costly, the recursive equilibrium algorithm guarantees convergence to the set of equilibrium

solutions under a good initial guess V0. And third, it is important to keep in mind that the

recursive equilibrium algorithm is subject to the curse of dimensionality, as it may involve

maximizations and integrations over spaces of functions, and set iterations. Indeed, some

characterizations of Markov equilibria may not be computable. Therefore, the choice of

the state space is usually critical. In the previous two examples, the state space has been

enlarged with the shadow values of investment.

3 General Theory

In this section, we first set out a general analytical framework that encompasses various

recursive economic models. Their equilibrium time series, however, may depend on full

histories of shocks and economic variables. Therefore, these equilibria are not directly

amenable to computation unless we can find a Markovian representation over a well chosen

state space. Then, we present a formal version of our recursive equilibrium algorithm.

In Section 4 we develop a convergent numerical algorithm with desirable approximation

properties.

9



Following Ljungqvist and Sargent (2000), a recursive equilibrium representation is con-

formed by “a transition mapping the state of the model today into the state tomorrow and

a function mapping the state into the other endogenous variables of the model.” Duffie

et al. (1994) show that under fairly general conditions it is possible to provide a recursive

representation of sequential competitive equilibria by expanding the state space with all

endogenous variables. Their approach does not cover models with endogenous constraints

– nor does it provide a way to find or approximate equilibria. Our analysis will be guided

by computational considerations, and so it is imperative to keep a manageable state space.

3.1 General Framework

Time is discrete t = 0, 1, 2, · · · . At every date t the economy is composed of I agents,

and it is shocked by a vector of exogenous variables z. This vector follows a Markov

chain (zt)t≥0 over a finite set Z =
{

1, 2, ..., Ẑ
}

as described by transition probabilities

π (z′|z) for all z, z′ ∈ Z. The initial state, z0 ∈ Z, is known to all agents in the economy.

Then zt = (z0, z1, z2, ..., zt) ∈ Zt+1 is a history of shocks, often called a date-event or

node. Endogenous predetermined variables are denoted by x, with x ∈ X, X ⊂ RN .

Vector x may include agents’ holdings of physical capital, human capital, and financial

assets. All other endogenous variables are denoted by y, with y ∈ Y, Y ⊂ RL. Vector

y may include equilibrium prices, choice variables such as consumption and investment,

and auxiliary variables such as Lagrange multipliers, shadow values of investment and

continuation utilities. Indeed, certain auxiliary variables may either be necessary or may

allow for a more operational representation of equilibrium.

In Section 6 below, our set of auxiliary variables includes shadow values of investment of

each existing asset for every agent, m ∈M, M ⊂ RK , and continuation utilities, p ∈ RI , as

is common in the literature on incentive constraints. Agents will have the choice to default.

It is thus necessary to specify the payoff of default, which in our case implies permanent

exclusion from commodities and financial markets. Default carries a lifetime utility that
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may depend on the vectors of shocks z and endogenous predetermined state variables x.

When non-convexities arise from individual effects on the aggregate state variables, first-

order conditions cannot longer be invoked. Hence, computations must consider global

maximization methods. More precisely, each of the I agents in this economy confronts

an expected discounted lifetime utility given by a function P aut : RN × Z → RI in case

of default. This payoff function P aut may depend on both individual and aggregate state

variables, and may give rise to a non-concave individual optimization problem.

The thrust of our analysis is the computation of sequential competitive equilibria (SCE),

as described by infinite sequences {x(zt), y(zt)}t≥0. We limit this exercise to models where

all SCE lie in a compact space and can be characterized by aggregate resource constraints

and short-run optimality conditions involving only variables of two contiguous time periods,

t and t+ 1. Specifically, the law of motion of the state vector x is conformed by a system

of non-linear equations:

ϕ (xt+1, xt, yt, zt) = 0. (4)

Function ϕ may embed technological constraints as well as individual budget constraints.

For some models we can explicitly solve for xt+1 as a function of (xt, yt, zt) . But in some

other applications such as in models with adjustment costs, xt+1 may not admit an analyt-

ical solution.

Further, a SCE {x(zt), y(zt)}t≥0 must satisfy an infinite sytem:

(xt, yt, zt, xt+1, yt+1, zt+1) ∈ Φ (5)

for all t ≥ 0. Functional Φ describes various short-run equilibrium conditions: (i) Euler

equations, in which case Φ is simply a non-linear system, (ii) one-period ahead constrained-

optimization to account for non-concave maximization programs because of real and finan-

cial distortions and additional participation constraints, (iii) market-clearing conditions,

and (iv) various types of budget restrictions and resource constraints.

We say that a model is recursive and time invariant if there exist functionals ϕ and
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Φ characterizing the set of all SCE under conditions (4-5). Several assumptions underlie

this abstract formulation.

First, the space of endogenous variables X×Y is compact. Hence, transversality condi-

tions at infinity are usually trivially satisfied. Section 6 below shows how a compact domain

X × Y may arise from optimization conditions in the presence of unbounded utility and

production functions. Therefore, (4-5) must provide a set of sufficient conditions for the

characterization of all SCE. Second, (4-5) only involve variables at times t and t+1. Hence,

production and utility functions, technological, borrowing, and incentive constraints, must

satisfy certain intertemporal separability assumptions. For instance, some forms of habit

formation may be incorporated in the analysis by including auxiliary variables. Third, (4-5)

are time invariant. That is, we search for a time-homogeneous Markovian representation

of SCE, which will be given by an equilibrium correspondence mapping current states into

equilibrium values for each successor node.

3.2 The Recursive Equilibrium Algorithm

The set of SCE may not admit a recursive representation over the standard state space

comprising exogenous shocks z and predetermined endogenous variables x. To recover a

recursive structure it is necessary to enlarge the state space. The required expansion of the

state space will depend on the economic application. Hence, at this stage of our analysis we

will simply assume that the equilibrium values of the required vector of auxiliary variables

are described by an equilibrium correspondence V ∗ : (x, z) 7−→ V ∗ (x, z) ⊆ Y. This equilib-

rium correspondence may contain discontinuities and multiple equilibria. Under standard

continuity conditions on utility and production functions, the equilibrium correspondence

is usually upper semicontinuous.

The theoretical underpinnings of our recursive equilibrium algorithm rest on the iter-

ation of monotone equilibrium inclusions [Kydland and Prescott (1980) and Abreu, Pierce

and Stacchetti (1990)] that lead to a convergent process. We first select an appropriate set
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of state variables, and a well chosen initial correspondence V0. Then, we apply a monotone

operator, B, that generates sequences of non-empty decreasing compact sets {Vn} shrink-

ing to the equilibrium correspondence V ∗. Operator B embodies all short-run equilibrium

conditions (4-5) from any initial value z to all immediate successor nodes z+. This oper-

ator is analogous to the expectations correspondence of Duffie et al. (1994), albeit it may

contain a smaller set of endogenous variables. Using operator B, we can generate the set

of all SCE using time-invariant equilibrium selections.

More precisely, for any given V under the action of operator B we obtain V ′ = B (V ).

Correspondence V ′ is defined as follows. Pick a vector (x, z). Then, v ∈ V ′(x, z) if there

is a vector (y, x+, y+(z+), v+(z+)) for all z+ ∈ Z, with v+ (z+) ∈ V (x+, z+) such that the

resulting vector (x, y, , z, x+, y+, z+) satisfies the temporary equilibrium conditions (4-5).

For models where a SCE exists, correspondence B(V ) will be non-empty provided that

our initial guess V0 has been properly chosen. Note that by construction operator B is

monotone: If V ⊂ V̂ then B(V ) ⊂ B(V̂ ).2 Further, under standard continuity conditions

on functionals ϕ and Φ it follows that if V has a closed graph then B(V ) will have a closed

graph.

Assumption 3.1 Operator B preserves compactness: If V is compact valued then B(V )

is also compact valued.

Assumption 3.1 will allow us to establish some uniform convergence properties of the

algorithm. This assumption is not necessary to show existence of a fixed-point solution V ∗

and the global convergence of the iteration process.

Theorem 3.1 (existence and global convergence) Let V0 be a compact-valued correspon-

dence such that V0 ⊃ V ∗. Let Vn = B (Vn−1) for all n ≥ 1. Then, operator B has a

fixed-point solution, i.e., V ∗ = B(V ∗), where V ∗ = limn→∞ Vn. Moreover, V ∗ is the largest

fixed point of operator B, i.e., V = B(V ) implies V ⊂ V ∗.
2For correspondences V, V̂ we say that V ⊂ V̂ if V (x, z) ⊂ V̂ (x, z) for all (x, z). We shall consider the

usual notion of distance over sets given by the Hausdorff metric.

13



We again would like to remark that operator B iterates over sets rather than func-

tions. Hence, if there are multiple equilibria we can find all of them. By definition, for

any (x, z, v) ∈ graph(V ∗), under the action of operator B we can generate a new vector

(x+, z+, y, v+) that can be extended into a SCE {x(zt), y(zt)}t≥0. Since the fixed point of

operator B is an upper semicontinuous correspondence, it is possible to select a measurable

policy function y = gy(x, z, v), a transition function v+ (z+) = gv(x, z, v; z+), and continua-

tion values for the endogenous predetermined variables x+ so that ϕ (x+, x, y, z) = 0. Let us

summarize these future equilibrium values over the extended state space as g(x, z, v; z+) =

(x+, z+, v+). Then, g is a Markovian equilibrium selection.3

To summarize, the set of SCE {x(zt), y(zt)}t≥0 admits a recursive representation in

an expanded state space. Our recursive equilibrium algorithm rests upon iteration of

monotone sets under an operator B. For a well chosen initial correspondence, the iteration

process converges to the Markov equilibrium correspondence V ∗. We now proceed to the

numerical implementation of the algorithm and to study its approximation properties.

4 Numerical Implementation

In this section we develop a numerical implementation of operator B and study its con-

vergence and accuracy properties. For models with unique equilibria, our results imply

that the accuracy of the numerical approximation is of the same order of magnitude as

the mesh size of our discretization. For models with multiple equilibria, the fixed point of

the numerical algorithm converges uniformly to the Markov equilibrium correspondence

as the mesh size of the discretization converges to zero.

For dynamic games, Judd, Yeltekin and Conklin (2003), and Judd and Yeltekin (2010),

develop an approximation procedure with good accuracy properties. Essentially, their ap-

proximation method works well for convex equilibrium correspondences. The convexity
3It should be clear that g(·; z+) denotes a coordinate function of g(·) corresponding to the successor

node z+|z.
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of the equilibrium correspondence may be achieved via a public randomization device.

Randomization over the original set of strategies seems quite appealing in game theoretic

settings. Such ex post convexification, however, may arbitrarily expand the equilibrium

set of a competitive economy, and may not be compatible with individual optimization

behavior. Note that by construction operator B is monotone, and maps compact sets into

compact sets, but it does not preserve convexity.

We now proceed as follows. First, we partition the state space into a finite set of

J simplices with mesh size h. Compatible with this partition we consider a sequence of

step correspondences, which take constant set-values on each simplex. Step correspon-

dences are the analog of step functions, and have good approximation properties. We also

introduce a finite-dimensional outer approximation over the image of the step correspon-

dences; this outer approximation is made up of Σ cubes or finite-dimensional elements.

Then, combining these approximations we obtain a computable operator Bh,Σ with accu-

racy parameters (h,Σ). Under the action of operator Bh,Σ, we construct a sequence of

correspondences that converge to a fixed point containing equilibrium correspondence V ∗.

We shall study accuracy properties of the algorithm as we refine our discretizations over

(h,Σ).

4.1 The Numerical Algorithm

Assume that all equilibrium state vectors (x, z, v) belong to some set S, which is a subset

of the product space S = X × Z × Y . Let
{
Xj
}J
j=1

be a finite family of simplices with

non-empty interior such that ∪jXj = X and int(Xj) ∩ int(Xj′) is empty for every pair

Xj , Xj′ . Define the mesh size h of this discretization as

h = max
j
diam

{
Xj
}
.

For any multivalued mapping V : X × Z → 2Y , where 2Y denotes the subsets of vectors

for space Y containing the required auxiliary variables, an approximation V h compatible

with the partition
{
Xj
}
takes on constant set-values V h(x, z) on each simplex Xj . More
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precisely,

V h(x, z) = ∪x∈XjV (x, z), for each given z and all x ∈ Xj . (6)

This definition of step correspondence V h will include all equilibrium values and preserve

the monotonicity property over the discretized process. Analogously, over each Xj we

define operator Bh(V ) as Bh(V )(x, z) = ∪x∈XjB(V )(x, z), for each given z and all x ∈ Xj .

As before, one can prove that Bh has a fixed-point solution. To obtain a computable

representation of these correspondences we also discretize the image space. For a given set V

we say that CΣ (V ) ⊇ V is an Σ-element outer approximation of V if CΣ (V ) can be generated

by Σ elements. We require this numerical representation to preserve monotonicity: V ⊂ V̂

implies CΣ (V ) ⊂ CΣ(V̂ ). This is essential to guarantee monotonicity of a computable

version of operator B. We also require limΣ→∞ CΣ (V ) = V.

Combining these approximations, we can construct a new operator Bh,Σ as follows. We

first define the step correspondence Bh(V ) of B(V ). Then, each set-element of Bh(V ) is

adjusted by the Σ-element outer approximation to get CΣ
(
Bh(V )

)
.

Therefore, the output of our numerical algorithm would be summarized by correspon-

dences V h,Σ
n under the action of a globally convergent operator Bh,Σ. From the application

of operator Bh,Σ on V h,Σ
n , we can choose an approximate policy function y = gy,h,Σn (x, z, v),

and a transition function v+ (z+) = gv,h,Σn (x, z, v; z+). From the computed selections we can

generate approximate SCE paths {xt(zt), yt(zt)}∞t=0. Sections 5 and 6 illustrate examples

of such operators, and their application to different dynamic models.

4.2 Convergence and Accuracy Properties

We finally show that our discretized operator Bh,Σ has good convergence properties: The

fixed point of this operator V ∗,h,Σ contains equilibrium correspondence V ∗, and it converges

uniformly to this limit point as we refine the approximations. The proof of this result

extends the convergence arguments of Beer (1980) to a dynamic setting.
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Theorem 4.1 For given h, Σ, let V0 ⊇ V ∗. Let V h,Σ
n = Bh,Σ(V h,Σ

n−1) for all n ≥ 1. Then,

(i) V h,Σ
n ⊇ V ∗ for all n; (ii) V h,Σ

n → V ∗,h,Σ as n → ∞; and (iii) V ∗,h,Σ → V ∗ as h → 0

and Σ→∞.

As stated in the theorem, three points are to be emphasized from these results. First,

the set of numerical solutions always contains the equilibrium correspondence. Second, the

iteration process is globally convergent. And third, as we refine these approximations, the

fixed point of our numerical algorithm shrinks to the equilibrium correspondence.

We now establish uniform convergence over accuracy parameters (h,Σ). Hence, the

approximation error is directly correlated with the mesh size of the discretizations. For

correspondences V h,Σ
n and V , consider the distance d(graph(V h,Σ

n ), graph(V )), where d

refers to the Hausdorff metric.

Theorem 4.2 Under the conditions of Theorem 4.1, for any given ε > 0 there are Σ̂, ĥ, n̂

such that the distance d(graph(V h,Σ
n ), graph(V ∗)) ≤ ε for all Σ ≥ Σ̂, h ≤ ĥ, n ≥ n̂ .

Hence, for any sufficiently close discretization (Σ, h, n), all approximate solutions (x, z, v)

are within an ε-ball of graph(V ∗); further, an ε-ball of graph(V h,Σ
n ) contains graph(V ∗).

This important approximation result comes directly from the construction of our numeri-

cal operator Bh,Σ that preserves equilibrium solutions and compactness over the iteration

process. As already remarked, if the equilibrium correspondence V ∗ is just a function, then

Theorem 4.2 implies the existence of error bounds for the approximate solutions. Indeed,

these bounds follow directly from the size of the errors of the discretization procedure under

parameters (h,Σ).

5 Stochastic OLG Economies

OLG models have become quite relevant in the analysis of several macro issues, such as

the funding of social security, the optimal profile of savings and investment over the life

cycle, the effects of various fiscal and monetary policies, and the evolution of future interest
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rates and asset prices under current demographic trends.4 As already stressed, there are

no known convergent procedures for the computation of sequential competitive equilibria

in OLG models even for frictionless economies with complete financial markets. Our ap-

proach delivers a reliable, computable algorithm for the solution of competitive equilibria

in a general class of OLG models. As shown below, the application of standard numerical

methods that build on the existence of a continuous policy function is not adequate for the

computation of these economies. Indeed, a continuous Markov equilibrium may not exist

– or there could be a vast multiplicity of equilibria. Citanna and Siconolfi (2010) establish

generic existence of this Markovian property of equilibrium under the additional assump-

tion that the number of agents is sufficiently large. Of course, for computational reasons

many economies of practical interest contain a limited number of agents which are given as

model primitives; further, this recursive representation is not necessarily continuous.

5.1 The Economic Environment

At each date a new generation made up of 2 agents appears in the economy. Each agent

is alive for 2 periods. Let
(
i, zt

)
denote an agent of type i = 1, 2 born at date-event

zt = (z0, z1, · · · , zt). There are 2 perishable commodities available for consumption at any

given date-event. Let good 1 be the numeraire commodity, and p the relative price of good

2. There are two assets. The first asset is a one-period risk-free bond trading at price

qb(zt). The second is a Lucas tree, trading at price qs(zt). The tree generates a random

stream of dividends d(zt). Let (θb,i,z
t
, θs,i,z

t
) be a pair of bond and share holdings of agent(

i, zt
)
. Shares cannot be sold short: θs,i,zt ≥ 0. Each individual faces the following budget

constraint:

p(zt) · ci,zt(zt) + θb,i,z
t
(zt)qb(zt) + θs,i,z

t
(zt)qs(zt) ≤ p(zt) · ei,zt(zt) (7)

4For instance, see Conesa, Krueger and Kitao (2009), Geanakoplos, Magill and Quinzii (2003), Gour-
inchas and Parker (2002), Imrohoroglu, Imrohoroglu, and Joines (1995), Storelesletten, Telmer and Yaron
(2004), and Ventura (1999).
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p(zt+1)·ci,zt(zt+1) ≤ θb,i,zt(zt)+θs,i,z
t
(zt)[d(zt+1)+qs(zt+1)]+p(zt+1)·ei,zt(zt+1) all zt+1|zt.

(8)

The utility function U i is separable over consumption of different dates:

U i
(
ci,z

t
; zt, zt+1

)
= ui

(
ci,z

t (
zt
)
, zt

)
+ β

∑
zt+1∈Z

vi
(
ci,z

t (
zt+1

)
, zt+1

)
π
(
zt+1|zt

)
. (9)

Assumption 5.1 For each z ∈ Z the one-period utility functions ui(·, z), vi(·, z) : R+ →

R ∪ {−∞} are increasing, strictly concave, and continuous. These functions are also con-

tinuously differentiable at every interior point c > 0.

As before, a SCE is a collection of vectors
{(

ci,z
t (
zt
)
, ci,z

t (
zt+1

)
, θi,z

t (
zt
))I

i=1
, p(zt), q

(
zt
)}

t≥0

such that each consumption-savings plan
{
ci,z

t
(zt), ci,z

t
(zt+1), θi,z

t
(zt)

}
solves the constrained-

utility maximization of the agent, and goods and assets markets clear.

Note that in this economy the aggregate commodity endowment is bounded by a

portfolio-trading plan [Santos and Woodford (1997)], and hence asset pricing bubbles can-

not exist in a SCE. Therefore, equilibrium asset prices must be bounded at each date. It

follows that the existence of a SCE can be established by standard methods [e.g., Balasko

and Shell (1980), and Schmachtenberg (1988)].

5.2 Lack of Recursive Equilibria on the Natural State Space

Let us first discuss the model specification of Kubler and Polemarchakis (2004) where the

real asset is not available. The intertemporal objective of agent of type 1 is given by

− 1024(
c1,zt

1

)4 + Ezt+1|zt

− 1024(
c1,zt

1 (zt+1)
)4 −

1(
c1,zt

2 (zt+1)
)4


while that of agent of type 2 is given by

− 1(
c2,zt

1

)4 + Ezt+1|zt

− 1(
c2,zt

1 (zt+1)
)4 −

1024(
c2,zt

2 (zt+1)
)4

 .
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Each individual receives a random endowment of good 1 in their first period of life. Specifi-

cally, e1,zt

1 (zt) = 10.4, e2,zt

1 (zt) = 2.6 if zt = z1, and e
1,zt

1 (zt) = 8.6313, e2,zt

1 (zt) = 4.3687 if

zt = z2. Endowments during the second period of life are deterministic and include positive

amounts of both goods. Namely, e1,zt
(
zt+1

)
= (12, 1) and e2,zt

(
zt+1

)
= (1, 12) .

Kubler and Polemarchakis show that bond holdings turn out to be equal to zero in the

two states. To determine consumption when old we must know the realization of the en-

dowment when young.5 Bond holdings and current shocks are not enough to pin down the

dynamic behavior of equilibrium. In other words, the model does not admit a Markov equi-

librium representation over the natural state space. The specific configuration of equilibrium

is as follows: At any state history zt−1 with zt−1 = z1, and for any possible value of the

shock today
(
c1,zt−1

1

(
zt
)
, c1,zt−1

2

(
zt
))

= (10.4, 2.6),
(
c2,zt−1

1

(
zt
)
, c2,zt−1

2

(
zt
))

= (2.6, 10.4),

and q = 1, p = 1. Likewise, for any state history zt−1 with zt−1 = z2, and for any possible

value of the shock today
(
c1,zt−1

1

(
zt
)
, c1,zt−1

2

(
zt
))

= (8.4, 1.4),
(
c2,zt−1

1

(
zt
)
, c2,zt−1

2

(
zt
))

=

(4.6, 11.6) , and q = 1, p = 7.9.

What would happen if we approximate this economy by standard methods? To answer

this question we applied a projection method with collocation and piecewise linear interpo-

lation. This collocation method approximates the Euler equation to search for a continuous

equilibrium function over the natural state space. The computed equilibrium function de-

livers reasonable Euler equation residuals (i.e., of the order of 10−5) and a researcher may

be led to believe that this function is a good approximate solution; however, the computed

prices and allocations are quite different from those of the exact equilibrium; see Table 1.

Statistics q c1,zt−1

1 c1,zt−1

2 c2,zt−1

1 c2,zt−1

2

(µtrue, µprojection) (1.0,0.6) (9.7,9.7) (2.0,1.7) (3.6,3.8) (11.0,11.3)
(σ2
true, σ

2
projection) (0.0,0.05) (1.0,0.2) (0.36,0.81) (1.0,0.09) (0.36,0.08)

Table 1: Statistical properties of the true equilibrium vs. an equilibrium generated by

the projection method. Statistics: Mean µ and variance σ2.
5Because of an indeterminacy problem of the Euler equation, we can approximate the equilibrium of

this more limited economy by letting the stock of trees go to zero.
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The relative price of good 2 is a function of the endowment in the previous period. The

price is not signaled by the natural state space as there is no trade among generations.

The equilibrium relative price of good 2 can take on two values and asset holdings take on

one single value. This observation may explain the large differences in Table 1 between the

simulated moments generated by the true and computed solutions. Indeed, the computed

function by the projection method takes on a single value for the relative price of good 2

midway between the two possible equilibrium values.

5.3 The Recursive Equilibrium Algorithm

A recursive representation of equilibria can be readily recovered on an enlarged state space

composed of the natural state variables and the shadow values of investment as auxiliary

variables. For the present economy of Kubler and Polemarchakis (2004), the Markov equi-

librium correspondence can be defined as follows:

V ∗ (θ0, z0) =


(
Dcv

1(c1,z0 (z0) , z0), Dcv
2(c2,z0 (z0) , z0)

)
:{(

ci,z
t (
zt
)
, ci,z

t (
zt+1|zt

)
, θi,z

t (
zt+1

))2

i=1
, p(zt), q

(
zt
)}

t≥0

is a SCE

 .

(10)

Operator B will build on the first-order and market-clearing conditions. After some

algebra, these conditions can be written as:

12 + p+ θ

4p1/5 + p
+

4 + 48p− 4θ

p1/5 + 4p
= 13 (11)

q(
e1

1(z)− qθ
)5 =

π[z+ = z1|z](
12+p(z+)+θ+

1+0.25p(z+)4/5

)5 +
1− π[z+ = z1|z](

12+p(z+)+θ+
1+0.25p(z+)4/5

)5 (12)

q(
e2

1(z) + qθ
)5 =

π[z+ = z1|z](
1+12p(z+)−θ+
1+4p(z+)4/5

)5 +
1− π[z+ = z1|z](

1+12p(z+)−θ+
1+4p(z+)4/5

)5 . (13)

Then, for each given (z, θ), and m ∈ V (z, θ) we have that m ∈ BV (z, θ) if there are
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(q, p, z+, θ+,m (z+)) such that

12 + p+ θ

4p1/5 + p
+

4 + 48p− 4θ

p1/5 + 4p
= 13 (14)

q(
e1

1(z)− qθ
)5 = Em1

+ (15)

q(
e2

1(z) + qθ
)5 = Em2

+. (16)

The numerical implementation of our recursive equilibrium algorithm is quite simple in

this model. The only equilibrium portfolio is θ = 0. However, to test the algorithm we

consider a slightly larger domain [θ, θ], with θ < 0 < θ. The family of simplices we employ

is given by the set of N intervals of the form [θ+nh, θ+ (n+ 1)h], for n = 1, 2, ..., N, and h

is such that θ = θ+ (N + 1)h. The only equilibrium price for the bond is q = 1. This value

together with the definition of the shadow values of investment are now used to set up our

discretization for the initial step correspondence. Let θ ∈[θ + nh, θ + (n+ 1)h]. Then

V h,Σ
0 (θ, z) =

⋃
i,j{(m1,m2) ∈

[
1

e1(z)−(θ+nh)−iΣ ,
1

e1(z)−(θ+nh)−(i+1)Σ

]
×
[

1
e2(z)+(θ+(n+1)h)−jΣ ,

1
e2(z)+(θ+(n+1)h)−(j+1)Σ

]
}

for i = 1, ..., Ni, j = 1, ..., Nj , and e1(z) − (θ + nh) − (Ni + 1)Σ = (θ + (n + 1)h), and

e2(z) + (θ + (n + 1)h) − (Nj + 1)Σ = e2(z) + (θ + nh). This specification is also very

convenient because we have partitioned the image of the correspondence into Ni × Nj

pieces at each element of the simplex of the domain of asset holdings. Iteration of op-

erator Bh,Σ will eliminate those pieces that cannot be linked to a continuation value.

After k iterations, correspondence V h,Σ
k is conformed by the union of those pieces that

have not been eliminated. Operator Bh,Σ is then defined as follows: For any given sim-

plex, an element (i, j) of V h,Σ
k remains in Bh,ΣV h,Σ

k = V h,Σ
k+1 if there is at least one

θ ∈ [θ + nh, θ + (n + 1)h], and a pair (m1,m2) ∈
[

1
e1(z)−(θ+nh)−iΣ ,

1
e1(z)−(θ+nh)−(i+1)Σ

]
×[

1
e2(z)+(θ+(n+1)h)−jΣ ,

1
e2(z)+(θ+(n+1)h)−(j+1)Σ

]
for which we can find (q, p, z+, θ+,m (z+)) sat-

isfying conditions (14-16).
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6 International Risk Sharing

A growing literature has developed to explore the performance of business cycle models

under market imperfections leading to limited risk sharing. As documented in various

papers [e.g., Backus, Kehoe and Kydland (1992)], standard versions of the neoclassical

growth model cannot account for certain co-movements of macroeconomic aggregates. We

now show that our reliable algorithm can naturally be applied to the computation of two-

country models with real and financial frictions.

6.1 The Economic Environment

We just outline an economy in the spirit of Kehoe and Perri (2002) in which we include

shocks on preferences and taxes. There are two-countries with a representative household in

each country. Each economy is affected by a vector of shocks z that follow a Markov chain.

There is a unique aggregate good. Production technologies are country specific. Labor

and capital stocks cannot be moved across countries, but limited international borrowing

is possible. Assets include physical capital and bonds.

The representative household of country i = 1, 2 has preferences over stochastic se-

quences of consumption and labor given by the utility function

E

[ ∞∑
t=0

βtui
(
cit, l

i
t, zt
)]
. (17)

Function ui(·, ·, zt) : R2 → R is increasing in ci ≥ 0 and decreasing in li ∈ [0, 1], strictly

concave, and twice continuously differentiable. Stochastic consumption plans
(
cit
)
t≥0

are

financed by commodity endowments, after-tax capital returns, labor income, and lump-

sum transfers. These values are expressed in terms of the single good, which is taken as

the numeraire commodity of the system at each date-event, zt. For a given rental rate rit

and wage wit in country i, the representative household offers kit(zt−1) ≥ 0 units of capital

accumulated from the previous period, and supplies lit(zt) units of labor.

One-period bonds can be traded at all times. Let bi(zt, ξlt+1(zt)) denote bond holdings
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of agent i, where ξlt+1(zt) is a representative element of a given partition of the possible

successors zt+1|zt. Hence, ∪lξlt+1(zt) equals the set of all zt+1|zt, and ξl′t+1(zt)∩ξlt+1(zt) = 0

whenever l′ 6= l. A bond is a promise to deliver 1 unit of the consumption good whenever

zt+1 ∈ ξlt+1(zt), and 0 otherwise. This specification allows for a full set of state contingent

bonds if ξlt+1(zt) is a unique element for each l. An uncontingent bond pays one unit of the

good for any possible future state. Let q(zt, ξlt+1(zt)) be the price of a bond issued at zt.

The representative household of country i is subject to the following sequence of budget

constraints:

cit
(
zt
)

+ kit+1

(
zt
)

+ bi(zt, ξlt+1(zt))q(zt, ξlt+1(zt)) = wit
(
zt
)
lit
(
zt
)

+ (18)

(1− τ ik(Ki))rit
(
zt
)
kit
(
zt−1

)
+ (1− δ) kit

(
zt−1

)
+ eit (zt) + bi(zt−1, ξlt(z

t−1)) + T it
(
zt
)
,

for all zt, t ≥ 0, given ki0.

Endowments eit(zt) are strictly positive and depend only on the current realization of

the shock zt. Capital income is taxed according to function τk, which may depend on the

aggregate capital stock, Ki
t , or some other state variables. This tax function is assumed to

be positive, continuous, and bounded away from 1. Tax revenues are rebated back to the

representative consumer as lump-sum transfers T it
(
zt
)

= τ ik(K
i)rit

(
zt
)
Ki
t

(
zt
)
.

As in Kehoe and Perri (2002), we consider two scenarios for financial markets. A

debt-constrained economy and a liquidity-constrained economy. In the debt-constrained

economy, consumers have a complete menu of contingent bonds. Financial markets would

be therefore complete, except for the fact that there are constraints on debt holdings. Debt

repudiation is possible and entails permanent exclusion from financial markets. As a result,

holdings of debt are constrained by the following individually rational constraint at every

possible node zt:

Ezt
∞∑
τ=t

(
βi
)τ
ui
(
ciτ , l

i
τ , zτ

)
≥ V i,aut(Ki

t−1(zt), zt), for all t ≥ 0. (19)
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Here, V i,aut is the expected discounted utility value for autarky as a result of zero bond

trading for country i at all dates after zt. Hence, Ki
t−1(zt) is the average level of physical

capital of country i starting at node zt. It is important to stress that the representative

agent in each country makes choices on their capital holdings, kit, assuming that the average

value of the stock of capital Ki
t−1 is given. As is typical in many models with externalities,

no individual agent realizes that her choices affect the aggregate borrowing constraint (19).

Therefore, in this setting the constraint set is convex, and so the first-order approach can

be used to characterize equilibria.

In the liquidity-constrained economy, households can trade quantities bi(zt) of a single

uncontingent bond that yields one unit of the commodity for all states, subject to the

following exogenous constraint:

bi(zt) ≥ −Ωi, (20)

where Ωi is some positive number.

Because of constant-returns-to-scale technologies, we can focus on the problem of a

representative firm without loss of generality. After observing the current shock z the firm

rents Ki units of capital and hires Li units of labor. The total quantity produced of the

single aggregate good is given by a production function AitF
(
Ki
t , L

i
t

)
, where Ait is a TFP

index and F
(
Ki
t , L

i
t

)
is the direct contribution of the firm’s inputs to the production of the

aggregate good. At every date-event zt factors of production are demanded by the firm

to the point in which the marginal productivity of capital equals the rental rate rit and

the marginal productivity of labor equals the wage wit. We shall maintain the following

standard conditions on production function F . Let D1F (K,L) be the derivative of F with

respect to K.

Assumption 6.1 F : R+ × R+ → R+ is increasing, concave, continuous, and linearly

homogeneous. This function is continuously differentiable at each interior point (K,L);

moreover, limK→∞D1F (K,L) = 0 for all L > 0.
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6.2 Competitive Equilibrium

Definition 6.1 A SCE is a tax function τ ik(K), and a collection of vectors(
{cit(zt), lit(zt), kit+1(zt), bi(zt, ξlt+1(zt)),Ki

t+1(zt), Lit(z
t), rit(z

t), wit(z
t)}i=1,2, q(z

t, ξlt+1(zt))
)
t≥0

that satisfy the following conditions:

(i) Constrained-utility maximization: For i = 1, 2 the sequence {cit, lit, kit+1, b
i
t}t≥0 solves

the maximization problem for the objective (17) subject to the sequence of budget constraints

(18), as well as constraint (19) for the debt-constrained economy, and constraint (20) for

the liquidity-constrained economy.

(ii) Market clearing in all the markets: Goods, capital, labor, and bond markets.

We are just extending the definition of SCE of Kehoe and Perri (2002) with the addition

of taxes. Note that in this economy international borrowing allows for imports of the

aggregate good produced abroad – available for consumption and investment – but the

representative firm can only hire local inputs – capital and labor.

There does not seem to be a general proof of existence of competitive equilibria for

infinite-horizon economies with distortions. We are aware of a related contribution by

Jones and Manuelli (1999), but their analysis is not directly applicable to models with

incomplete markets or externalities. Hence, the Appendix outlines a proof of the following

result.

Proposition 6.2 A SCE exists.

6.3 Bounds on Equilibrium Allocations and Prices

The Appendix shows existence of positive constants Kmax and Kmin such that for every

equilibrium sequence of physical capital vectors {kit+1(zt))}t≥0 if Kmax ≥
∑2

i=1 k
i
0(z0) ≥

Kmin then Kmax ≥
∑2

i=1 k
i
t+1(zt) ≥ Kmin for all zt. Hence, in what follows the domain of

aggregate capital will be restricted to the interval [Kmin,Kmax]. We also show that every

equilibrium sequence of factor prices {rit(zt), wit(zt)}t≥0 is bounded.
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To build operator B, we need to bound the equilibrium shadow values of investment.

For this purpose, we introduce the following dynamic programming argument: We define

an auxiliary value function of an individual sequential optimization problem. For a given

sequence of factor and bond prices and aggregate capital (r0(z0),w0(z0),q(z0),K(z0)) =

{rt(zt), wt(zt), qt
(
zt
)
,Kt+1

(
zt
)
}t≥0, let

J i(ki0, b
i
0, z0, r0(z0),w0(z0),q(z0),K(z0)) = maxE

∞∑
t=0

βtui(ct(z
t), lt(z

t), zt)

subject to the sequence of budget constraints (18), as well as constraint (19) for the debt-

constrained economy, and constraint (20) for the liquidity-constrained economy, for given

initial conditions ki0, bi0. That is, J i(ki0, bi0, z0, r0(z0),w0(z0),q(z0),K(z0)) is the maximum

utility attained for initial ki0, bi0, over an expected future sequence of equilibrium prices and

tax rebates.

For every bounded sequence (r0(z0),w0(z0),q(z0),K(z0)), the value function

J i(ki0, z0, b
i
0, r0(z0),w0(z0),q(z0),K(z0)) is well defined, and continuous. Moreover, map-

ping J i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) is increasing, concave, and differentiable with

respect to ki0 and bi0 [cf. Rincon-Zapatero and Santos (2009)]. Let

Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) be the partial derivative of function

J i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) with respect to (k0, b0). Then,

Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) varies continuously with

(ki0, b
i
0, r0(z0),w0(z0),q(z0),K(z0)). The next result readily follows from these regularity

properties of the value function.

Proposition 6.3 For all SCE(
{cit(zt), lit(zt), kit+1(zt), bi(zt, ξlt+1(zt)),Ki

t+1(zt), Lit(z
t), rit(z

t), wit(z
t)}i=1,2,

)
t≥0

withKmax ≥∑2
i=1 k

i
0(z0) ≥ Kmin, there is a constant vector γ̂ = (γ, γ) for γ > 0 such that

0 ≤ Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) ≤ γ̂ for all zt.
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Observe that these bounds apply to the following types of utility functions: (i) Both

function u(·, ·, z) and its derivative are bounded; (ii) function u(·, ·, z) is bounded, and its

derivative function is unbounded; and (iii) both function u(·, ·, z) and its derivative are

unbounded. Phelan and Stacchetti (2001) deal with case (i) and Kubler and Schmedders

(2003) consider utility functions of type (iii). We provide a uniform method of proof

that covers all three cases, as well as production functions with bounded and unbounded

derivatives, and exogenous and endogenous constraints. As a matter of fact, Proposition

6.3 fills an important gap in the literature for production economies with heterogeneous

consumers and market frictions, since no general results are available on upper and lower

bounds for equilibrium allocations and prices.

For any initial distribution of capital k0 = (k1
0, k

2
0), bonds b0 = (b10, b

2
0) and a given

shock z0, the shadow values of investment that belong to the equilibrium correspondence

are defined as

V ∗ (k0, b0, z0) =

{
{Dk,bJ

i(ki0, b
i
0, z0, r0(z0),w0(z0),q(z0),K(z0))}i=1,2 :

There is a SCE

}
. (21)

Hence, the set V ∗ (k0, b0, z0) contains all current equilibrium shadow values of investment

returns mi
0, for every household i.

Corollary 6.4 Correspondence V ∗ is non-empty, compact-valued, and upper semicontinu-

ous.

This corollary is a straightforward consequence of Propositions 6.2 and 6.3. These

bounds insure that our operator B maps compact sets into compact sets [cf., Assumption

3.1]. The construction of B follows the same steps of the preceding section.

6.4 The Recursive Equilibrium Algorithm

The natural state space is conformed by the space of shocks and the distribution of wealth

(namely, individual country holdings of the capital stock and bonds). Because of financial

and real frictions, auxiliary variables are also needed to guarantee a recursive representation
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of equilibria. For the economy with exogenous debt limits we enlarge the state space with

the shadow values of investment. For the economy with endogenous debt limits we enlarge

the state space with both the shadow values of investment, m, and values of participation,

p.

Note that in equilibrium b1(zt, ξlt+1(zt)) = −b2(zt, ξlt+1(zt)). Hence, in the sequel we let b

be the share holdings of country 1. Then, the equilibrium correspondence V ∗(b, k1, k2, z1, z2)

is a map from the space of possible values for each country’s capital stock and shocks, and

bond holdings for agent 1, into the set of possible equilibrium values for the auxiliary

variables.

For the economy with exogenous constraints, both b, q are scalars, and the shadow values

of investment are defined as:

mi(b, k1, k2, z1, z2) = uic
(
Ai(zi)Fk(k

i, li) + (1− δ)ki
)
, (22)

We can now build operator B from the first-order and market-clearing conditions. For any

pair of equilibrium values for the shadow values of investment (m1,m2) ∈ V ∗(b, k1, k2, z1, z2),

there must be bond prices q, multipliers λ, tomorrow’s bond holdings, b+, capitals, k1
+, k

2
+,

and shadow values of investment (m1
+,m

2
+) ∈ V ∗(b+, k1

+, k
2
+, z

1
+, z

2
+) such that the short-run

equilibrium conditions

uic = λi + βiEmi
+ (23)

uicA
iFL = uil (24)

are satisfied. Here λi ≥ 0, with strict inequality only if today’s borrowing constraint binds.

As before, E is the expectations operator.

Analogously, for the economy with endogenous constraints, given a tuple of equilibrium

shadow values of investment and participation, (m1,m2, p1, p2) ∈ V ∗(b, k1, k2, z1, z2), it

must be possible to find continuation values that satisfy the following short-run equilibrium
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conditions:

uic = ζiβiEmi
+ (25)

uicA
iFL = uil (26)

pi = u+ βiEpi+. (27)

In the Euler equation above, ζi ≥ 1 is a ratio of multipliers corresponding to the participa-

tion constraints. Therefore, ζi > 1 only if tomorrow’s participation constraint is binding.

As before, we start with a correspondence V0 ⊇ V ∗. It is easy to bound this initial

candidate V0, since the lowest value of endowments are a lower bound for consumption,

and the marginal utility of consumption can be used to bound asset prices as discounted

values of dividends. It is also straightforward to derive bounds for the value of participation

p0.

For the purposes of presentation, let us just deal with the scenario of the exoge-

nous borrowing constraint (20) where values of participation are not required. For given

(b, k1, k2, z1, z2), operator B dictates that (m1,m2) ∈ BVn(b, k1, k2, z1, z2) if we can find

continuation shadow values of investment (m1
+,m

2
+) ∈ Vn(b+, k

1
+, k

2
+, z

1
+, z

2
+), a bond price

q, and multipliers (λ1, λ2), such that optimality conditions (23-24) are satisfied. If we

cannot find continuation values that satisfy the previous conditions, then (m1,m2) /∈

BVn(b, k1, k2, z1, z2). A new correspondence Vn+1 = B(Vn) is defined after proceeding with

these computations over every possible value (b, k1, k2, z1, z2).

Iterating over operator B we get new candidate values for the shadow values of invest-

ment and values for participation over the short-run equilibrium conditions (25-27). Our

algorithm can then be used to generate a sequence of approximations to the equilibrium

correspondence via the recursion Vn+1 = B(Vn).

For the numerical implementation of the algorithm, we assume pre-specified intervals

for the values of bond and capital holdings. We then partition the state space over a set

of vertex points with grid size h. The step correspondence approximating V0 over each
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element in the partition of the state sijl ≡ [bi, bi+1] × [k1
j , k

1
j+1] × [k2

l , k
2
l+1] can be defined

as

V h
0 (b, k1, k2, z1, z2) = ∪(b,k1,k2,z1,z2)∈sijlV0(b, k1, k2, z1, z2)

V h
0 (b, k1, k2, z1, z2) = ∪(b,k1,k2,z1,z2)∈sijlV0(b, k1, k2, z1, z2).

The image of this correspondence comprises the shadow values of investment (m1,m2).

Hence, a simple outer approximation CΣ
(
Bh(V )

)
would be a finite collection of hypercubes

for vectors (m1,m2). This completes the numerical implementation of operator Bh,Σ, de-

fined over computable step correspondences.

We use our method to compute SCE of this two-country model with endogenous and

exogenous borrowing constraints. In both scenarios we find that the equilibrium correspon-

dence converges to a function (up to numerical accuracy of 10−6), which indicates that

the SCE is unique for given initial conditions. This is the only model of the paper where

computational time is a substantial issue. The basic form of our algorithm is fairly easy to

implement: It only requires to search for continuation values over the short-run equilibrium

conditions required by operator B are satisfied. As this process of search is independent

across states, it is straightforward to use parallel computing. In terms of running times, as

in most algorithms the choice of initial guess matters greatly. The initial guess we employed

was the solution of a similar economy but with complete markets and no distortions, which

can easily be secured with a standard dynamic programming algorithm. Our grid considers

51 equally spaced points for K and 501 points for m for each country i = 1, 2. We ran our

C++ MPI code using an IBM Server 1350 Cluster, with 50 Xeon 2.3GHZ processors. The

average time per iteration of operator B was 24 minutes. The program took 94 iterations to

converge to a desired level of accuracy. These times were lower in the liquidity-constrained

economy.
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6.5 Quantitative Experiments

We now explore the quantitative implications of the above two financial scenarios. For

comparison purposes we will also report results for the model with complete markets to be

solved under standard dynamic programming techniques.

We assume a one-period utility with stochastic shock νi(z):

ui(c, l, z) = νi(z)

[
cη(1− l)1−η]1−σ

1− σ
, (28)

and a Cobb-Douglas production function:

AF (K,L) = AKα(L)1−α. (29)

We shall use the following standard parameter values: α = 0.36, η = 0.36, and σ = 2.

From quarterly data, we let β = 0.99 and δ = 0.025. We consider a discrete VAR process

for the technology shocks with four possible states: (A1 = 0.95613, A2 = 0.95613), (A1 =

0.95613, A2 = 1.04480), (A1 = 1.04480, A2 = 0.95613), (A1 = 1.04480, A2 = 1.04480).

These states evolve according to the transition matrix

π =


0.83022 0.07849 0.07803 0.01326
0.10821 0.77567 0.00865 0.10747
0.10971 0.00793 0.77629 0.10607
0.01354 0.07934 0.07960 0.82752

 .
Table 2 reports the simulated moments for the complete-markets economy, the debt-

constrained economy, and the liquidity-constrained economy in which the borrowing limit

Ωi = 0. The resulting simulated sample moments are in line with those reported in Kehoe

and Perri (2002) who use a slightly different calibration and a different computational

method.

Only the debt-constrained economy offers a chance of generating reasonable correlations.

In the first three scenarios, preferences are non-stochastic (ν(z) = 1), and there are no

taxes (τ = 0). The last column of Table 2 reports a slightly different experiment for the

liquidity-constrained economy with stochastic preferences and taxes. The idea is to see how
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shocks on preferences and taxes may improve the performance of the liquidity-constrained

economy. We assume that νi = 1.05 if Ai > 1, and νi = 0.95 if Ai ≤ 1. Hence, the

representative household is more optimistic (or more willing to consume) in the event of a

good productivity shock. Also, τ i = 0.30 if Ai > 1, and τ i = 0.25 if Ai ≤ 1. That is, taxes

are also procyclical. With respect to the liquidity-constrained economy, this last calibration

improves all the bilateral correlations; still, it does not do as well for the correlations of

consumption c and GDP .

Data complete
markets

liquidity
constrained

debt
constrained

preferences/tax
shocks

Bilateral
correlations
c 0.32 0.8003 -0.8767 0.2264 -0.36
GDP 0.51 −0.5947 -0.7568 0.0170 -0.28
Investment 0.29 −0.9117 −0.9953 0.6037 0.41
labor 0.43 −0.9341 -0.8714 −0.1062 0.19

Table 2: Statistical properties of the economies with complete markets, and with

exogenous or endogenous constraints.

In summary, in this section we apply our reliable algorithm to a two-country general

equilibrium model with several real and financial frictions: Incomplete markets, exogenous

and endogenous constraints, preference shocks, and taxes. We establish bounds for equi-

librium allocations and prices as a key condition for the numerical implementation of our

algorithm. Our model simulations broadly confirm the findings of Kehoe and Perri (2002):

Endogenous debt constraints seem instrumental to fix some international business cycles

anomalies. We here obtain a related result with procyclical preference shocks and taxation

to improve the cross-country correlation of capital and labor. Our computational method

can accommodate some other extensions (e.g., time-to-build, adjustment costs), or can be

applied to related models of international investment [Bai and Zhang (2010)].
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7 Concluding Remarks

This paper provides a theoretical framework for the numerical simulation of dynamic

competitive-market economies in which the welfare theorems may fail to hold because of

market frictions or the existence of an infinite number of generations. This includes various

macroeconomic models with heterogeneous agents, incomplete financial markets, endoge-

nous and exogenous borrowing constraints, taxes, and money. Equilibrium solutions are not

amenable to computation using social planning problems because of the existence of real

and financial frictions. They are not amenable to computation by projection methods with

continuous equilibrium functions because a continuous recursive representation of equilib-

rium may not exist. And they are not amenable to computation by perturbation methods

because the ergodic region may be quite large: Agents accumulate assets to accommodate

idiosyncratic and aggregate risks. All these computational methods may actually generate

large approximation errors.

To overcome these rather limiting technicalities, we propose a reliable recursive equilibrium

algorithm. Our approach is intended to be quite general – available characterizations of

equilibria are usually model-dependent. We consider an abstract framework that covers

equilibrium models with various real and financial frictions, and resource and participa-

tion constraints. Convexity assumptions are not necessary, but certain mild continuity and

time-separability conditions must be satisfied. That is, the model must be recursive: An

equilibrium solution must be characterized by aggregate resource constraints and short-run

optimality conditions comprising only variables of two contiguous time periods, t and t+ 1.

Under mild regularity conditions, we can define a non-empty Markov equilibrium cor-

respondence that generates the set of all sequential competitive equilibria. This correspon-

dence lies in an expanded state space, and can be obtained as the fixed point of an operator

embedding all aggregate constraints and short-run equilibrium conditions. The iteration

process under this operator is globally convergent for every initial guess containing the

Markov equilibrium correspondence.
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We provide a discretized version of this operator which is also globally convergent. This

discretized operator iterates over correspondences rather than functions. As we refine the

discretization process the fixed point of the discretized operator converges uniformly to the

Markov equilibrium correspondence on every compact subdomain. In the present general

context, uniform convergence is a very strong approximation result. Actually, for economies

with unique equilibria the nature of our approximation scheme makes it possible to derive

uniform error bounds.

In the numerical implementation of the algorithm, the choice of auxiliary variables

conforming the state space becomes critical. It is simplest to enlarge the state space with

all endogenous and exogenous variables, but then the algorithm may not be computable.

In the above applications, the computation of equilibria relied on first-order conditions

in which the auxiliary variables were the shadow values of investment for each asset and

for each agent. Under this choice of the state space the Euler equations were linear –

speeding up the computation process. The linearity of the Euler equations was preserved

in models with exogenous borrowing constraints. With endogenous borrowing constraints,

continuation utility values were also added to the state space. The final objective is to work

with a minimal extension of the state space that becomes operative at the computational

stage.

Our quantitative analysis ends with the simulation of a stochastic overlapping generation

economy and a business cycle model of international trading along the lines of Kehoe and

Perri (2002). The overlapping generations economy was instrumental to illustrate some

of the pitfalls that may occur in the computation of equilibrium solutions for non-optimal

economies while using algorithms that search for a continuous equilibrium function over the

natural space of state variables. These traditional algorithms cannot insure convergence

of the approximate solution to the given equilibrium fixed point. As a matter of fact, the

computed solution contained large approximation errors because of a poor choice of the

state space.
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In the numerical simulation of the two-country business cycle model, we contemplate

various scenarios for cross-country risk sharing in a full-blown economic setting with capi-

tal accumulation, taxation, and preference shocks. Among all the financial arrangements,

endogenous borrowing constraints improve substantially the predictions of the model rel-

ative to the data. This is in line with the findings of Kehoe and Perri (2002). As these

authors point out, models with additional frictions may be necessary to make the theory

fully compatible with the data. Under our recursive equilibrium algorithm, it was fairly

easy to accommodate procyclical preference shocks and taxes. These extensions improve

the cross-country correlation of investment and labor.

All of these results add to a large body of literature in macroeconomics and finance in-

tended to overcome some severe limitations of the representative-agent paradigm. The

quantitative analysis of nonoptimal dynamic economies is certainly a non-trivial task.

Hence, reliable methods for the numerical approximation of these economies should prove

very valuable. Feng (2011) generalizes our computational approach to quantify the welfare

loss of time inconsistency in an economy with capital and labor taxation.

Of course, our methods must face some computational challenges. Iteration over cor-

respondences is computationally much more costly than iteration over functions. The ex-

pansion of the state space along with iteration over sets should certainly be manifested

into an additional computational burden. In the characterization of Markov equilibria, it

is therefore imperative to select a set of auxiliary variables with a view towards minimizing

the computational cost. The development of high-performance, parallel computing will cer-

tainly make our methods more attractive as the many computational tasks in our algorithm

can be decentralized.

Finally, the numerical implementation of our algorithm starts with an initial correspon-

dence of potential equilibrium values. In most numerical work it is necessary to bound

the ergodic region. This task, however, may become much more delicate for nonoptimal

economies since no general theory is available to bound asset prices and returns. In our
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applications above we have developed various procedures to bound equilibrium allocations

and prices by ruling asset pricing bubbles and by defining a value function for each house-

hold over future equilibrium paths. This value function is convenient because it can embed

exogenous and endogenous borrowing constraints, as well as other real and financial fric-

tions. Hence, market imperfections need not be explicitly considered to bound equilibrium

allocations and prices. These techniques should certainly be valuable to establish feasible

bounds in related models with heterogeneous agents and market distortions.
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8 Appendix

In this Appendix we prove some key results formally stated in Sections 3 and 4. For

convenience, we also offer a proof of existence for the model of Section 6, and establish

equilibrium bounds. All other claims in the paper may rely on similar arguments.

Proof of Theorem 3.1: Let V̂0 ⊃ V ∗, and V̂i = B(V̂i−1) for all i ≥ 1. To insure monotone

convergence, let us now redefine these sets as Vn = ∪∞i=nV̂i, for all n ≥ 0. Then Vn =

B(Vn−1) and Vn ⊂ Vn−1 for all n ≥ 1. It follows that the sequence {Vn} must converge to a

set V U . Further, V U = ∩∞n=1Vn. Therefore, V U = B(V U ). We next prove that V U = V ∗.

Indeed, by the monotonicity of operator B we get that V ∗ ⊂ V U ; also, V U ⊂ V ∗ since every

fixed point conforms an equilibrium – given that no transversality conditions are involved

in this setting. To complete the proof of the theorem, just note that V U ⊂ V ∗ ⊂ Vn for all

n ≥ 1. Since we have already established that Vn → V U , we get that Vn → V ∗. It is clear

from these arguments that V ∗ is the largest fixed-point of operator B.

Proof of Theorems 4.1: (i) Obvious. Operator Bh,Σ is monotone, V0 ⊇ V ∗ and Bh,Σ(V ∗) ⊃

V ∗.

(ii) The proof follows similar arguments as that of Theorem 3.1. Actually, V h,Σ
n ⊃

V ∗,h,Σ, and our discretized procedure allows for a finite number of set-values. Hence,

pointwise convergence implies uniform convergence.

(iii) Note that operator Bh,Σ converges to B as h→ 0 and Σ→∞. Since V ∗ ⊂ V ∗,h,Σ,

we get that V ∗,h,Σ → V ∗ as h→ 0 and Σ→∞.

Proof of Theorem 4.2: The proof goes by contradiction. Since X×Y is a compact set every

sequence must have a convergent subsequence. Hence, if the assertion of Theorem 4.2 is

not true there is a converging sequence {(xh,Σn , z, vh,Σn )} → (x, z, v) with (xh,Σn , z, vh,Σn ) ∈

graph(V h,Σ
n ) and d(graph(V h,Σ

n ), graph(V ∗)) > ε. As h → 0, Σ → ∞, and n → ∞, we
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must have [cf. Theorem 3.1] that (x, z, v) ∈ graph(V ∗). However, this is in contradiction

with the previous assertion that d(graph(V h,Σ
n ), graph(V ∗)) > ε for all Σ, h, n.

Proof of Proposition 6.2: The existence of a SCE can be established by approximating the

infinite-horizon economy by a sequence of finite economies. This is the strategy followed

by Jones and Manuelli (1999), but their proof does not apply to sequential competitive

economies. Of course, the hardest part is to provide upper bounds for equilibrium quantities

over all the finite-horizon economies. These bounds follow from Proposition 6.3 below.

Hence, following Jones and Manuelli (1999), we consider the following steps for the

proof of a SCE: (i) Existence of an equilibrium for a finite horizon economy. This result

is covered by the general proofs of existence of competitive equilibria for economies with

taxes, externalities, and incomplete markets [Arrow and Hahn (1971), Levine and Zame

(1996), Mantel (1975), and Shafer and Sonneschein (1976)]. (ii) Uniform bounds for equi-

librium allocations and prices of finite-horizon economies. As already pointed out, these

bounds are established in Proposition 6.3 below. (iii) Existence of SEC as a limit point of fi-

nite equilibria. The preceding steps (i) and (ii) guarantee that there is a collection of vectors(
{cit(zt), lit(zt), kit+1(zt), bi(zt, ξlt+1(zt)),Ki

t+1(zt), Lit(z
t), rit(z

t), wit(z
t)}i=1,2, q(z

t, ξlt+1(zt))
)
t≥0

that can be obtained as limits of equilibria of finite economies. It is obvious that for

such limiting solution the market clearing conditions must be satisfied at each zt, and

that one period-profits are maximized. Moreover, for each agent i the limiting allocation

(cit(z
t), lit(z

t), kit+1(zt), bi(zt, ξlt+1(zt)) must satisfy the sequence of budget constraints (18),

as well as the endogenous or exogenous constraints. This allocation is optimal since the

discounted utility function is continuous in the product topology over the set of feasible

consumption/leisure plans
(
cit
(
zt
)
, 1− lit

(
zt
))
t≥0

which are preferred to the endowment al-

location
(
eit (zt) , 1

)
t≥0

. This is because feasible consumption plans
(
cit
(
zt
))
t≥0

are bounded

above, and the endowment process
(
eit (zt)

)
t≥0

is bounded below by a positive quantity and

the endowment of leisure is always equal to one.
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Proof of Proposition 6.3: We first show that there are positive constants Kmax and Kmin

such that for every equilibrium sequence of physical capital vectors
(
kit+1(zt))

)
t≥0

ifKmax ≥∑2
i=1 k

i
0(z0) ≥ Kmin then Kmax ≥

∑2
i=1 k

i
t+1(zt) ≥ Kmin for all zt. The existence of Kmax

follows directly from Assumption 6.1, since the marginal productivity of capital converges

to zero as K goes to ∞ for every fixed 0 ≤ L ≤ 1. Also, it obvious that Kmin ≥ 0.

We now claim that there are constants rmax and wmax such that for every equi-

librium sequence of factor prices
(
rit
(
zt
)
, wit

(
zt
))
t≥0

we have 0 ≤ rit(z
t) ≤ rmax and

0 ≤ wit(z
t) ≤ wmax for all zt. The existence of wmax follows from continuity properties of

the utility function. The household is endowed with one unit of labor. Hence, if the wage is

arbitrarily high it would be optimal to consume a large amount of consumption by giving up

a small quantity of leisure. If along an equilibrium path we have that rit is arbitrarily large,

then kit must go to zero. From the Euler equation, consumption cit must also go to zero. But

this is not possible under either exogenous or endogenous constraints, as eit > 0 is bounded

below by a positive quantity, and in the debt constrained economy the household can switch

to autarky. Moreover, using a simple arbitrage argument, we have that qt is also bounded.

Hence, the value function J i(ki0, b
i
0, z0, r0(z0),w0(z0),q(z0),K(z0)) is well defined. As

already pointed out the derivative Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) is continu-

ous in (ki0, b
i
0, z0, r0(z0),w0(z0),q(z0),K(z0)).6 By a simple notational change it follows

from (18) that function J i can be rewritten as J i(ai0, bi0, z0, r0(z0),w0(z0),q(z0),K(z0))

w0(z0),K(z0)), where ai0 = ei0(z0) + (1− τ) r0k
i
0. Then, we can conclude that

0 ≤ Dk,bJ
i(ki0, b

i
0, z0, r0(z0),w0(z0),K(z0)) ≤ γ̂, since ei0(z0) is bounded below by a positive

number, and all feasible vectors (ki0, b
i
0, z0, r0(z0),w0(z0),K(z0)) lie in a compact set.

6Note that if bi0 is a large negative number then the value function is well defined, but the agent will
switch to autarky. In the autarky region the derivative of J i with respect to bi0 is zero. Hence, at the
point of switching to autarky, the derivative of J i will not be continuous but the differential is a compact
correspondence.
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