
A MODEL OF NONBELIEF IN THE LAW OF
LARGE NUMBERS

Daniel J. Benjamin
Cornell University
and University of Southern California

Matthew Rabin
Harvard University

Collin Raymond
University of Oxford

Abstract
People believe that, even in very large samples, proportions of binary signals might depart significantly
from the population mean. We model this “nonbelief in the Law of Large Numbers” by assuming
that a person believes that proportions in any given sample might be determined by a rate different
than the true rate. In prediction, a nonbeliever expects the distribution of signals will have fat tails. In
inference, a nonbeliever remains uncertain and influenced by priors even after observing an arbitrarily
large sample. We explore implications for beliefs and behavior in a variety of economic settings.
(JEL: B49, D03, D14, D83, G11)

1. Introduction

Psychological research has identified systematic biases in people’s beliefs about the
relationship between sample proportions and the population from which they are
drawn. Following Tversky and Kahneman (1971), Rabin (2002) and Rabin and Vayanos
(2010) model the notion that people believe in “the Law of Small Numbers (LSN)”,
exaggerating how likely it is that small samples will reflect the underlying population.
LSN predicts that when inferring the population proportion that generated a given
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O’Donoghue, Marco Ottaviani, Larry Phillips, Daniel Read, Larry Samuelson, Jeremy Stein, three
anonymous referees, and seminar participants at UC Berkeley, Cornell University, Koc University, the
LSE-WZB Conference on Behavioral IO, the Yale Behavioral Science Conference and the Behavioral
Economics Annual Meeting for helpful comments. We are grateful to Samantha Cunningham, Ahmed
Jaber, Greg Muenzen, Desmond Ong, Nathaniel Schorr, Dennis Shiraev, Josh Tasoff, Mike Urbancic, and
Xiaoyu Xu for research assistance. For financial support, Benjamin thanks NIH/NIA grant T32-AG00186
to the NBER, and Raymond thanks the University of Michigan School of Information’s Socio-Technical
Infrastructure for Electronic Transactions Multidisciplinary Doctoral Fellowship funded by NSF IGERT
grant #0654014. Benjamin is a Research Associate at NBER.

E-mail: daniel.benjamin@gmail.com (Benjamin); matthewrabin@fas.harvard.edu (Rabin);
collin.raymond@economics.ox.ac.uk (Raymond)

Journal of the European Economic Association xxxx 2015 00(0):1–30
c� 2015 by the European Economic Association DOI: 10.1111/jeea.12139



2 Journal of the European Economic Association

sample, people will be overconfident. Yet experimental evidence on such inference
problems clearly indicates that when the sample contains more than a few observations,
people’s inference are typically underconfident. Moreover, these inferences appear to
be driven by people’s beliefs about the distribution of sample proportions that are too
diffuse for medium-sized and large samples (see Online Appendix D for our review of
the evidence on inference and sampling-distribution beliefs). In this paper, we develop
a formal model of this bias in people’s sampling-distribution beliefs and show that it
has a range of economic consequences, including causing under-inference from large
samples, a lack of demand for large samples, and, as a function of the environment,
either too little or too much risk-taking.

This bias coexists with LSN; we discuss the relationship between the two in Section
6, and provide a model combining both biases in Online Appendix C. We call the
bias “nonbelief in the Law of Large Numbers”, abbreviated to NBLLN,1 because we
believe its source is the absence of sample size as a factor in people’s intuitions about
sampling distributions. Our view is motivated by Kahneman and Tversky’s (1972)
evidence and interpretation. They find that experimental subjects seem to think sample
proportions reflect a “universal sampling distribution”, virtually neglecting sample
size. For instance, independent of whether a fair coin is flipped 10, 100, or 1,000 times,
the median subject thinks that there is about 1=5 chance of getting between 45% and
55% heads, and about 1=20 chance of between 75% and 85%. These beliefs are close
to the right probabilities of 1=4 and 1=25 for the sample size of 10, but wildly miss
the mark for the sample size of 1,000, where the sample is almost surely between 45%
and 55% heads.

In Section 2, we develop our model of NBLLN in a simple setting, where a person is
trying to predict the distribution of—or make an inference from—a sample of fixed size.
Throughout, we refer to our modeled nonbeliever in the LLN as Barney, and compare
his beliefs and behavior to a purely Bayesian information processor, Tommy.2 Tommy
knows that the likelihood of different sample distributions of an i.i.d. coin biased �
towards heads will be the “�-binomial distribution”. But Barney, as we model him,
believes that large-sample proportions will be distributed according to a “ˇ-binomial
distribution”, for some ˇ 2 Œ0; 1� that itself is drawn from a distribution with mean
� . This model directly implies NBLLN: whereas Tommy knows that large samples
will have proportions of heads very close to � , Barney feels that the proportions in
any given sample, no matter how large, might not be � . Although the model largely
reflects the “universal sampling distribution” intuition from Kahneman and Tversky
(1972), it also embeds some sensitivity to sample sizes, consistent with other evidence,
such as Study 1 of Griffin and Tversky (1992).3 Other models would share the basic

1. NBLLN is pronounced letter by letter, said with the same emphasis and rhythm as “Ahmadinejad.”

2. “Tommy” is the conventional designation in the quasi-Bayesian literature to refer somebody who
updates according to the dictums of the Reverend Thomas Bayes.

3. Even though we are not aware of any evidence on people’s beliefs regarding sample sizes larger than
1,000, our model imposes—consistent with Kahneman and Tversky’s (1972) interpretation—that Barney
puts positive probability on sample proportions other than � even in an infinite sample. We conjecture
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features of NBLLN that we exploit in this paper; we discuss in Section 6 the merits
and drawbacks of our particular formulation.

After defining the model, Section 2 describes some of its basic features for Barney’s
predictions about the likelihood of occurrence of different samples and his inferences
from samples that have occurred. While Barney makes the same predictions as Tommy
about sample sizes of 1, his beliefs about sample proportions are a mean-preserving
spread of Tommy’s for samples of two or more signals. In situations of inference,
we show that applying Bayesian updating based on his wrong beliefs about the
likelihood of different sample realizations, NBLLN implies under-inference from large
samples: Barney’s posterior ratio on different hypotheses is less extreme than Tommy’s.
Importantly, for any proportion of signals—including the proportion corresponding
to the true state—Barney fails to become fully confident even after infinite data.
Consequently, Barney’s priors remain influential even after he has observed a large
sample of evidence.

Sections 3 and 4 illustrate some of the basic economic implications of NBLLN.
Section 3 examines willingness to pay for information. If Barney and Tommy can
choose what sample size of signals to acquire, then Barney (because he expects to
learn less from any fixed sample size) may choose a larger sample, and can therefore
end up being more certain about the state of the world. But because Barney thinks
that his inference would be limited even from an infinite sample, he unambiguously
has a lower willingness to pay for a large sample of data than Tommy. This lack
of demand for statistical data is a central implication of NBLLN. We believe it
contributes to explaining why people often rely instead on sources of information
that provide only a small number of signals, such as anecdotes from strangers, stories
from one’s immediate social network, and limited personal experience. Indeed, direct
real-world evidence of the propensity to over-infer from limited evidence might be
more ubiquitous than evidence of under-inference precisely because people rarely
choose to obtain a large sample.

Section 4 next explores how Barney’s mistaken beliefs about the likelihood of
different samples matters for choice under risk. For example, Barney believes that
the risk associated with a large number of independent gambles is greater than it
actually is. This magnifies aversion to repeated risks, whether that risk aversion is
due to diminishing marginal utility of wealth or (more relevantly) reference-dependent
risk attitudes. Because he does not realize that the chance of aggregate losses becomes
negligible, Barney may refuse to accept even infinite repetitions of a small, better-than-
fair gamble. Even assuming a plausible model of risk preferences, such as loss aversion,
that generates the intrinsic aversion to small risks, a person who is focusing on whether
to accept a large number of independent risks would not exhibit the observed behavior

that people’s beliefs regarding much larger samples do indeed resemble the same “universal sampling
distribution” as for a sample size of 1,000. Nonetheless, we emphasize that even if the literal implications
of our model for infinite sample sizes were not true, our large-sample limit results would still have
substantial bite for the applications where we invoke them. This is because, as per the frequent reliance on
large-sample limit results in econometrics, the LLN typically provides a good approximation for Tommy’s
beliefs in the finite, moderately sized samples that are realistic for those applications.
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if he believed in LLN. Benartzi and Thaler (1999), in fact, demonstrate clearly the role
of both loss aversion and what we are calling NBLLN. However, in other contexts,
where payoffs depend on extreme outcomes, Barney’s mistaken sampling beliefs could
instead make him appear less risk averse than Tommy, such as playing a lottery in which
whether he wins a prize depends on correctly guessing all of several numbers that will
be randomly drawn.

Sections 3 and 4 assume that a person is analyzing all his information as a single
sample of fixed size. In many settings, it seems more likely people will instead
analyze the evidence dynamically as information arrives. In Section 5, we confront
a conceptual challenge intrinsic to the very nature of NBLLN that arises in such
settings: because Barney under-infers more for larger samples than smaller ones, he
will infer differently if he lumps observations together versus separately. We discuss
possible assumptions regarding how Barney “retrospectively groups” signals—how
he interprets evidence once he sees it—and “prospectively groups” signals—how he
predicts ahead of time he will interpret evidence he might observe in the future. We
formalize these assumptions in Online Appendix A, and in Online Appendix B, we use
the single-sample and multiple-sample models to draw out consequences of NBLLN
in additional applications that cover some of the major areas in the economics of
uncertainty, such as valuation of risky prospects, information acquisition, and optimal
stopping.

In Section 6, we discuss why we think our model of NBLLN is more compelling
than alternative modeling approaches and explanations for the phenomena we are
trying to explain with NBLLN, including both fully rational and not fully rational
alternatives. We also discuss the drawbacks of our particular formulation. Perhaps most
importantly, while the model makes predictions about Barney’s sampling-distribution
beliefs (e.g., one head out of two flips), it cannot be used to make predictions regarding
Barney’s beliefs about the likelihood of particular sequences (e.g., a head followed
by a tail). In addition, our model ignores other important departures from Bayesian
inference, such as belief in the Law of Small Numbers and base-rate neglect. To begin
to understand how these various biases relate to each other, in Online Appendix C
we present a (complicated) formal model embedding some of these other errors along
with NBLLN.

Section 7 concludes. We discuss how NBLLN acts as an “enabling bias” for
distinct psychological biases, such as “vividness bias” and optimism about one’s own
abilities or preferences, that would otherwise be rendered irrelevant by the LLN. We
also suggest directions for extending the model to non-i.i.d. and nonbinomial signals.

In Online Appendix D, we review the extensive experimental literature on inference
and the smaller body of evidence on sampling-distribution beliefs that motivate this
paper. In light of this evidence—much of it from the 1960s—we do not fully understand
why the bias we call NBLLN has not been widely appreciated by judgment researchers
or behavioral economists. We suspect it is largely because findings of under-inference
have been associated with an interpretation called “conservatism” (e.g., Edwards
1968)—namely, that people tend not to update their beliefs as strongly as Bayesian
updating dictates—that does not mesh comfortably with other biases that often imply
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that people infer more strongly than Bayesian. Our interpretation of the under-inference
evidence as NBLLN differs from the conservatism interpretation; rather than being an
intrinsic aversion to strong updating, NBLLN is a bias in intuitive understanding of
sampling distributions. In Online Appendix C, we show that NBLLN can coexist with
base-rate neglect and other biases that can generate over-inference in some settings.
Online Appendix E contains proofs.

2. The Single-Sample Model

Throughout the paper, we study a stylized setting in which an agent observes a
set of binary signals, each of which takes on a value of either a or b. Given a
rate � 2 ‚ � .0; 1/, signals are generated by a binomial (i.i.d.) process where the
probability of an a-signal is equal to � . Signals arrive in clumps of size N . We denote
the set of possible ordered sets of signals of size N 2 f1; 2; : : :g by SN � fa; bgN ,
and we denote an arbitrary clump (of size N ) by s 2 SN .4 Let As denote the total
number of a-signals that occur in the clump s 2 SN , so that As=N is the proportion
of a-signals that occur in a clump of N signals. For a real number x, we will use the
standard notations “dxe” to signify the smallest integer that is weakly greater than or
equal to x and “bxc” to signify the largest integer that is weakly less than or equal to
x. For any random variable y that takes as possible values the elements of set Y , let
beliefs by Tommy (who believes in the LLN) be denoted by cumulative distribution
function FY .�/, implying probability density function fY .�/, expectation EY .�/, and
variance VarY .�/. Let corresponding beliefs by Barney (the nonbeliever in the LLN)
be denoted by F Y .�/, f  Y .�/, E Y .�/, and Var Y .�/, where  signifies Barney’s beliefs
(and is a parameter for the degree of NBLLN in the parameterized special case of the
model described in equation (3)).

In this section, we develop our model of Barney for the case where he is considering
a single clump ofN signals. This case corresponds to most of the experimental evidence
about NBLLN, which has been collected in settings where subjects were presented
with a single, fixed sample of signals or outcomes, in which subjects presumably
process all the information together. This special case also allows us to lay bare the
essential features of how our model captures NBLLN. The domain of the model—and
the focus of all of our applications—is Barney’s beliefs about the total number of
a-signals that occur in a sample of N signals; as we discuss in Section 6, the model
cannot be applied to beliefs about specific sequences of signals. The single-clump
model of Barney is all we need for the applications we explore in the main text. In
Section 5 and Online Appendix A, we discuss the conceptual challenges that arise

4. Note that we forego the conventional strategy of providing notation for a generic signal, indexed by
its number. It is less useful here because (within a clump) what matters to Barney is just the number of
a-signals, not their order. In Online Appendix A, when we formalize the multiple-sample model, we use t
to index the clumps of signals.
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when generalizing the model to multiple clumps, and in Online Appendix B, we use
the multiple-clump model in the applications we explore.

According to the LLN, with probability 1 in the limit as the sample size gets large,
the mean of a random sample equals the rate: for any interval .˛1; ˛2/ � Œ0; 1�,

lim
N!1

d˛
2
N eX

xDb˛
1
N c
fS

N
j‚

�
As D xj�� D

�
1 if � 2 �

˛1; ˛2
�
;

0 otherwise:

How might we capture the possibility that Barney believes (say, as per an example
in Kahneman and Tversky 1972) that it is reasonably likely that at least 600 of 1,000
births at a hospital in a given year are boys, even though he knows that boys are born
at a rate of 50%? The essence of our model is to assume that Barney believes samples
are generated as if a rate of � , here 50%, means that the rate is � on average, but might
be higher or lower for any given sample; intuitively, there is common noise added to
all signals in a given sample. For a given true rate � , we model Barney as believing
that for the sample he is considering: first, a “subjective rate” ˇ 2 Œ0; 1� is drawn from
a distribution centered at � . Then the i.i.d. sample of 1,000 babies is generated using
rate ˇ. The key implication is that if a given value of ˇ were the actual rate, it would
(by the LLN) exactly determine the proportion of signals in the limit of a very large
sample. Therefore, the probability density that Barney assigns to any proportion ˇ
of signals (say, 60% of babies are boys) in a large sample is equal to the probability
density that Barney assigns to the possibility that ˇ equals that value. Although this
modeling approach is “as if” Barney is unsure that the rate is �—and indeed exactly
our parametric version of the model described in what follows is commonly used in
statistics to capture unobserved heterogeneity—true parameter uncertainty is not at
all our interpretation. Instead, consistent with the underlying NBLLN psychology, we
interpret it as Barney’s belief that even his certainty that the underlying rate is � is not
a guarantee that the proportion in very large samples will approximate � .5

Formally, we assume that when Barney knows the rate is � , he believes that signals
are generated by a binomial (i.i.d.) process where the probability of an a-signal is
equal to ˇ. This ˇ 2 Œ0; 1� is called the subjective rate, and it is drawn from a density
f
 

ßj‚.ˇj�/. We refer to f  ßj‚ as Barney’s subjective rate distribution and assume that it
has the following properties.

5. By comparison, Acemoglu, Chernozukov, and Yildiz (2009) analyze a model that is formally similar
to our single-sample model but is a model of parameter uncertainty. Similar to our Proposition 2, they
show that a Bayesian agent with parameter uncertainty fails to learn the state � (which determines the
distribution of ˇ ) with certainty even after observing an infinite number of signals. However, such an agent
does learn with certainty the signal-generating rate ˇ , which governs the rate of future signals. In contrast,
under our interpretation of our model, any inferences about ˇ would be useless because a new ˇ is drawn
with every new sample. In the single-sample applications we discuss in the main text, this distinction is
purely interpretational. In the dynamic applications we develop in Online Appendix B, the distinction will
be integral to the workings and predictions of the model. To see why, consider a situation where Barney
must predict further signals after observing a sample of 100 signals. In our model, Barney’s expected
proportion of a-signals remains still � , rather than being influenced by the first 100 signals as it would be
in a model of parameter uncertainty.
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ASSUMPTION 1. For all ˇ and � , F ßj‚.ˇj�/ is absolutely continuous in ˇ, and

f
 

ßj‚.ˇj�/ has full support on .0; 1/ and is pointwise continuous in � . We will
sometimes make the more restrictive Assumption 10: the same as Assumption 1,
except f  ßj‚.ˇj�/ has full support on Œ0; 1�.

ASSUMPTION 2. For all ˇ and � , F ßj‚.ˇj1 � �/ D 1 � F ßj‚.1 � ˇj�/.
ASSUMPTION 3. For all � and � 0 > � , f  ßj‚.ˇj� 0/=f  ßj‚.ˇj�/ is increasing in ˇ.

ASSUMPTION 4. For all ˇ and � , E ßj‚.ˇj�/ D � .

Assumption 1 is a mild technical assumption. Assumption 1 differs from
Assumption 10 in allowing the density functions forˇ to converge to zero at proportions
0 and 1. The available experimental evidence cannot distinguish between Assumption
1 and Assumption 10 because people’s beliefs about the likelihood of the most extreme
sample proportions have not been elicited. While Assumption 10 generally allows us
to draw sharper theoretical conclusions, Assumption 1 accommodates our parametric
example of the beta distribution discussed in what follows—any results that assume
Assumption 1 also hold with Assumption 10 a fortiori.

Assumption 2 states that Barney’s beliefs when the bias is 1 � � are symmetric
to his beliefs when the bias is � . This assumption is consistent with the available
experimental evidence on people’s beliefs.

Assumptions 3 and 4 are substantive assumptions that do not follow easily from
the psychology. Assumption 3 is a monotone-likelihood-ratio property: fixing any two
rates, Barney believes that the likelihood of drawing any particular subjective rate
given the high rate relative to the low rate is increasing in the subjective rate. It is
easy to imagine specifications of f  ßj‚.ˇj�/—especially in the spirit of the type of
diminishing-sensitivity evidence discussed in Online Appendix D—that would violate
Assumption 3. But Assumption 3 is in accord with the most directly relevant evidence,
namely Griffin and Tversky’s (1992) Study 3, which examines a range of parameters
of the sort that seems most likely for violating it.6 It holds for our main example of
the beta distribution and more generally is useful for establishing some of our results.
Especially because the range of samples for which it is potentially false are inherently
very unlikely, we think it is probably not an important caveat to our results.

Assumption 4 means that we restrict attention to cases where the mean of Barney’s
subjective rate distribution is equal to the known objective rate � . Although we rely
on Assumption 4 extensively in the analysis, it is in fact violated in existing data. In
what follows, when discussing Figure 1, we discuss how Assumption 4 is violated—in

6. In particular, Griffin and Tversky asked subjects to infer the likelihood that a coin is biased �
A

D 0.6
in favor of heads rather than �

B
D 0.25 in favor of heads, depending on different possible outcomes from

flipping the coin twelve times. According to the (statistically erroneous) diminishing-sensitivity intuition,
extreme samples, such as ten heads out of twelve, seem so unexpected in the case of either rate that they
do not provide strong evidence about which rate is generating the flips. Yet consistent with Assumption 3,
Griffin and Tversky find that subjects’ posterior beliefs in favor of the 0.6-biased coin are monotonically
increasing in the number of heads.
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FIGURE 1. Evidence from Kahneman and Tversky (1972).

particular the mean of the subjective sampling distribution is not equal to �—and
in Online Appendix C, we propose a more comprehensive model that captures the
psychology that we believe underlies the violations.

When Barney knows the rate is � , he believes the likelihood of observing a
particular clump of N signals, s 2 SN , is

f
 

S
N

j‚ .sj�/ D
Z
ˇ2Œ0;1�

fS
N

jß .sjˇ/ f  ßj‚ .ˇj�/ dˇ; (1)

where fS
N

jß.sjˇ/ is the (correct) probability of observing s if the rate were ˇ, and this

is averaged over the density of subjective rates, f  ßj‚.ˇj�/. Consequently, Barney’s
belief that a large sample will have a proportion of a signals in some range Œ˛1; ˛2� is
exactly equal to Barney’s belief that the subjective rate ˇ is in that range.7

LEMMA 1. Assume Assumptions 1–4. Barney does not believe in LLN: for any � 2 ‚
and interval Œ˛1; ˛2� � Œ0; 1�,

lim
N!1

d˛
2
N eX

xDb˛
1
N c
f
 

S
N

j‚
�
As D xj�� D F

 

ßj‚
�
ˇ D ˛2j�

� � F ßj‚
�
ˇ D ˛1j�

�
> 0:

Because we assume that Barney’s beliefs about the distribution of ˇ puts positive
probability density on the entire interval .0; 1/ , the subjective-rate model captures the
essence of our interpretation of NBLLN: Barney believes that the proportion of heads
from flipping a coin known to be fair may not be 50% in any given sample, no matter
how large.

7. All proofs are relegated to Online Appendix E.
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Since Barney’s belief about the distribution of signals in large samples coincides
with his subjective-rate distribution, the most appropriate density of ˇj� would
correspond to the limiting distribution of people’s empirically observed beliefs about
signals. In Figure 1, drawn from Kahneman and Tversky (1972), the black, gray,
and white bars correspond to people’s reported beliefs regarding samples of size 10,
100, and 1000, respectively. Viewed through the lens of our model, the fact that the
distributions are virtually identical implies that this common distribution corresponds
to people’s large-sample beliefs about sample proportions. It could thus be directly
assumed to be the density of ˇj� .

Although Assumptions 1 and 2 are consistent with the density of ˇj� implied by
Figure 1, Assumption 4 is not. Beliefs for � D 0:5, depicted in the left panel, naturally
have a mean approximately equal to 0.5. However, beliefs for � D 0:8, depicted in the
right panel, have a mean approximately equal to 0.6. The mean of the distribution of
signals is displaced toward 0.5 apparently because the long tail of the distribution is
fat. As we discuss in Appendices C and D, we believe that the fatness of the tail is in
turn due to even more flatness of the tail than implied by NBLLN alone. Because such
extreme flatness is omitted from the model, the model will not match some features
of the empirical evidence, especially when the agent observes an extreme sample.
We nonetheless assume Assumption 4 for two reasons: analytical convenience, and
our contention that the violation of the assumption is due to psychological biases
unrelated to NBLLN (see Online Appendix C for a model of flatness as resulting
from a form of “diminishing sensitivity”), whose robustness and general properties are
poorly understood.

A subjective sampling distribution specifies an agent’s belief about the likelihood
of each possible combination of signals when the rate � is known. Whereas Lemma 1
shows that Barney’s subjective sampling distribution (for the number of a-signals) in
the large-sample limit equals his “subjective rate distribution”, Proposition 1 shows
some implications of NBLLN for finite-sample subjective sampling distributions.

PROPOSITION 1. Assume Assumptions 1–4. For any � 2 ‚ and N 2 f1; 2; : : :g, we
have the following.

1. E 
S
N

j‚.As=N j�/ D ES
N

j‚.As=N j�/ D � . Therefore, for N D 1,

FS
1
j‚.Asj�/ D F

 

S
1
j‚.Asj�/.

2. FS
N

j‚.Asj�/ second-order stochastically dominates (SOSD) F 
S
N

j‚.Asj�/, and

Var 
S
N

j‚.As=N j�/ � VarS
N

j‚.As=N j�/ with strict inequality for N > 1.

3. Var 
S
N

j‚.As=N j�/ is strictly decreasing in N .

4. F 
S
N

j‚.Asj� 0/ first-order stochastically dominates (FOSD) F
 

S
N

j‚.Asj�/
whenever � 0 > � .

Part 1 states that Barney’s subjective sampling distribution gets the mean right—
and therefore, Barney’s beliefs coincide with Tommy’s whenN D 1. The latter follows
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because for a sample size of 1, the mean of an agent’s subjective sampling distribution
is simply equal to his perceived probability of an a-signal; thus Barney, like Tommy,
thinks the probability of a single a-signal is � .

Part 2 states that Barney has a riskier subjective sampling distribution than Tommy.
Combined with the fact that the mean of Barney’s subjective sampling distribution is
the same as Tommy’s, this implies that Barney’s subjective sampling distribution is
a mean-preserving spread of Tommy’s. This naturally implies that the variance of
Barney’s subjective sampling distribution is larger than Tommy’s.

Part 3 states that the variance of Barney’s subjective sampling distribution (for
the sample proportion) is strictly decreasing in N . Part 4 states that a higher true rate
generates a rightward shift in Barney’s entire subjective sampling distribution in the
sense of first-order stochastic dominance. Thus Parts 3 and 4 show that important
qualitative comparative statics regarding Tommy’s beliefs also hold true regarding
Barney’s beliefs.

We now turn to inference problems, where an agent with prior beliefs must infer
from observed signals what the underlying rate is—for example, determining the
likelihood that a coin is head-biased rather than tail-biased, after observing a sample
of coin flips. Let‚ � .0; 1/ denote the set of rates that have positive prior probability.
For simplicity, we assume that‚ is a finite set. Without loss of generality, we consider
the agent’s beliefs about the relative likelihood of two of the rates �A > �B , given
priors f‚.�A/; f‚.�B/ > 0 and f‚.�A/C f‚.�B/ � 1.

We maintain the conventional assumption that an agent draws inferences by
applying Bayes’ Rule to his subjective sampling distributions. We do so both to
highlight the role played per se by NBLLN, and because (as we discuss in Online
Appendix D) our reading of the experimental evidence is that except for the well-
established phenomenon of “base-rate neglect” (i.e., underweighting of priors),
people’s inferences are actually well-approximated by Bayes’ Rule applied to their
subjective sampling distributions.8 Consequently, Barney’s beliefs after observing a
particular clump s 2 SN are

f
 

‚jS
N

�
�Ajs� D f

 

S
N

j‚
�
sj�A

�
f‚

�
�A

� . X
�2‚

f
 

S
N

j‚ .sj�/ f‚ .�/

and
f
 

‚jS
N

�
�B js� D f

 

S
N

j‚
�
sj�B

�
f‚

�
�B

� . X
�2‚

f
 

S
N

j‚ .sj�/ f‚ .�/ :

Due to the LLN, after observing a sufficiently large number of signals, Tommy will
be arbitrarily close to certainty on the true rate. In contrast, the central implication for
inference of Barney’s NBLLN—which plays a large role in many of the applications

8. Therefore, in applications where priors are equal—and hence base-rate neglect is neutralized as a
factor—our assumption of Bayesian inference is fully appropriate. In applications where we do not assume
equal priors, however, base-rate neglect could modify some of our results. Online Appendix C discusses
and formalizes how to combine NBLLN with base-rate neglect.
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later in this paper—is that Barney remains uncertain even after observing an infinite
number of signals. We thus have the following proposition.

PROPOSITION 2. Assume Assumptions 1–4. Let � 2 ‚ be the true rate. Then for
any �A; �B 2 ‚ and prior f‚.�A/; f‚.�B/ 2 .0; 1/, Barney draws limited inference
even from an infinite sample: as N ! 1, Barney’s posterior ratio converges almost
surely (with respect to the true probability distribution over events) to a positive, finite
number:

f
 

‚jS
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�
�Ajs�

f
 

‚jS
N

�
�B js� !a:s:
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�
ˇ D � j�A
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ßj‚
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ˇ D � j�B
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�
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�
f

�
�B

� . (2)

Because Barney’s asymptotic sampling distribution coincides with the subjective-
rate distribution, his limit inference depends on the relative weights that the probability
distribution functions of the subjective-rate distributions for �A and �B assign to the
proportion � of a-signals. Since the subjective-rate distributions put positive density
on every proportion in .0; 1/, Barney’s likelihood ratio will be finite. An immediate
and important implication is that Barney’s priors—that is, his ex-ante theories about
the world—influence his beliefs even in the limit of an infinite sample.

Tommy not only will learn the true rate for sure after observing a sufficiently large
number of signals, he also correctly anticipates that a sufficiently large number of
signals will make him certain of the true rate. In contrast, Barney mistakenly thinks
that his posterior probability of rate �A after observing an infinite number of signals is
a stochastic function of the true rate. The reason is that, even though Barney knows that
his inferences in a large sample will be pinned down by the proportion of a-signals,
he incorrectly thinks the proportion of a is determined by the subjective rate, which
could be any number between 0 and 1.

PROPOSITION 3. Assume Assumptions 1–4. Fix rates �A; �B 2 ‚ such that �A > �B
and any prior f‚.�A/ D 1 � f‚.�B/ 2 .0; 1/. Before having observed any data,
Tommy believes: if the rate is �A, then his limit posterior probability that the rate
is �A is 1. In contrast, before having observed any data, Barney believes: if the rate is
�A, then his limit posterior probability that the rate is �A is a random variable that has
positive density on a nondegenerate interval in Œ0; 1�. If we strengthen Assumption 1
to Assumption 10, then, in addition, the interval is closed and is a strict subset of Œ0; 1�.

Moreover, since Barney updates correctly given his mistaken belief that common
noise is added to any given sample, he mistakenly believes that his subjective beliefs
satisfy the “Law of Iterated Expectations”: Barney expects that for any sample size,
the mean of his posterior beliefs will equal the mean of his prior beliefs. Formally,
for anyN � 1,E S

N

ŒE
 

‚jS
N

.� js/� D E
 
‚ .�/. In fact, however, Barney’s actual beliefs

do not have this martingale property. As per Proposition 2, Barney’s posterior beliefs
converge to a limit distribution, and the mean of this limit distribution is in general not
equal to the mean of Barney’s prior distribution.
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We next turn to inference in finite samples. Because (as per Part 1 of Proposition 1)
Barney, like Tommy, correctly believes that the probability of a single a-signal is � ,
he will draw correct inferences about �A vs. �B in that case.

PROPOSITION 4. Assume Assumptions 1–4. Fix rates �A; �B 2 ‚ such that �A > �B
and prior f‚.�A/ D 1 � f‚.�B/ 2 .0; 1/. For N D 1, Barney and Tommy infer
the same. If �A D 1 � �B , then for any set of N 2 f1; 2; : : :g signal realizations
s 2 SN , neither Tommy’s beliefs nor Barney’s beliefs change from the priors when
As=N D 1=2.

In many of the inference experiments reviewed in Online Appendix D and in many
of our applications involving inference, the two rates are “symmetric” in the sense that
�A D 1 � �B—for example, an urn might have either 60% red balls or 40% red balls.
In that case, when exactly half the signals are a-signals, the sample is uninformative
for both Barney and Tommy, and neither updates his beliefs about the rate.

For further analysis of the finite-sample case—as well as for some theoretical
applications and empirical analysis—it is useful to have a parametric model of Barney’s
subjective rate distribution. For some of our results (Proposition 5 and the multiple-
sample applications in Online Appendix B), we impose the functional form of the beta
distribution:

f
 

ßj‚ .ˇj�/ D ˇ� �1 .1 � ˇ/.1��/ �1 � . /

� .� / � ..1 � �/ / ; (3)

where 0 <  < 1 is the exogenous parameter of the model, and �.x/ �R
Œ0;1/ y

x�1e�ydy, defined on x > 0.9 The properties of Assumptions 1–4 are satisfied
(see Online Appendix E, Lemma 6), and this family of beta densities shares many
qualitative features of people’s empirically observed large-sample beliefs about the
distribution of signals. A major advantage of this formulation is tractability: since
the beta distribution is the conjugate prior for the binomial distribution, standard
results from probability theory can be used to characterize Barney’s beliefs.10;11

9. The more common way of writing this beta density is

f
 

ßj‚
.ˇ j�/ D ˇ� �1 .1� ˇ/.1��/ �1 . � 1/Š

.� � 1/Š ..1� �/ � 1/Š :

Our formulation is equivalent, except it allows for non-integer values of . Recall that the Gamma function,
�.x/, is the standard generalization of the factorial function: it has the properties that �.x C 1/ D x�.x/

and �.1/ D 1, so that for any positive integer x, �.x/ D .x � 1/Š.
10. The functional form (3) has a few implications about asymmetric inference (i.e., inference problems
where �

A
¤ 1� �

B
) that do not have general intuitions related to NBLLN. These are presented in Lemma 5

in Online Appendix E. In the text, we avoid stating implications of these properties of the functional form
that would not generalize to other models that are equally consistent with existing evidence.

11. To interpret the “Barneyness parameter”,  , consider the problem of inferring the rate from a sample
of signals. The beta density (3) corresponds to what a Bayesian’s posterior about the rate would be if the
Bayesian had begun with an improper beta prior on [0, 1] corresponding to the  ! 0 limit of (3), and
had observed a total of  signals with � of the a and .1� �/ of the b. For  D 0, the posterior would
remain the improper prior on [0, 1], while for  ! 1, the posterior would converge to a point mass at the
true rate � .
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“Parameterized-Barney” is more biased for smaller —with more dispersed subjective
sampling distributions in the sense of SOSD—and Barney coincides with Tommy in
the parameter limit  ! 1.

Although we do not conduct a careful structural estimation, we estimate from
studies that elicit subjects’ subjective sampling distribution as well as inference studies
that  falls within a range of 7–15. This parameterized model of Barney gives a sense
of magnitudes for how Barney’s under-inference depends on the rates �A and �B .
Suppose D 10, Barney begins with equal priors on the two states, and the true rate is
�A. If the difference between the rates is relatively large—with �A D 1 � �B D 0:8—
then the role of NBLLN is relatively small. In an infinite sample, Barney’s subjective
posterior probability of rate �A will converge to 0.9998. However, if the two rates
are closer together—with �A D 1 � �B D 0:6—then in an infinite sample, Barney’s
subjective posterior probability of rate �A will converge to only 0.69 (which is what
Tommy’s posterior would be after only six heads and four tails). As a reminder about
the role of priors, this means that if Barney initially had beliefs more extreme than
2.25:1 in favor of rate �B , he will, in an infinite sample, surely end up believing rate
�B is more likely, even when �A is the true rate.

While most dramatic in large samples, NBLLN has implications for all sample
sizes larger than 1. Since Barney’s subjective sampling distribution is too dispersed
when N > 1, Barney will generally under-infer when the sample size is larger than 1.
In order to make that claim precise, we measure Barney’s (and Tommy’s) “change
in beliefs” by the absolute difference between his posterior probability that �A is the
true rate and his prior probability: jf  

‚jS
N

.�Ajs/ � f‚.�A/j. Unlike in large samples,

in small samples it is no longer universally true that Barney under-infers relative to
Tommy. For particular realizations Barney can over-infer or under-infer relative to
Tommy—or even infer in the opposite direction, so that a sample that causes Tommy
to think that rate �A is more likely, causes Barney to think rate �B is more likely.12

Nonetheless, we believe that Barney under-infers in expectation, taken with respect
to the true sampling distribution. Proposition 5 proves this statement for the case of
 sufficiently small, but we conjecture that it holds for any 0 <  < 1.13

PROPOSITION 5. Assume Barney has the beta-distribution functional form given by
equation (3). Fix rates �A; �B 2 ‚ such that �A > �B , prior f‚.�A/ D 1 � f‚.�B/ 2
.0; 1/ and a set of N 2 f1; 2; : : :g signal realizations s 2 SN . Regardless of whether
the true rate is �A or �B , for  sufficiently small, the expected change in Barney’s
beliefs is smaller than the expected change in Tommy’s beliefs. Furthermore, suppose
�A D 1 � �B . Then for any sample of N > 1 signals such that As=N ¤ 1=2 and

12. For example, using the parameterized model, set  D 10, �
A

D 0.7, and �
B

D 0.6, and assume equal
priors on the two states. Then if the realizations of 80 signals are 53 a-signals and 27 b-signals, then
Tommy believes that state A is more likely, while Barney believes state B is more likely.

13. We have simulated Barney’s and Tommy’s expected change in beliefs for a range of parameter values:
for each of  2 {1, 2, . . . , 30} and N 2 {5, 10, 15, 20}, we examined each of �

A
; �
B

2 {0.5, 0.6, 0.7, 0.8,
0.9}. We also ran a number of simulations for �

A
D 0.99 and 0.999 and for  D 100. In every case we

examined, Barney’s expected change in beliefs was smaller than Tommy’s.
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any  , Barney under-infers relative to Tommy. In addition, while Tommy’s inference
depends solely on the difference in the number of a and b signals, Barney’s change in
beliefs is smaller from larger samples with the same difference.

Intuitively, on average Barney under-infers because he partially attributes the
information in the realized sample to the subjective rate, rather than extracting all
of the information about the true rate.

In symmetric inference problems (i.e., �A D 1 � �B ), Proposition 5 shows that
stronger comparisons can be made between Barney and Tommy: as long as the realized
sample is informative, parameterized-Barney will under-infer, not just in expectation.
Proposition 5 also notes a key feature of Barney’s updating that shows how it leads
to a bias toward “proportional thinking” in inference along the lines suggested by
researchers such as Griffin and Tversky (1992). Consider samples where the difference
between the number ofa-signals and the number of b-signals is the same—for example,
(2 a, 0 b) and (5 a, 3 b). Tommy will draw the same inference from the two samples.
But because his asymptotic sampling distributions depend on the proportion of a and
b signals rather than their number, Barney infers less from the larger sample.

3. Lack of Demand for Large Samples

This section and the next explore the implications of the simple model from the
previous section. Here we explore what is perhaps the most direct and important
economic implication of NBLLN: because people do not expect to learn much from
large samples, they are more likely to rely on small-sample sources of information
than to incur the cost of obtaining a large-sample data source.

Suppose Barney is trying to decide what make of car to buy, a Volvo or a Lada.14

The state is ! D A if the Volvo is superior and ! D B if the Lada is superior. Barney
is choosing whether to acquire information by asking a friend, which will provide
him with a single signal at cost cf > 0, or by purchasing Consumer Reports, which
will provide him with the aggregate information from a large number N of signals, at
cost cr > cf . After observing the information, Barney must take an action �, either
buying the Volvo (� D �A) or the Lada (� D �B ). Barney’s payoff is u.�; !/, which
equals 1 if the action matches the state and 0 otherwise.

The comparison between Barney’s and Tommy’s valuations of an intermediate-
sized sample is ambiguous: even though Barney might expect to infer less on average
than Tommy would, Barney also overestimates the probability of an extreme outcome
that would allow for stronger inferences. If such stronger inferences are valuable
(because they induce the agent to switch to the superior action), Barney may be
willing to pay more than Tommy for a sample of a given size. Furthermore, perhaps
counterintuitively, if the agent can choose the total number of signals to purchase,
Barney may choose to purchase a larger sample size than Tommy if doing so makes

14. A Lada is a type of car. So is a Volvo.
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it possible to observe an extreme outcome that is valuable—an extreme outcome that
Barney thinks is more likely than it is.

For a sufficiently large sample, however, Barney unambiguously has a lower
willingness to pay than Tommy does because he anticipates making a weaker inference
for any realized outcome. Tommy correctly understands that—due to the LLN—
reading Consumer Reports will make him virtually certain about the true state, but
as per Proposition 3, Barney expects to remain uncertain. Because Barney expects to
learn less from Consumer Reports than Tommy does, Barney is more likely to ask the
friend.

PROPOSITION 6. Assume Assumptions 1–4. Fix payoffs u.�; !/, rates �A; �B 2 ‚
such that �A > �B , prior f‚.�A/ D 1 � f‚.�B/ 2 .0; 1/, and the cost of asking a
friend cf > 0. Suppose that cf is small enough that if Consumer Reports were not
available, Tommy would ask the friend. If the number of signals N in Consumer
Reports is sufficiently large, then there exist thresholds c0

r and c00
r with cf < c

0
r < c

00
r

such that: if cr < c
0
r , then both Tommy and Barney buy Consumer Reports; if cr > c

00
r ,

then both Tommy and Barney ask the friend; and if cr 2 .c0
r ; c

00
r /, then Tommy buys

Consumer Reports while Barney asks the friend.

Barney’s lack of demand for statistical data is a central implication of NBLLN.
We believe it is consistent with obvious facts: we live in a world in which people are
not persuaded by statistical evidence that should be convincing, people do not demand
such information, and such information is therefore rarely supplied by the market.
The car purchaser who actually consults Consumer Reports is the exception rather
than the rule. Moreover, the flip side of people’s failure to demand large numbers of
signals is their willingness to rely instead on sources of information that provide only
a small number of signals. Indeed, given the amount of other information people may
be able to obtain at relatively low cost, NBLLN helps explain why they nonetheless
often instead rely on limited personal experience, stories from one’s immediate social
network, or anecdotes from strangers.

Of course, in many situations there are other contributing factors. In some cases,
such as restaurant satisfaction ratings, people may correctly expect large samples not
to be very useful because preferences are heterogeneous. And due to the Law of Small
Numbers, people may expect a small sample to be sufficiently persuasive. But in
cases where preference heterogeneity is less of an issue and where getting statistical
data would be barely more costly than collecting anecdotes—for example, finding
out the frequency of car battery failure—the lack of demand for statistical data (and
the consequent lack of supply) is a major “dog that didn’t bark” clue that implicates
NBLLN.15

15. In principle, another alternative explanation for lack of demand for large samples is that people are
concerned about sample selection bias. For example, the reason that statistics showing that vaccines do
not increase autism are unpersuasive to people may be because people worry that those getting vaccines
are less prone to autism than those not getting vaccines. In general, we do not believe that this alternative
explanation plays much of a role because it seems much more common that people attend too little to
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The lack of demand for large samples generated by NBLLN is especially severe
when Barney is initially confident about the state or when each individual signal
is relatively uninformative—that is, �A is close to �B . Tommy understands that a
sufficiently large number of such signals will nonetheless reveal the state. In contrast,
when Barney has a confident prior or when signals are relatively uninformative, Barney
may be unwilling to pay any positive cost for even an infinite number of signals.

PROPOSITION 7. Assume Assumption 10 and Assumptions 2–4. Suppose that the
agent is deciding whether to buy Consumer Reports at cost cr or not obtain
any signals. For Tommy: for all rates �A; �B 2 ‚ such that �A > �B and priors
f‚.�A/ D 1 � f‚.�B/ 2 .0; 1/, there exists a threshold c�

r > 0 such that if cr < c
�
r ,

then as long as the number of signals N in Consumer Reports is sufficiently large, he
buys Consumer Reports. In contrast, for Barney: (i) for all rates �A; �B 2 ‚ such that
�A > �B , there exist priors f‚.�A/ such that for any cr > 0 and any N , he does not
buy Consumer Reports; and (ii) for all priors f‚.�A/ at which he is not indifferent
between �A and �B , there exist rates �A; �B 2 ‚, where �A > �B , such that for any
cr > 0 and any N , he does not buy Consumer Reports.

Unlike Proposition 6, Proposition 7 relies on Assumption 10 (not just
Assumption 1): Barney thinks that he will draw a limited inference no matter how
extreme the sample proportions turn out to be. If his priors are extreme enough or
the rates are close enough together, then he thinks that the information provided by
an infinite number of signals will not affect whether he buys the Volvo or the Lada.
Consequently, his willingness to pay for an infinite number of signals is zero.

On the flipside, even though Barney often under-infers when presented with
information, he may nonetheless purchase information even when it will not have
any objective value for him. This is because Barney believes that his posterior after
observing a large sample is a random variable, and his willingness to pay is positive
whenever he thinks he might make an extreme enough inference to switch his action
from what he would do given only his prior. Yet for a large sample, Barney’s posterior
is in fact deterministic. Hence if Barney’s priors are extreme enough, and the cost of
information small enough, he may incur the cost of purchasing Consumer Reports even
though the information will almost surely not affect his action. In Online Appendix
B, we illustrate how such a “learning trap” phenomenon can also occur in a dynamic
setting through a different mechanism—namely, Barney’s incorrect beliefs about how
he will process future signals.

4. Risky Gambles and Investments

In this section, we examine how NBLLN’s basic implications for an agent’s subjective
sampling distribution play out in various gambling and investment environments.

selection issues; indeed, we would live in a very different world if concerns with selection bias pervaded
public reaction to statistical evidence.
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4.1. Perceived Aggregate Risk

The comparison between Barney’s and Tommy’s valuation of a gamble is especially
simple in settings where an agent experiences a binary win or loss depending on
whether a particular outcome occurs. In such cases, Barney values the gamble more
than Tommy does if and only if he thinks that the winning outcome is more likely.

A leading special case is where the winning outcome is an extreme sample
proportion, which in general Barney thinks is more likely to occur than Tommy does.
For example, suppose Barney plays a lottery where he must guess N numbers. He has
probability � of guessing any single number correctly. He receives a prize if he guesses
all N numbers correctly, but he gets nothing otherwise. Notice that guessing all the
numbers correctly is equivalent to the extreme sample proportion of 100% a-signals
being realized. Thus, if N > 1, then Barney believes his chance of guessing all the
numbers correctly is higher than it is. Hence Barney’s willingness to pay to play this
game is higher than Tommy’s. The logic of NBLLN implies that the difference from
Tommy is larger for larger N .

In contrast, in situations where Barney wins as long as an extreme outcome does
not occur, Barney’s behavior can appear to be especially risk averse. For example,
suppose Barney attends a job fair at which he applies to N > 1 equally valuable jobs,
his chance of getting any particular job is � , and he cannot accept more than one job. In
this case, not receiving any job offers is equivalent to the extreme sample proportion of
0% a-signals being realized. Since Barney exaggerates the probability of this extreme
outcome, his willingness to pay to attend the job fair is lower than Tommy’s.

For the remainder of this section and the next, we turn to settings in which the
agent’s outcome is not binary but instead varies with the number of a-signals. Here
we consider classical risk preferences as represented by a utility function u.w/ that
is smooth and increasing in final wealth w (in the next section, we consider instead
loss-averse preferences). Final wealth,w.As/, is an increasing function of the realized
number of a-signals (good outcomes) out of N draws, where as usual the rate of
a-signals is � .

Proposition 8 states the key implication of NBLLN for valuation of such a
gamble, which depends on whether the agent’s utility over the number of good draws,
u.w.As//, is concave or convex in AS .16 Note that, because we will consider cases
where w.As/ is not linear, the shape of the agent’s utility depends on both the agent’s
risk preferences u.w/ and the manner in which the random outcomes translate into
monetary outcomes w.As/.

PROPOSITION 8. Assume Assumptions 1–4. Fix a risky gamble .�;N /. If u.w.As//
is a concave (resp., convex) function of As , then Barney’s willingness to pay for the
risky investment is less than (resp., greater than) Tommy’s.

16. Because the outcome space is discrete, in both this section and the following one we use the standard
definition that u.w.A

S
// is a convex function ofA

S
if u.w.A

S
� 1//C u.w.A

S
C 1//� 2u.w.A

S
// � 0,

and concave if u.w.A
S

� 1//C u.w.A
S

C 1//� 2u.w.A
S
// � 0.
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Given the fact that, as per Proposition 1, Barney’s subjective sampling distribution
is a mean-preserving spread of Tommy’s, Proposition 8 follows directly from standard
results in the theory of choice under risk. Its implications in different risky-choice
contexts are determined jointly by u.w/ and w.As/.

Consider a repeated gamble over coin flips, in which the agent earns a fixed dollar
amount h for each a-signal and a different dollar amount t < h for each b-signal. In that
case,w.As/ is linear, so u.w.As// is concave inAs if and only if u.w/ is concave inw.
Thus, NBLLN reduces a risk-averse agent’s willingness to pay for a repeated gamble.

Now suppose an agent is considering whether or not to invest in a diversified
portfolio of N identical stocks for a single year. Any given stock does well with
probability � , in which case it pays off h, or badly with probability 1 � � , in which
case it pays off t < h. Since this example is mathematically equivalent to a repeated
gamble, NBLLN can help explain why people fail to fully recognize the benefits
of diversification: if investors face a fixed cost of diversification, Barney may find
diversification not worth the cost, even when Tommy does.

As a final example, suppose an agent is considering whether or not to invest in
a stock for N years. Any given year the stock does well with probability � in which
case it earns a gross rate of return 1C rh, or badly with probability 1 � � in which
case it earns a gross rate of return 1C rt with rt < rh. (Equivalently, we could assume
that the stock pays off a fixed dollar amount, but all earnings are re-invested.) Because
of compounding, w.As/ is now a convex function. Whether Barney or Tommy has
a greater willingness to pay for this investment opportunity depends on the shape
of u.w/. If the agent is risk neutral, or more generally not sufficiently risk averse,
then Barney will find the long-term investment more attractive than Tommy does. In
reality, however, we believe that people generally perceive long-term investments as
less attractive than they should because of the combined effects of NBLLN and loss
aversion, as we discuss next.

4.2. Samuelson’s Colleague

Proposition 8 from the previous section highlights the effect on risk attitudes of the
fact that Barney’s beliefs are a mean-preserving spread of Tommy’s. NBLLN’s most
direct prediction, that Barney will put positive probability on extreme outcomes even
in very large samples, also has important implications for risky choice.

Consider first a famous example: Paul Samuelson (1963) reports the story of an
economics professor colleague at MIT telling Samuelson that, whereas he would reject
a bet for even odds to gain $200 or lose $100, he would accept 100 repetitions of that
bet. Even though such behavior sounds reasonable to most of us, Samuelson proves
that it violates classical expected-utility theory. That is, a Tommy with expected-utility
preferences defined over final wealth who does not exhibit unrealistically large wealth
effects should be willing to take a single bet if and only if he is willing to take N � 1

independent plays of that bet. To see this, note that preferring K C 1 bets to K bets is
the same thing as preferring 1 bet on top of any realization of theK bets. By induction,
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preferring to take any positive number of the bets is the same as preferring to take one
bet.

Yet, it is not just the “switching” that violates classical expected-utility preferences,
but the aversion to the single bet to begin with. Rabin (2000a, 2000b) and Rabin and
Thaler (2001) have followed others in noting that the degree of concavity required
for expected-utility preferences defined over wealth to explain risk-averse behavior
over small stakes is calibrationally implausible. Loss aversion—the tendency to feel
a loss more intensely than an equal-sized gain—probably explains why the majority
of people who turn down the one-shot gamble do so.17 Somebody with a simple,
piecewise-linear loss-averse utility function

u.w0; z/ D
�
w0 C z if z � 0;

w0 C �z if z < 0;
(4)

where w0 is initial wealth and z is a monetary gain or loss, will refuse the one-shot bet
as long as the coefficient of loss aversion, �—often set equal to 2.25 (e.g., Tversky and
Kahneman 1991)—is greater than 2.18 However, a Tommy with typical loss-averse
preferences would be extremely happy to accept 100 repetitions of the same gamble:
while the expected gain is $5,000, the chance of a net loss is only 1/700, and the chance
of losing more than $1,000 is only 1/26,000.

Despite being loss averse enough to turn down the one bet, nobody with fully
rational beliefs would turn down 100 repetitions of this bet. Yet, unlike Samuelson’s
colleague, many people in fact do so! In hypothetical questions from one study in
Benartzi and Thaler (1999), for instance, 36% of participants said they would turn
down a single scaled-down Samuelson type bet (win $100 or lose $50), but fully 25%
also reject the 100-times repeated gamble.19

17. Samuelson himself had speculated that it was the willingness to accept repeated plays of the bet
that was the mistake, rather than the refusal to accept a single gamble. Samuelson’s conjecture that his
colleague’s willingness to accept the repeated gamble was the result of a “fallacy of large numbers”—a
mistaken belief that the riskiness of the gamble evaporates with a sufficiently large number of repetitions—
is the opposite of NBLLN, and is contradicted by Benartzi and Thaler’s (1999) evidence, reported in what
follows, that people exaggerate the probability of a loss in the repeated bet.

18. Although essentially correct for small gambles, assuming linear consumption utility can become
problematic if bets are repeated so many times as to involve large amounts of wealth. However, if in our
limit results which follow, we halve the stakes every time we double the number of repetitions, the linearity
assumption is unobjectionable. Similarly, linearity is an appropriate assumption for studying diversification
of a fixed amount of wealth among many assets, with a small amount invested in each asset.

19. In two other subject pools, they find 34% and 23% turn down a simple $20/$10 gamble, and more
people—57% and 50%—turn down the repeated gamble. Keren (1991) finds similar results in incentivized
single bets vs. five-times-repeated bets; for related hypothetical evidence, see Keren and Wagenaar (1987)
and Redelmeier and Tversky (1992). Klos, Weber, and Weber (2005) replicate and extend Benartzi and
Thaler’s findings. They present subjects with four lotteries, each of which may be played singly, repeated
five times, or repeated 50 times. Subjects generally prefer the repeated gambles but vastly overestimate the
probability of loss as well as the expected loss conditional on losing money. Klos, Weber and Weber also
find that subjects incorrectly believe the probability of the monetary outcome ending up within a given
interval around the expected value increases with the number of repetitions. This last finding is inconsistent
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NBLLN helps explain why many people turn down these gambles.20 Barney
exaggerates the probability that the repeated bet will turn out badly. Indeed, Benartzi
and Thaler report evidence consistent with this explanation: when asked the probability
of losing money after 150 repetitions of a 90%/10% bet to gain $0.10/lose $0.50, 81% of
subjects overestimated the probability—and by an enormous margin. While the correct
answer is 0.003, the average estimate was 0.24. To show that subjects’ mistaken beliefs
about the probabilities of the different possible outcomes were driving their choices,
Benartzi and Thaler compared subjects’ willingness to accept the repeated bet with
their willingness to accept a single-play bet that had the histogram of money outcomes
implied by the repeated bet. While only 49% of the college-student subjects accepted
150 repetitions of the bet, 90% accepted the equivalent single-play bet, suggesting that
the repeated bet would have been very attractive if subjects had correctly understood
the distribution of outcomes.21;22

A leading alternative explanation for turning down the repeated bet is “probability
weighting”, a psychological bias in which people assign an unlikely event (such as
losing money in the repeated bet) a higher decision weight than warranted by its
objective probability (Kahneman and Tversky 1979). However, probability weighting
cannot explain the evidence that subjects misperceive the objective probability of
losing money, nor the evidence that subjects would accept the repeated bet if they had
the correct beliefs.

Proposition 9 formalizes the claim that NBLLN and loss aversion taken together
predict turning down the repeated bet. While a loss-averse Tommy will always accept a
better-than-fair bet if it is repeated enough times, a loss-averse Barney may—depending
on how favorable the bet is and how loss-averse he is—turn down an infinitely repeated
bet.

with our model of NBLLN and may reflect a bias from focusing subjects’ attention on the expected value,
or it may be consistent with “exact representativeness”, a bias we discuss in Online Appendix D.

20. Our emphasis on how NBLLN helps explain why loss-averse people turn down the repeated bet
is because of its calibrational relevance, but it is worth noting that NBLLN also has implications for
how expected-utility-over-wealth agents respond to repetitions of bets. We can extend the “if” part of
Samuelson’s theorem: if Barney rejects a bet at all initial wealth levels w

0
, then he would also reject any

N � 1 independent plays of that bet. The “only if” direction does not extend, and a Barney who is just
indifferent between accepting and rejecting a simple bet would, because he exaggerates the risk, strictly
prefer to reject repeated versions of the gamble.

21. Note also that something more than the type of “narrow bracketing” stressed by authors such
as Tversky and Kahneman (1986), Kahneman and Lovallo (1993), Benartzi and Thaler (1995), Read,
Loewenstein, and Rabin (1999), Barberis, Huang, and Thaler (2006), and Rabin and Weizsäcker (2009)
seems to be playing a role. Those papers emphasize that people often react to a combination of risky bets
as if they were deciding about each risky bet in isolation from all the others. While such neglect of the
effects of aggregating risks may help explain why people reject the repeated gamble, it seems clear that
even people who attend to the aggregate effects misunderstand these aggregate effects. Benartzi and Thaler
(1999) make this especially clear by demonstrating directly that people asked the probability of aggregate
loss of independent bets exaggerate along the lines predicted by NBLLN.

22. Benartzi and Thaler also elicited the effects of showing the histogram in the above hypothetical
examples and showed that it reduces rejections from 25%, 57%, and 50% to, respectively, 14%, 10%, and
17%.
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PROPOSITION 9. Assume Assumptions 1–4. Suppose Barney and Tommy have simple,
piecewise-linear loss-averse preferences as specified in equation (4). Fix any gamble
.�; h; t/ , paying off h > 0 with probability � and �t with probability 1 � � , that is
better than fair: �h > .1 � �/t . For any � � 1, there is some N 0 � 1 such that if
N > N 0, then Tommy will accept N repetitions of the gamble. In contrast, for Barney
there is some threshold level of loss aversion O� > 1 such that: if � < O�, then there is
someN 0 sufficiently large such that Barney will acceptN repetitions of the gamble for
all N > N 0; and if � � O� , then there is some N 00 sufficiently large such that Barney
will reject N repetitions of the gamble for all N > N 00.

Moreover, it is possible for Barney to exhibit the opposite pattern from Samuelson’s
colleague, accepting the single bet but rejecting the 100-times repeated bet. Consistent
with this possibility, the evidence cited above from Benartzi and Thaler (1999) found
behavior in the opposite direction of Samuelson’s colleague in two out of their three
studies.23

Using the one-parameter functional form for Barney, calibrations suggest that
NBLLN goes much of the way, but not all of the way, in explaining why 25%–57%
of participants turned down the repeated bets in Benartzi and Thaler’s studies. For
Tommy, the coefficient of loss aversion required to explain this data is absurdly high, in
excess of 32,000. For Barney with D 10, the required loss aversion is approximately
15—many orders of magnitude closer to reality but still much larger than reasonable
estimates of �.24

Similarly as with Proposition 8, Proposition 9’s results on repeated bets carry over
directly to diversification: it would go through essentially unchanged if, rather than
repeating a gamble N times, the agent were mixing N independent gambles. Tommy
would always accept a portfolio of positive-expected-value gambles ifN is sufficiently
large. In contrast, if Barney is sufficiently loss averse, then regardless of how large N
is, Barney may prefer not to hold this portfolio.

Also similarly to previous arguments, the application to long-term investing is
complicated by compounding, which if strong enough could reverse the comparison
between Barney and Tommy. Benartzi and Thaler (1999) reported evidence consistent
with NBLLN in the context of long-term investing: university employees vastly
overestimated the probability that equities would lose money over a 30-year horizon.

23. Preferences that generate an aversion for multi-stage resolution of risk—such as the preferences
proposed by Köszegi and Rabin (2009) or Dillenberger (2010)—could also predict rejections of repeated
gambles. The psychology underlying this prediction, however, only seems plausible when the outcomes
of each individual gamble are observed separately. In contrast, NBLLN predicts rejection precisely due to
mistaken beliefs about the combined outcomes of the gambles. Furthermore, NBLLN predicts risk-seeking
behavior in settings where these other models would not—for example, in the lottery example in the
previous section.

24. Incorporating other known biases into the model, such as probability weighting (and sampling-
distribution-tails diminishing sensitivity bias (SDTDS) described in Online Appendix C), would help
reduce the required level of loss aversion even more—although still not to a reasonable level of � such as
2.25. To see this, consider the most extreme form of overweighting losses: putting equal decision weight on
every possible outcome of the repeated gamble. In this case, because only 1/3 of the outcomes are losses,
the required level of loss aversion would be around 4.
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Moreover, the employees stated a far greater willingness to invest in equities when they
were explicitly shown the 30-year returns, suggesting that the net effect of NBLLN is
to reduce the attractiveness of long-term investing. While there are many reasons why
individuals may invest less in equities for retirement than recommended by standard
finance models, we suspect that NBLLN is an important contributing factor. As such,
just as in other settings researchers may underestimate risk aversion by ignoring
overconfidence when inferring risk preferences from investment behavior, researchers
might therefore exaggerate the risk aversion of investors by ignoring NBLLN.

5. NBLLN in Multiple-Sample Settings

For Tommy, it does not matter whether he treats 20 independent signals as one sample of
20, two samples of 10, or 20 samples of 1. In contrast, and intrinsic to the very meaning
of NBLLN, Barney’s beliefs about the distribution of and inference from signals depend
on how he divides them up into samples. In this section, we provide a framework for
formulating plausible assumptions regarding how Barney groups signals into samples.
Doing so serves three purposes. First, adopting particular assumptions makes it possible
to study the implications of NBLLN in dynamic decision-making environments, as
we illustrate in Online Appendix B. Second, testing between alternative assumptions
constitutes a valuable research agenda for future experimental work; our review in
Online Appendix D makes it clear that existing evidence on these assumptions is scant
and somewhat contradictory. Third, the framework we develop may prove useful more
broadly for studying other non-Bayesian models of judgment biases, such as base-
rate neglect, that similarly exhibit sensitivity to how data are framed. We keep our
discussion in this section informal, relegating formal definitions and further discussion
to Online Appendix A.

Several distinctions will be useful. Clumping refers to how signals are objectively
delivered to Barney by his environment. For example, when Barney asks a sequence
of friends about their experience driving a Volvo, each friend’s report arrives as a
separate clump, but when Barney reads a summary of 10,000 individuals’ experiences
in Consumer Reports, the 10,000 signals arrive as a single clump. We refer to how
Barney subjectively processes these clumps for the purposes of making forecasts and
inferences as how he groups the signals. Barney forms beliefs regarding each group
of signals as if a subjective rate ˇ were drawn that applies only to that group—
and hence the single-clump model from Section 2 can be applied to each group.
Although economic models of decision making do not traditionally specify how signals
are clumped, our aspiration is that assumptions about clumping be pinned down by
observable characteristics of a situation. How clumps are grouped, on the other hand,
must be a feature of any complete model of a departure from Bayesian information
processing, and the aspiration there would be to develop a general principle that maps
objective clumping into subjective grouping.

We distinguish two facets of how Barney groups data. The first is how he processes
clumps into groups retrospectively—how he processes clumps he has already received.
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The second is how he processes clumps into groups prospectively. Prospective grouping
determines his forecast about what data he will observe given his current beliefs and
his forecast of what he will infer from the data after he observes them.

In each of the retrospective and prospective directions, we focus attention on two
ways that Barney might process clumps of signals. If Barney groups the signals the
same way he receives them from the environment, we call him acceptive. Acceptive
Barney would process Consumer Reports as a single sample of 10,000, and then each
of his friends’ reports as a separate sample. If Barney processes all of the clumps of
signals he observes as a single, large group, we call him pooling. For example, pooling
Barney would treat Consumer Reports data and his friends’ stories as a single, larger
sample.25

In principle, one could imagine Barney’s beliefs in a dynamic environment as
being either retrospective-acceptive or retrospective-pooling, combined with being
either prospective-acceptive or prospective-pooling. We argue that Barney cannot be
prospective-pooling, however, in any environment where he expects to make a decision
before receiving the entire sample. More generally, we impose the following constraint
on any model of NBLLN: at any date where the agent makes a decision, he processes
signals before and after that date as being in separate groups—and before that date, he
knows he will do so. We consider this to be a modeling-coherence constraint, because
it ensures that Barney’s NBLLN from the single-clump model in Section 2 generalizes
to every decision node in a multiple-clump setting.

To see this, suppose Barney knows that � D 0:5, reads a summary of 10,000
individuals’ experiences in Consumer Reports, and then must make a prediction about
the next 1,000 signals he will observe. If, in violation of our modeling constraint, he
were planning after observing the first 10,000 signals to process all 11,000 signals
together as a single group, then he would believe that the same subjective rate ˇ
applies to all 11,000 signals. Using the first 10,000 signals, he would update his belief
about ˇ from f

 

ßj‚.ˇj� D 0:5/ to a density that puts almost all the probability mass
on the observed proportion of a-signals, say 50%. Since the next clump is grouped
with the earlier clump, his subjective sampling distribution for the next clump will put
negligible weight on a proportion of a-signals outside a neighborhood of 50%. In his
predictions about future signals, Barney would no longer exhibit NBLLN. In contrast,
our modeling constraint requires that Barney forms beliefs as if a new ˇ is drawn
from f

 

ßj‚.ˇj�/ before the next 1,000 signals, so his subjective sampling distribution
is exactly as in the single-clump model for N D 1,000. Precisely because it rules out
learning about the subjective rate, this constraint distinguishes our model of NBLLN

25. While we conjecture that these two grouping processes cover a wide range of typical situations, we
acknowledge that in certain situations, other grouping processes are psychologically plausible. For example,
as we mention in Online Appendix B, in the context of social learning it may be natural to group one’s own
signal separately from everyone else’s, even if all the signals occur simultaneously. As another example,
Barney may group signals according to the perceived similarity of the information source. After observing
10,000 data points from Consumer Reports followed by ten friends’ reports obtained sequentially, for
instance, Barney may retrospectively process the information as a group of 10,000 followed by a group of
10.
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from the generalization of the model from Section 2 as one of rational uncertainty
about the parameter ˇ.

6. Alternative Models

In this section, we explain why we believe NBLLN is a better interpretation of the
evidence reviewed in Online Appendix D than other possible interpretations.

As noted in Section 1, the bulk of evidence from inference experiments has
been associated with an interpretation called “conservatism bias”, according to which
people have a generic tendency to update less than would be prescribed by Bayes’
Rule. This interpretation, however, contradicts evidence on base-rate neglect and
other cases in which over-inference is often observed. In addition to explaining the
experimental evidence on inference, moreover, the NBLLN interpretation also matches
the experimental evidence on subjective sampling distributions and connects it as a
source for under-inference.

When it induces people to believe low-probability events are more likely than they
are, NBLLN bears a superficial resemblance to “probability weighting” (Kahneman
and Tversky 1972), a phenomenon in which small probabilities are overweighted in
risky decision making. Our view is that the two phenomena are psychologically distinct
and unrelated. Most fundamentally, probability weighting is generally interpreted
(see, e.g., Barberis 2013) as a phenomenon about “decision weights” in which
people care more about low-probability events than expected-utility theory predicts,
whereas NBLLN is about distortion in beliefs. The two theories frequently make
different predictions. For example, the degree of belief distortion predicted by NBLLN
depends on N , whereas the degree of probability weighting does not. Thus, NBLLN
and probability weighting make qualitatively different predictions regarding the
comparison between gambles composed of multiple realizations of random variables
vs. attitudes towards gambles composed of a single realization of a random variable,
but which otherwise have the same distribution over outcomes.

A different possibility from decision weights is that people are averse to holding
extreme beliefs—and thus the beliefs themselves are distorted away from very low (or
high) probabilities. We refer to this idea as “extreme-belief aversion” and discuss it in
detail in Online Appendix C. As a very brief summary, extreme-belief aversion seems
to be a separate phenomenon that cannot by itself explain the evidence that we interpret
as NBLLN. Extreme-belief aversion predicts that in any two inference problems where
Tommy’s posterior is the same, people would hold the same belief. Evidence such as
in Griffin and Tversky (1992), however, indicates a lower willingness to have extreme
beliefs when inferring from large samples than when inferring from small samples.

An interpretation proposed for many cognitive biases is “ecological mismatch”:
while a person’s thought process leads to biased beliefs for i.i.d. processes studied in
the laboratory, the same thought process would generate appropriate beliefs for the
typical, real-world random processes people encounter. For example, in the case of
under-inference, Winkler and Murphy (1973) posit that people may treat independent
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signals as if they were positively correlated because their real-world experience is with
positively correlated signals. Such positive correlation would generate excessively
dispersed subjective sampling distributions and under-inference but not the invariance
(or near-invariance) to sample size that Kahneman and Tversky (1972) observed
because (under mild regularity assumptions) the LLN still “works” for positively
correlated signals (see Hu, Rosalsky, and Volodin 2008). Moreover, while ecological-
mismatch arguments often have merit, we think the argument is unappealing in this
context because the bias we call NBLLN is evident in examples with which subjects
have a great deal of real-world experience, such as coin-flipping.26

A related point is that even if NBLLN describes people’s beliefs in abstract
laboratory experiments, it may be a poor model for economic applications if people
form beliefs in an entirely different way in realistic settings. Since the clean evidence
comes from abstract experiments, there is no direct evidence on this point. Our view,
however, is that a model of people’s intuitive beliefs about random processes should
explain people’s beliefs about abstract situations like coin flips—the random processes
people have most experience with and for which we can be most confident that subjects
correctly understand what they are being asked.

Many have proposed conceptualizing under-inference in large samples as one
consequence of the “representativeness heuristic”, according to which people draw
inferences based on the degree of similarity between features of a sample and features
of a population from which the sample might have been drawn. Indeed, Kahneman
and Tversky (1972) present evidence for what we call NBLLN in precisely this
context. Although NBLLN certainly seems consistent with representativeness, it is
not clear how the logic of representativeness predicts the prototypical case of under-
inference: for example, an agent who observes 600 heads and 400 tails continues to
put nontrivial probability on the coin being fair. Representativeness could explain this
kind of observation if it is interpreted as inferences based on proportions, combined
with the additional assumptions of reasonably accurate inferences in small samples and
insensitivity to sample size, but that combination of assumptions essentially amounts
to our model.

A natural alternative modeling approach would be to build a theory of “sample-
size neglect”, in which, loosely speaking, an agent forms beliefs about a sample of
any size as if it were a “medium-sized” sample of, say, size 7. Such a model would
imply under-inference for sample sizes larger than 7 and over-inference for sample
sizes smaller than 7. This is the formal model one might build to capture Griffin and
Tversky’s (1992) verbal theory that people overweight the “strength” of the evidence
(extremeness of the proportion of heads) and underweight the “weight” of the evidence
(sample size). It is a common conceptualization and one which we found compelling
enough to consider as our first (and more parsimonious) approach.

26. We also note that in the case of the Law of Small Numbers, the opposite ecological-mismatch
hypothesis is often proposed: that people ordinarily deal with negatively autocorrelated signals. Typical real-
world processes would have to have a fairly complicated form involving short-run negative autocorrelation
and long-run positive autocorrelation to rationalize both the Law of Small Numbers and NBLLN.
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But we have come to the view that NBLLN and LSN are distinct phenomena: LSN
is an error intrinsically tied to mistaken beliefs about specific sequences of random
events, whereas NBLLN is an error specific to sampling distributions. Consistent
with existing models of LSN (Rabin 2002; Rabin and Vayanos 2010), we believe that
it is intrinsically linked to the gambler’s fallacy, which is an incorrect belief about
sequences. In i.i.d. coin flips, the gambler’s fallacy manifests as a belief that a head
becomes less likely than 50% following a streak of heads. If LSN were reversed in large
samples—as implied by the sample-size-neglect theory—then people would have to
believe that a long streak of heads makes a subsequent head more likely. But evidence
indicates that the gambler’s fallacy seems to have as much force in large samples as in
small samples. For example, Benjamin, Moore, and Rabin (2012) find that people think
that the probability of a head following a streak of nine heads from a fair coin is only
32%.27 Benjamin, Moore, and Rabin also find that people’s sampling distributions,
which seem to exhibit NBLLN, are inconsistent with their beliefs about sequences.

In light of the inconsistency between people’s sampling-distribution beliefs and
their sequence beliefs, our model of NBLLN cannot be used to make predictions
regarding Barney’s beliefs about the likelihood of particular sequences. For example,
since Barney believes that ten heads out of ten is more likely than it is, one might
be tempted to conclude that he believes that the probability of a head following nine
heads is higher than it is (and that he believes the probability of any sequence yielding
five heads out of ten is lower than it is). Such an application of the model would yield
false predictions. For this reason, none of our applications relied on Barney’s beliefs
about sequences.

What is the psychology underlying people’s mistaken beliefs about sampling
distributions? While we are not aware of any evidence on this issue, one intuition
is that people fail to realize just how many combinations of a and b signals generate
proportions close to the population mean. For example, our introspection suggests
that people overestimate the likelihood of 90% heads in a sample of 100 largely
because they vastly underappreciate how many more ways there are to get 50%
heads than 90% heads: . 100

50
/=. 100

90
/ � 1029=1013 D 1016. While we know of no

attempt to formulate NBLLN along such lines, we believe that such a model would
share the main features and predictions of our model. Relative to our model, it
would have the advantage that there would be no temptation to use the model to
make predictions about the agent’s beliefs about the likelihood of specific sequences.
It would have two disadvantages, however. First, in some circumstances, it would
counterfactually predict “thin tails”. For example, for � D 0:8, suppose the agent

27. One might think that the prediction of the sample-size neglect theory—that a head is believed to
be more likely following a short streak of heads but less likely following a long streak—provides a
parsimonious account of both the gambler’s fallacy and its apparent opposite, the “hot hand fallacy”. This
is a false parsimony, however, because shoe-horning the gambler’s fallacy and the hot hand fallacy into
the same psychological mechanism generates counterfactual predictions about when they occur. As noted,
the gambler’s fallacy occurs even after a long streak of heads, and as far as we are aware, the hot hand
fallacy has never been observed for coins. Instead, the hot hand fallacy is usually understood as occurring
in situations where an agent believes that the random process alternates between “hot” and “cold” rates.
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believes the probability of h heads out of 10 is r.. 10
h
//.0:8/h.0:2/10�h, where r.�/

is a distortion function. In order to fit the evidence from Kahneman and Tversky
(1972) that people think 5 heads out of 10 is more likely than 10 heads, it must be
that r.. 10

5
//.0:8/5.0:2/5 > r.. 10

10
//.0:8/10.0:2/0, or r.. 10

5
//=r.1/ > 1,024. But then

r.. 10
5
//=r.. 10

0
// > . 10

5
/=. 10

0
/ D 252, which implies that people must underestimate

the likelihood of 0 heads out of 10 relative to 5 heads. Second, this model would be
harder to work with because the mean of the agent’s subjective sampling distribution
would be incorrect.

7. Concluding Remarks

While the logic of NBLLN unambiguously predicts that people will extract far too little
information from large samples, there are strands of literature both within psychology
and within economics on “over-confidence” in beliefs. Rather than viewing over-
confidence and under-confidence as fundamental biases in themselves, we view both
as outcomes to be explained as a function of the information a person is confronted
with. Our model of NBLLN highlights a feature of the decision-making environment—
namely, sample size—that affects the degree to which an agent will draw too weak
an inference from evidence. In Online Appendix C we combine NBLLN with LSN,
which generates a bias toward too strong an inference from evidence, and the overall
pattern we predict is: correct inference for samples of size 1, over-inference in small
samples larger than 1, and under-inference in large samples. LSN exacerbates people’s
tendency to rely on smaller samples.

In Section 3, we used the example of lack of demand for Consumer Reports to
illustrate a fundamental implication of NBLLN: people underweight the information
contained in a large sample. Our example of Consumer Reports is borrowed from
Nisbett and Ross (1980), however, who used the contrast between pallid statistics
and colorful anecdotes to illustrate a different and better-known phenomenon called
“vividness bias”: people overweight vivid evidence in reaching their judgments,
perhaps because of its emotional tug. For example, somebody’s graphic description of
the horrors that ensued when her car broke down while trying to pick up her child from
school may weigh more heavily on our judgment of which brand of car we should buy
than summary statistics based on large samples of data.

NBLLN has two important implications for the study of vividness bias. First,
NBLLN is a confound for evidence that has been used to establish its existence. Indeed,
in their 1982 review paper, still considered authoritative, Taylor and Thompson (1982)
find that the empirical support for vividness bias is surprisingly weak. Of special note,
they also observe that it rests almost entirely on evidence of the comparative over-
use of vivid information relative to statistical information. Clearly, such comparative
over-use could instead be due to under-use of the statistical data.

Second, even assuming an anecdote is genuinely over-used due to its vividness,
NBLLN is nonetheless also needed in order to explain how the anecdote could outweigh
a large sample of statistical information. Absent NBLLN, to outweigh Consumer
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Reports, the story-teller’s car experience would have to be overweighted by a factor of
many thousands, but we think it is clearly implausible that vividness bias (if it exists!)
could be that strong. By drastically attenuating the persuasiveness of the statistical
data, NBLLN enables the overweighted sample of a single anecdote to prevail.

As we show formally in Online Appendix B, NBLLN also serves as an “enabling
bias” for misbeliefs people have about themselves. In particular, NBLLN implies that
people will fail to learn the truth despite a lifetime of feedback about the outcomes
from their own actions. Consequently, while people have optimistic priors about their
own abilities and preferences for reasons unrelated to NBLLN, NBLLN explains how
people remain uncertain about their own type and why optimistic priors do not give
way to more realistic self-assessments. For example, NBLLN may explain why people
persist in being overoptimistic about their ability on tasks that they regularly engage in.
NBLLN may also explain why people remain uncertain regarding their own altruistic
preferences—an otherwise-puzzling lack of knowledge that is a crucial ingredient for
self-signaling to help explain altruistic behavior.

NBLLN can also matter directly in many economic applications we have not
explored in this paper. Consider, for example, persuasion. Barney is again uncertain
whether to buy a Volvo or a Lada. A Lada saleswoman has observed N signals
about which car is better. She must reveal all the signals but can choose how to
clump the signals when revealing them to Barney. Due to the strategic nature of the
interaction, additional assumptions are needed. To illustrate, suppose that Barney is
retrospective-acceptive but unaware of his own NBLLN—and hence does not realize
that the clumping of signals will affect his beliefs. In that case, Barney will not draw
any inferences about the state from the saleswoman’s behavior. The saleswoman can
therefore maximally move Barney’s beliefs in favor of the Lada by clumping all
the pro-Volvo signals together and separating out each pro-Lada signal. For any two
distinct rates and any priors, if N is sufficiently large, then the saleswoman can make
Barney arbitrarily confident that the Lada is superior.

Finally, we note that, while our model of NBLLN is defined only when the signals
are i.i.d. and binomial, the intuition applies more broadly. There are some natural
approaches to modeling NBLLN for non-i.i.d. signal sequences. Consider a binomial
random process defined by a mapping from any initial rate, �0, and any history of t
observed signals, ht , into a rate that the .t C 1/ signal will be an a-signal, �.�0; ht /.
When Barney knows the initial rate is �0, he forms his beliefs as if the initial rate were
ˇ, a random variable drawn from distribution f  ßj‚.ˇj�0/. For the first signal in a group,
he believes that the probability of an a-signal is ˇ, and for the .t C 1/ signal within
that group, he believes that the probability of an a-signal is �.ˇ; ht /. This modeling
approach can be applied not only when the signals truly are non-i.i.d., but also when
an agent falsely believes they are non-i.i.d., due to another psychological bias, such as
in LSN.

We also believe that there are natural extensions of our modeling approach to
nonbinomial cases. Suppose, for example, that the signals are normally distributed
i.i.d. with known mean � and variance �2. We can imagine a cousin of Barney
believes instead that signals are generated by a two-stage process, where a subjective
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mean � is drawn from some distribution centered at �, and then the signals are drawn
from a normal distribution with mean � and variance �2. Effectively, Barney thinks
that common noise � is added to every signal in a given sample. While Tommy believes
that the mean of a large random sample of signals will converge to a point mass at �,
Barney’s cousin believes it will converge to the density of �. We could assume that
the density of � corresponds to the empirical large-sample beliefs, or for analytical
tractability, we could assume that � follows the conjugate prior distribution for the
normal distribution, which is itself a normal distribution.
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