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Abstract: Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation
or performance of a product for estimating its lifetime, we propose to obtain the first-passage times of the process over certain
nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and
uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a
modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data,
these estimators and the above-mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators
assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their
failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is
more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for
the lifetime distribution function and its percentiles. Finally, we use light-emitting diodes as an example to illustrate our method
and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55:
265–276, 2008

Keywords: degradation process; performance process; Wiener process; inverse Gaussian distribution; lifetime or failure time
distribution; percentiles; maximum likelihood estimator; uniformly minimum variance unbiased estimator; goodness-of-fit test

1. INTRODUCTION

To face intensive global competition and meet higher cus-
tomer expectations, today’s manufacturers are under pressure
to design products with high reliability. At the same time,
however, these manufacturers cannot afford to conduct long
tests to obtain failure time (or lifetime) data for estimating
their products’ lifetime distributions. This raises two impor-
tant problems for managers, reliability engineers, and statis-
ticians: (1) how to design an efficient sampling scheme for
collecting reliability data, and (2) how to develop statistical
methods to analyze these data for estimating the lifetime in
a timely manner.

A standard approach to quickly obtaining lifetime data is
to use an accelerated life test (ALT), in which higher stress
conditions are applied to products either from the beginning
of, or gradually during, the testing. The goal is to accelerate
failures of the test units so that failure times can be obtained
sooner. Because this approach and the corresponding analy-
sis methods are rather well-developed, the reader is referred
to, for example, see [17], for detail.
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A more recent approach is to use a degradation test
(DT), where one will assume a degradation model and a
degradation or performance process for the product. First,
degradation may be defined as a phenomenon that takes in
systems and structures subjected to stress. To many engineers,
degradation is the accumulation of damage leading eventually
to a weakness that can cause failure. One degradation model
assumes that it is possible to define and measure degrada-
tion or damage (level) of a product as a function of time.
Such measures can provide more information than failure-
time data for the purpose of assessing and improving product
reliability [16]. On the other hand, when degradation can
be modeled by a process but is latent, Whitmore et al. [27]
and Lee et al. [14] propose a model with a bivariate Wiener
process, say {(H(t), W(t))|t ≥ 0}, where H(t) represents
the latent degradation level, whereas W(t) is the value of a
correlated, observable (marker) process at time t . Then, data
on W(t) collected at some predetermined time points during
a DT are used to estimate the true lifetime, which is the first
hitting time of H(t) to a threshold. Recently, Singpurwalla
[21] considers a case where {W(t)|t ≥ 0} is assumed to be an
observable Wiener process (because cracks do heal and CD4
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blood cell counts do fluctuate) with a link to the unobservable
{H(t)|t ≥ 0} described by

H(t) = sup{W(s)|0 ≤ s ≤ t}.

{H(t)} is called a Wiener Maximum Process. An item experi-
encing the process H(t) fails when H(t) first crosses a failure
threshold a, which can be unknown or random. Singpur-
walla then shows that the first hitting time of H(t) to a

coincides with the first hitting time of W(t) to a. By sym-
metry, if W(t) = sup{H(s)|0 ≤ s ≤ t} with unobservable
Wiener H(t), then Singpurwalla’s claim above is also true.
This model can be used to model, for example, metal fatigue
when crack length, W(t), is assumed to be nondecreasing
in t .

For some products, however, “damage” is difficult to define
explicitly, although the exact phenomenon that causes or pro-
motes degradation is known. Metal fatigue as described by
Ebrahimi [7] and degradation of a light-emitting diode (LED)
by Zhao and Elsayed [29] are examples. Nevertheless, it is
claimed that damage manifests itself via observable surro-
gates such as cracks, decrease in light intensity, corrosion,
and measured wear. Then, with damage being difficult to
define and model, a standard approach in the degradation
data analysis literature is to work only with this surrogate or
a surrogate process. Different names have been given to this
surrogate process; for example, performance [17, Chapter
11], degradation signal [8], performance degradation process
[29], or simply degradation process [16, Chapter 13]. An
item is defined to “fail” when its surrogate measure first
reaches a specific threshold. This first hitting time is then
used as an approximation of the true failure time. It is
also possible to study degradation based on the hard rate
approach [4].

The method (along with the results in Appendix D for ran-
dom thresholds) that we will propose for obtaining timely
data and the corresponding estimators applies to the first
model with a measurable degradation process and the third
with a known performance process. Our method also applies
to Singpurwalla’s bivariate model, but not the bivariate set-
ting of Whitmore et al. [27] and Lee et al. [14] unless we
also define an unobservable degradation process with a spe-
cific link to the observable one. The first and the third models
are commonly seen in engineering applications, whereas the
bivariate model has applications in the biostatistical field
[4]. In any case, we will call our process a degradation
process throughout this article, although it can be considered
a performance process as well.

After a degradation model is defined, the degradation
process is typically described by (i) a mixed-effect nonlin-
ear regression or (ii) a stochastic process. In the mixed-effect

regression of Lu and Meeker [15] and Meeker and Esco-
bar [16], the dependent variable is the degradation measure,
and the independent variables (effects) are time and other
covariates. The random effect terms reflect the individual
product characteristics, whereas the fixed effects are common
for all units. The random error term represents measure-
ment errors. As to the analysis, the approximate maximum
likelihood principle is generally followed when estimating
the failure time distribution function, whereas simulation-
based approaches or asymptotic results are used to obtain
approximate confidence intervals for its percentiles.

In this article, we will use (ii) by assuming that the degra-
dation process is a (time-transformed) Wiener process and
that failure occurs when this process first reaches a con-
stant failure threshold. In addition to the stochastic processes
mentioned earlier, Tang and Chang [23] model their nonde-
structive, accelerated degradation of power supply units as a
class of stochastic processes. The simple Wiener process that
we assume [in (1) of Section 2] has been used by Hasofer
[9] in his study of emptiness of a dam, and by Banerjee and
Bhattacharyya [1] in their study of a purchase incident model.
Lancaster [11] uses it when studying duration of strikes.
Sheppard [20] uses it in his study of an injected labeled sub-
stance, called tracer, in a biological system. More recently,
Whitmore and Schenkelberg [28] use a time-transformed
Wiener process to model resistance of self-regulating heating
cables. Doksum and Normand [6] assume a Wiener process
for the level of a biomarker process, such as calibrated log
CD4 blood cell counts, in their HIV study. Liao and Elsayed
[13] and Tseng et al. [24] also use a simple Wiener process
for the (linearized) light intensity of LED lamps of contact
image scanners (CISs). Doksum and Hoyland [5] model an
accelerated degradation path with a time-transformed Wiener
process. In contrast to (i) where the failure time distribution
function is assumed, the distribution under (ii) is determined
by the type of process used.

The article is organized as follows. Section 2 briefly
describes the Wiener process and its threshold-crossing time
distribution; namely, the inverse Gaussian (IG) distribution.
Then, in Section 3, we propose to obtain the first-passage
times of the degradation process over certain predetermined,
constant nonfailure thresholds during the early stage of a DT.
The data will be called intermediate data, and they also follow
IG distributions. Through the similarity of these IG distribu-
tions, we obtain in Section 4.1 the maximum likelihood esti-
mator (MLE), uniformly minimum variance unbiased esti-
mator (UMVUE), and the uniformly most accurate (UMA)
confidence interval, all based on intermediate data, for the
product’s mean lifetime. We then prove that, by increasing
the sample size of the intermediate data, these estimators
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can achieve the same levels of accuracy as the estimators,
assuming one has actual failure times. Section 4.2 gives the
UMVUE of the failure time distribution function in case one
also has failure time data, which is often the case when a DT
is accelerated. For the failure time distribution function, we
propose a modified MLE (MMLE, Section 4.3.1) and another
new estimator (Section 4.3.2), all based only on intermediate
data. We then prove that, by increasing the sample size of
the intermediate data, this MMLE can be as efficient as the
estimator using actual failure times (if any). Furthermore,
we show in Section 4.3.2 that our proposed new estimator is
asymptotically more accurate than the traditional MLE and
the MMLE of Section 4.3.1. Approximate or asymptotic con-
fidence intervals for the lifetime distribution function and its
percentiles are given in Section 4.4. In Section 5, we illus-
trate our results using an example on LED lamps for CISs
from Tseng et al. [24]. We also demonstrate how we can use
intermediate data to validate the key Wiener assumption for
the degradation process during the testing. Section 6 presents
our concluding remarks.

2. DEGRADATION PROCESS AND FAILURE TIME
DISTRIBUTION

Assume that the (transformed) degradation process, W(t),
of a test unit is Wiener:

W(t) = ηt + σB(t), t ≥ 0, (1)

where η is the drift rate, σ > 0 is the diffusion coeffi-
cient, and B(t) is the standard Brownian motion. The values
of the unknown η and σ are assumed to be common for
all units, which is a strong assumption. On the other hand,
uniformity of production units may be assured with robust
process/product designs and effective manufacturing process
control, especially for high-volume products made by auto-
matic equipment. At each t , W(t) is distributed as normal
(ηt , σ 2t), and because Cov(B(t), B(s)) = min(s, t)σ 2 > 0,
W(t) is a positively correlated process. The process (1) is the
solution of the stochastic linear growth (cumulative decay)
model [with W(0) = 0]:

dW(t) = ηdt + σdB(t),

which reduces to a deterministic linear growth model when
σ = 0. In addition to the numerous applications mentioned in
Section 1, W(t) is also used as a continuous-time approxima-
tion of the discrete-time cumulative sum (CUSUM) process
with drift and has applications in statistical quality control
[22] and finance. A geometric Brownian motion S(t), which

is a solution of the stochastic exponential growth model
dS(t) = γ S(t)dt + σS(t)dB(t), has been used in degra-
dation data analysis; see, for example, Ebrahimi [7]. By
taking the logarithm of S(t), one obtains (1) except for a
constant.

For a test unit whose degradation process W(t) satisfies (1)
with η > 0 and W(0) = w0, its failure time is defined as the
first-passage time of W(t) over a constant failure threshold,
say a(> w0). Because a Wiener process is a Markov process
with independent stationary increments, the failure time dis-
tribution function depends on a and w0 through a−w0(> 0).
Hence, we may assume w0 = 0, and the failure time of the
test unit is then

Ta = inf{t ≥ 0|W(0) = 0, W(t) ≥ a}. (2)

It is well-known that lifetime Ta follows an IG distribution,
denoted by IG(µ, λ), with probability density function (pdf)
and cumulative distribution function (cdf)

f (ta) =
√

λ

2π
t−3/2
a exp

{
−λ(ta − µ)2

2µ2ta

}
, ta > 0, (3)

F(ta) = �

[√
λ

ta

(
ta

µ
− 1

)]
+ e2λ/µ

× �

[
−
√

λ

ta

(
ta

µ
+ 1

)]
, ta > 0, (4)

respectively, where the mean µ and scale parameter λ satisfy

µ = a

η
, and λ = a2

σ 2
. (5)

The IG distribution in (4) constitutes an exponential family.
If only failure time data are available, MLEs and UMVUEs
of µ and λ and some of their functions have been obtained
[10, Table 1].

3. THE PROPOSED SAMPLING SCHEME AND
INTERMEDIATE DATA

To estimate the lifetime distribution function and its para-
meters, we propose that, for each test unit, we measure the
first-passage times, denoted T1, . . . , Tm, of its degradation
process W(t) over certain predetermined nonfailure thresh-
olds a1, . . . , am, respectively, where 0 < a1 < · · · < am < a;
that is,

Tj = inf{t ≥ 0|W(0) = 0, W(t) ≥ aj }, j = 1, . . . , m.
(6)

We have 0 < T1 < · · · < Tm < Ta with probability one.
We will obtain failure times as well if we assume am = a.
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Similar to Ta , Tj follows IG(aj/η, a2
j /σ

2). In our case,
equally spaced aj ’s seem reasonable because the expected
path of W(t) is linear in t . Because the Tj ’s are dependent,
we consider the stationary and independent increments

Dj ≡ Tj − Tj−1, for j = 1, . . . , m, with T0 = 0. (7)

Then, the conditional and unconditional distribution of Dj ,
given Tj−1, is IG(µj , λj ) with (a0 = 0)

µj = aj − aj−1

η
and λj = (aj − aj−1)

2

σ 2
. (8)

Define

rj = a

aj − aj−1
and r = a

am

, (9)

then, r−1 = ∑m
j=1 r−1

j and from (5), (8), and (9), we have

µj = r−1
j µ and λj = r−2

j λ, for j = 1, 2, . . . , m.
(10)

Now, assume that n units are tested, and the first-passage
times over the thresholds a1, . . . , am for the ith unit are
denoted by Ti1, . . . , Tim, respectively. For aj with aj < a,
Tj1, . . . , Tjm are called intermediate (nonfailure) data. We
have the following three scenarios:

(a) When m = 1 and am = a, we have only failure time
data, as in most LTs or ALTs.

(b) When am < a, we have only intermediate data. This
is a likely case when dealing with highly reliable
products in an unaccelerated DT.

(c) When m ≥ 2 and am = a, we have both intermediate
and failure time data, which is often the case in an
ADT.

Because many results for case (a) are available [2, 19], this
leaves only cases (b) and (c) for study. Obviously, with the
same sample sizes, estimators under (c) are expected to per-
form better than the corresponding estimators under (b). On
the other hand, if one can increase the sample size and does
not wish to accelerate the DT (to avoid making assump-
tions about such relationships as Arrhenius and Eyring laws
for extrapolating the accelerated results to obtain the results
under normal operating conditions) for highly reliable prod-
ucts, our method of using only intermediate data in (b) can
be very useful for obtaining efficient estimates of the lifetime
distribution and its parameters. We will explain this in more
detail in the next section.

4. THE ANALYSES

Given the data Tij = tij , i = 1, . . . , n, and j = 1, . . . , m,
and from the fact that Tij − Ti,j−1 are independently distrib-
uted as IG(µj , λj ), the likelihood function is [from (3)]

L =
(

λ

2π

)nm/2
 m∏

j=1

1

rn
j

 n∏
i=1

m∏
j=1

(tij − ti,j−1)
−3/2


× exp

− λ

2µ2

n∑
i=1

m∑
j=1

(tij − ti,j−1 − r−1
j µ)2

tij − ti,j−1

 , (11)

from which a complete set of sufficient statistics for (µ, λ) is
(
∑n

i=1 Tim,
∑n

i=1

∑m
j=1(r

2
j (Tij − Ti,j−1))

−1).

4.1. Estimation of Mean Lifetime

To estimate the mean lifetime, we have (proof in Appen-
dix A):

PROPOSITION 1: Let T m ≡ ∑n
i=1 Tim/n and V ≡∑n

i=1

∑m
j=1[r2(r2

j (Tij − Ti,j−1))
−1 − (mT m)−1], then T m

and V are independent such that T m is distributed as
IG(r−1µ, nr−2λ) and (r−2λ)V as χ2

nm−1. The MLE and
UMVUE of the mean lifetime µ are both µ̂ = rT m with
variance (r/n)(µ3/λ). The MLE and UMVUE of 1/λ are
r−2V (nm) and r−2V /(nm − 1), respectively, with variances
2(nm − 1)/(λ2n2m2) and 2/[λ2(nm − 1)].

We have the following remarks. First, note that rT m =
r
∑n

i=1 Tim/n is the UMVUE of µ when only intermedi-
ate data are available (case (b) of Section 3), whereas T a(=∑n

i=1 Tia/n) is the UMVUE, assuming we were to have the
actual lifetimes (cases (a) and (c), for which rT m = T a).
From Proposition 4.1

Var(rT m) = r
µ3

nλ
= r Var(T a). (12)

Because standard deviations are used in mostly statistical
inference (e.g., constructing confidence intervals or comput-
ing sampling errors), the relative efficiency of rT m to T a can
reasonably be defined as√

Var(T a)√
Var(rT m)

= 1√
r

=
√

am

a
. (13)

Note that initially (13) increases rapidly with am(0 < am ≤
a), but soon levels off. This implies that marginal gains in
the efficiency of the unbiased estimate of µ, by prolonging
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the DT, decreases rapidly. Second, from Proposition 4.1, the
standard deviation of the MLE/UMVUE of µ, based on only
intermediate data (am < a) with size kn, is

√
rµ3/nkλ, while

the standard deviation of the MLE/UMVUE, based on fail-
ure times (am = a) with size n, is

√
µ3/nλ. Therefore, the

MLE/UMVUE based on only intermediate data is at least
as efficient as the MLE/UMVUE based on actual lifetimes,
provided k ≥ r(= a/am). For example, if we are able to dou-
ble the current sample size, we can use am = a/2 (i.e., we
hope to terminate the DT halfway to the expected lifetime)
to obtain an efficient estimator of µ. In a typical ADT, one
needs to assume models, such as Arrhenius’ and Eyring’s and
then estimate their parameters to extrapolate the accelerated
results to obtain the results under normal operating condi-
tions. If it is feasible to lower aj ’s and further increase the
sample size, our estimator of the mean lifetime and also esti-
mators in Section 4.3 for the lifetime distribution function
can be efficient without accelerating a DT. The additional
estimation step in an ADT may increase the variance of its
estimators.

When λ is unknown, it can be shown that the 100(1 −
α)% UMA or UMA-unbiased confidence interval for µ is
(cf. [2, (6.21)])

rT m

1 + t1−α/2,nm−1

√
T mV

n(nm − 1)

−1

,

rT m

1 − t1−α/2,nm−1

√
T mV

n(nm − 1)

−1
 ,

if 1 − t1−α/2,nm−1

√
T mV /[n(nm − 1)] > 0, (14)

and

rT m

1 + t1−α/2,nm−1

√
T mV

n(nm − 1)

−1

, ∞
, otherwise.

4.2. The UMVUE of F(t) with Both Intermediate and
Failure Time Data

When a DT is accelerated, one is likely to have both inter-
mediate and failure time data (case (c) in Section 3). Because
am = a and m ≥ 2, we have r = 1 and rT m = T m = T a .
In this case, (T m, V ) is a complete set of sufficient statistics
for (µ, λ); so the UMVUE of the failure time distribution
function F(t) is E(I(T1m ≤ t)|T m, V ) by Rao-Blackwell

Theorem [12], where

E(I(T1m ≤ t)|tm, v) =
∫ t

Lm

fT1m
(z|tm, v)dt1m

=
∫ t

Lm

K(tm, v)z−3/2(ntm − z)−3/2

×
[
v − n(tm − z)2

tmz(ntm − z)

]nm/2−2

dz,

for Lm < t < Um, (15)

with

K(tm, v) =
√

n(n − 1)

B(nm/2 − 1, 1/2)t
−3/2
m v(nm−1)/2−1

, (16)

Lm = Lm(tm, v) = tm

2(n + vtm)

{
n(2 + vtm)

−
√

4n(n − 1)vtm + n2v2t
2
m

}
, (17)

Um = Um(tm, v) = tm

2(n + vtm)

{
n(2 + vtm)

+
√

4n(n − 1)vtm + n2v2t
2
m

}
. (18)

Proof of (15) is an extension of that for the case with only
failure data (see [2]) and is omitted here.

4.3. Estimators of F(t) with Only Intermediate Data

In this section, we consider three estimators of F(t) when
we have only intermediate, non-failure data. The three esti-
mators are the MLE, an MMLE (Section 4.3.1), and our
proposed estimator (Section 4.3.2).

4.3.1. The MLE and an MMLE of F(t)

The MLE of F(t), denoted by F̂MLE(t), is obtained from
(4) with µ and λ replaced by their respective MLEs; namely,
rT m and r2nm/V , given in Proposition 4.1. We may also use
the UMVUE of 1/λ, r−2V /(nm − 1), to obtain an MMLE:

F̂MMLE(t) = �

[√
r2(nm − 1)

tV

(
t

rT m

− 1

)]
+ e

2r2(nm−1)

rTmV

×�

[
−
√

r2(nm − 1)

tV

(
t

rT m

+ 1

)]
. (19)

Now, suppose we test kn units up to am(am < a) to obtain
only intermediate data and compute from (19) the corre-
sponding MMLE, denoted F̂MMLE,nk,am

(t). On the other hand,
if we were to test n units until they all failed (i.e., am = a

and hence r = 1), then we can compute the corresponding
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MMLE, which will be denoted by F̂MMLE,n,a(t). It is shown in
Appendix B that F̂MMLE,nk,am

(t) can achieve the same levels
of precision, up to O(n−1), as F̂MMLE,n,a(t) in the sense that

Var(F̂MMLE,n,a(t)) ≥ Var(F̂MMLE,nk,am
(t)) (20)

provided k ≥ r(= a/am). The conclusion also holds when
accuracy [viz. mean squared errors (MSEs)] of the two
estimators are compared, since MSE = variance + (bias)2

and (bias)2 = (E(F̂ (t)) − F(t))2 are of O(n−2) for both
estimators, see (B.2).

4.3.2. A Third Estimator of F(t)

When am < a, the failure time T1a for unit 1 can be written
as the sum of two independent components:

T1a = T1m + (T1a − T1m), (21)

where T1a follows IG(µ, λ); T1m and T1a−T1m independently
follow IG(r−1µ, r−2λ) and IG(µ0, λ0), respectively, with
µ0 ≡ (a − am)/η = (1 − 1/r)µ and λ0 ≡ (a − am)2/σ 2 =
(1 − 1/r)2λ.

To estimate F(t), we partitioned the intermediate data
{Tij |i = 1, . . . , n, j = 1, . . . , m} into {Tij |i = 1, . . . , k,
j = 1, . . . , m} and {Tij |i = k + 1, . . . , n, j = 1, . . . , m},
where 2 ≤ k ≤ n− 1. Then, the cdf of T1m in is estimated by

E(1(T1m ≤ t)|T (1)

m , V (1)), which is basically (15) except the

values of its (T m, V ) are now replaced by (T
(1)

m , V
(1)

) com-
puted from the first subset {Tij |i = 1, . . . , k, j = 1, . . . , m}
(using Proposition 4.1). The unbiased estimator of the pdf of
T1m is then

f̂ (t |T (1)

m , V (1)) = d

dt
E
(
I (T1m ≤ t)|T (1)

m , V (1)
)
, (22)

which has a simple form [as a derivative of (15)].
From the second subset {Tij |j = 1, . . . , m, and i = k + 1,

. . . , n}, we first compute T
(2)

m and V (2) using Proposition 4.1.
Then, the unbiased estimators of µ0 and 1/λ0 are µ̂0 = (1 −
1/r)(rT

(2)

m ) and 1̂/λ0 = (1−1/r)−2(r−2V (2)/((n−k)m−1),
respectively. The MMLE of the cdf of T1a−T1m in (21) is then
obtained by replacing µ0 and 1/λ0 in the cdf of IG(µ0, λ0)

with µ̂0 and 1̂/λ0, respectively, which is ht (µ̂0, 1̂/λ0) with
ht defined in (B.1) of Appendix B.

Our proposed estimator of the distribution function F(t)

of T1a is the convolution of the two estimated distribution

functions of T1m and T1a − T1m:

ˆ̂
F
(
t |T (1)

m , V (1), T
(2)

m , V (2)
) =

min(t ,U(1)
m )∫

L
(1)
m

ht−z(µ̂0, 1̂/λ0)

×f̂
(
z|T (1)

m , V (1)
)
dz, for t > L(1)

m . (23)

For highly reliable products, the mean lifetime µ is typi-
cally large. Furthermore, for a reasonable product, the vari-
ance of its lifetime, Var(Ta) = µ3/λ, should be relatively
small (this can be achieved with robust designs and good
statistical process control). Hence, λ should be large (for
our example in Section 6, λ = 19221). Then, from (C.2) in
Appendix C, the first-order bias of our proposed estimator in

(23) is approximately
(
1 − 1

r

)2 1
2n

(
∂2ht (µ,1/λ)

∂x2
1

)
rµ3

λ
, whereas

the first-order bias of F̂MMLE(t) in (19) is approximately
1

2n

(
∂2ht (µ,1/λ)

∂x2
1

)
rµ3

λ
. Because 0 < 1 − 1

r
< 1 with prob-

ability 1, our proposed estimator ˆ̂
F(t |T (1)

m , V (1), T
(2)

m , V (2))

has a smaller first-order bias than F̂MMLE(t) and F̂MLE(t),
approximately.

4.4. Approximate Confidence Intervals for F(t) and Its
Percentiles

We will first obtain the confidence interval for the lifetime
distribution function F(t). Because T m and V are asymptot-
ically normally distributed, by the Delta method [12], both

F̂MMLE(t) and ˆ̂
F(t |T (1)

m , V (1), T
(2)

m , V (2)) are also asymptot-
ically normally distributed. Let F̂ (t) denote either of these
two estimators; then, for each t

√
n[F̂ (t) − F(t)] → N

(
0, σ 2

t

)
in distribution, as n → ∞,

(24)

where σ 2
t is the asymptotic variance of

√
nF̂ (t). For example,

if F̂ (t) is F̂MMLE(t) in (19), then σ 2
t =

(
∂ht (µ,1/λ)

∂x1

)2
rµ3

λ
+(

∂ht (µ,1/λ)

∂x2

)2
2

mλ2 . We may replace the unknown parameters

in σ 2
t with their respective consistent estimates to obtain σ̂ 2

t .
Then, from (24), an approximate 100(1 − α)% confidence
interval for F(t) at any given t is

(F̂ (t) − za/2σ̂t /
√

n, F̂ (t) + za/2σ̂t /
√

n), (25)

where za/2 is the upper α/2 percentage point of the standard
normal distribution.

In a reliability analysis, we are also interested in the per-
centiles of the lifetime distribution. Let tp be the pth per-
centile of F(t), that is, F(tp) = p(0 ≤ p ≤ 1). An estimate
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of tp, denoted by t̂p, is obtained from solving F̂ (t̂p) = p.
Then, in view of (25), we have

1 − α ≈ P {F̂ (tp) − zα/2σ̂tp /
√

n < F(tp) < F̂ (tp) + zα/2σ̂tp /
√

n}
= P {F−1[F̂ (tp) − zα/2σ̂tp /

√
n] < tp < F−1[F̂ (tp) + zα/2σ̂tp /

√
n]}

≈ P {F̂−1[F̂ (t̂p) − zα/2σ̂t̂p
/
√

n] < tp < F̂−1[F̂ (t̂p) + zα/2σ̂t̂p
/
√

n]}
= P {F̂−1[p − zα/2σ̂t̂p

/
√

n] < tp < F̂−1[p + zα/2σ̂t̂p
/
√

n]},
(26)

where the last probability statement gives an approximate
100(1−α)% confidence interval for the pth percentile of the
lifetime distribution.

Instead of F(t), one may be interested in the survival func-
tion, S(t). Because S(t) = Pr(Ta ≥ t) = 1 − F(t), all our
results for F(t) can be modified for S(t). For example, if
(aα , bα) is a 100(1 − α)% confidence interval for F(t), then
a confidence interval with the same confidence level for S(t)

is (1−bα , 1−aα). Furthermore, if sp is the time that a unit will
survive with probability p, then sp = t1−p and its confidence
interval can be obtained using (26).

5. AN EXAMPLE

In Section 3, we proposed a new method of collecting
intermediate, nonfailure data from a Wiener degradation or
performance process, and then, in Section 4, analytically
proved the efficiencies of our estimators for the mean life-
time and the lifetime distribution function. To illustrate the
proposed method and the computation required to use our
estimators, we consider the contact image sensor (CIS) exam-
ple from Tseng et al. [24]. A CIS module is a contact-type
image-sensing module that consists of a line of LED lamps.
A CIS can be used in a fax machine, document scanner, copy
machine, mark reader, and other office automation equip-
ment. Because a CIS is designed to be highly reliable (its
expected lifetime is measured in years), it is unlikely that it
will fail early under normal operating conditions.

The light intensity of an LED lamp has been used as a per-
formance variable–a surrogate of degradation–and an LED
is defined as “fail” when its light intensity reaches a constant
threshold ([13] and references therein). Instead of a regres-
sion model with an independent random error term, Tseng
et al. [24] and Liao and Elsayed [13] propose the following
correlated process for the degradation of the light intensity:

L(t0) = exp{−W(τ(t0))}
= exp{−[ητ(t0) + σB(τ(t0))]}, t0 ≥ 0, (27)

where τ(t0) = t δ0 . Note that E(L(t0)) = exp(−ηtδ0 ) is the
regression function of the regression model in Tseng and Yu
[25]. A commonly used threshold for L(t0) is 0.5; so, the life-
time of a unit is T0 = inf{t0 ≥ 0|L(t0) ≤ 0.5}. This implies

that failure occurs when W(τ(t0)) passes the transformed
threshold a = −�n(0.5) = 0.6932. If we transform the orig-
inal time t0 to t = τ(t0) = t δ0 , then −�nL(t1/δ) is the Wiener
process W(t) in (1) and the lifetime in the transformed time
scale is given in (2).

The original data on L(t0) were obtained from a consulting
project for one of the leading manufacturers of LED lamps in
Taiwan and has been used in several other studies. However,
the sample size was only 24, of which 18 were with com-
plete failure times. As we will soon see (in Figs. 1a–1c), to
obtain reasonably good results, this current sample size may
be too small (because we need a larger sample size in our
new method of using only intermediate data). Because it has
been empirically shown in Liao and Elsayed [13] (using data
collected at predetermined time points in an ADT) that the
process in (1) is a reasonable one for describing the degrada-
tion of the transformed light intensity of an LED, we will use
the following MLEs obtained by Tseng et al. [24] to simu-
late a performance process up to the last nonfailure threshold
in our illustration: η̂ = 0.0175, σ̂ = 0.005, and δ̂ = 0.37.
These estimates will be treated as the true values (because
true values were never known) to assess our results based on
different sample sizes.

Assumem = 10andthenonfailurethresholdarea1 = 0.01,
a2 = 0.02, . . . , a10 = 0.10(< a = 0.6932). We choose
a10 = 0.10 in our study mainly because it corresponds
approximately to 168 h (in the original time scale), which
is the company’s current burn-in time under 125◦C, 7
eV. Using the intermediate data, we compute F̂MMLE(t),
ˆ̂
F(t |T (1)

m , V (1), T
(2)

m , V (2)) and 95% point-wise confidence
intervals for F(t), for n = 10, 30, 50, and 100 (Figs. 1a–1d).
Theresultsareconsistentwithouranalyses inSection4.Recall
that we have n = 18 degradation sample paths with actual
failure times at a = 0.6931. Because we use the nonfailure
thresholds with the last one at am = 0.100 to collect only
intermediate data then, according to the analytical results in
Section 4, we need to have a sample size of (a/am)n which
is about 125, to make our estimates at least equally efficient
as the estimates based these 18 degradation sample paths
with actual failure times. We demonstrate in Fig. 1d that a
sample size of 100 already gives us reasonable confidence
bands for the lifetime distribution function. The “true” IG
F(t) (with µ = a/η̂ and λ = a2/σ̂ 2) is also plotted for each
t ≥ 0. Comparisons of the asymptotic accuracies between

F̂MMLE(t) and ˆ̂
F(t |T (1)

m , V (1), T
(2)

m , V (2)) are consistent with
our analytic results. Although these two estimates are fairly
close to each other in our example, we have seen cases (e.g.,
in Chiou [3]) in which the simplified version of the proposed
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Figure 1. Comparisons of MMLE and our proposed estimate (OPE), and confidence bounds for the failure time distribution function: (a)
n = 10; (b) n = 30; (c) n = 50; (d) n = 100.

ˆ̂
F(t |T (1)

m , V (1), T
(2)

m , V (2))’s are much closer to the “true”
value than F̂MMLE(t)’s. The 95% point-wise confidence
intervals for the pth (0 ≤ p ≤ 100%) percentiles of
the failure time distribution are given in Fig. 2. Because
P(T0 ≤ t0) = P(T 1/δ̂ ≤ t0) = P(T ≤ t δ̂o ), the pth per-
centile of the lifetime distribution in the original time scale

is estimated by t̂
1/δ̂
p , and its approximate confidence interval

can be obtained by taking (1/δ̂)th roots of the endpoints of
the confidence interval given in (26).

As to the computational complexities of our estimators,
we first note that values of T m and V are easy to compute
using Proposition 4.1. Then, with these estimates, the MMLE
of F(t) in (19) is readily obtained. For our proposed esti-

mate ˆ̂
F in (23), we have explained in Section 4.3.2 that it

is straightforward to obtain ht−z(·, ·) and f̂ (·|·, ·) when we

constructed ˆ̂
F . Then, this ˆ̂

F is an integration of the product
(or a convolution) of these two functions. Various software

programs are available for computing integrals; for exam-
ple, MATLAB. Hence, the MMLE in (19) and our proposed
new estimates in (23) (as functions of t) can be computed
easily, and in fact they were computed repeatedly for t ≥ 0
to obtain the confidence bands in Figs. 1a–1d. The inverse
function of FMMLE was also computed repeatedly to obtain
the confidence interval for the pth percentile, 0 ≤ p ≤ 1, in
Fig. 2.

Another advantage of having intermediate data is that we

can check the key Wiener assumption (1) during the test, by

testing the goodness-of-fit (GOF) of the IG distribution to

the intermediate data. The null hypothesis at each aj is “H0j :

T1j , T2j , . . . , Tnj is distributed as F0j = IG(µi0, λj0).” The

unspecified distribution function F0j in H0j will be estimated

by its MLE, F̂0j = IG(µ̂j0, λ̂j0), where µ̂j0 and λ̂j0 are the

MLEs obtained from Proposition 4.1 using all intermediate

data up to aj .
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Figure 2. 95% pointwise confidence intervals for percentiles of the failure time distribution (for n = 100).

The testing procedures described in Pavur et al. [18] are
used for testing H0j at each aj (j = 1, . . . , m). For each j ,
let

Zij = F̂0j (Tij ), i = 1, . . . , n, (28)

and the corresponding order statistics be Z(1)j ≤ Z(2)j ≤
. . . ≤ Z(n)j . Then, Anderson-Darling, Cramer-von Mises,
and Watson test statistics for H0j are defined, respectively

A2
j = −n − (1/n)

n∑
i=1

[(2i − 1)�n(Z(i)j )

+ (2n + 1 − 2i)�n(1 − Z(i)j )], (29)

W 2
j =

n∑
i=1

[Z(i)j − (2(i) − 1)/(2n)]2 + 1/(12n), (30)

U 2
j = W 2

j − n(Zj − 0.5)2, with Zj =
n∑

i=1

Zij/n. (31)

Let Dn,j denote any of these three statistics and

D∗
n,j = Dn,j [√n + τ̂1(1/

√
n)] + τ̂2(1/n), (32)

where τ̂1 and τ̂2, which depend on the estimated shape para-
meter φ̂j = λ̂j0/µ̂j0 of F̂0j , can be found in Pavur et al.
[[18], Tables 1–3]. (Note that, while the null distribution of
F0,j (Tij ) does not depend on the shape parameter, the null dis-
tribution of Zij = F̂0j (Tij ) does.) Reject H0 if the absolute
value of D∗

n,j is greater than the absolute value of β̂α where

α is a predetermined significance level. The critical values,
β̂α , for these three tests can be found in [18, Tables 1–3].
Interpolation may be needed if the corresponding φ̂j is not
listed in the tables. The results of the GOF tests are given in
Fig. 3. The horizontal axis is the axis for the predescribed
thresholds a1, . . . , a10. At each, a GOF test is conducted.
As indicated, the test statistics do not exceed their respec-
tive limits (critical values); so, we can conclude that there is
not enough evidence to suggest that the intermediate data
do not come from an IG distribution. Our earlier analy-
ses and estimates based on the Wiener assumption (1) are
reasonable.

6. CONCLUDING REMARKS

Traditional statistical tools are available for estimating
the lifetime distribution function and its parameters when
one has failure time data. Instead, we propose to obtain the
first-passage times of the test units over certain predeter-
mined nonfailure thresholds during the early stage of a DT.
A Wiener process was assumed for tracking the degradation
or performance of the product. We then prove the certain
efficiency property of our proposed estimator, based only on
intermediate data.

To determine the thresholds at which intermediate data
are to be collected, we may consider the trade-off between
expected total cost of the experiment and (asymptotic) vari-
ance of the resulting estimators of the failure time distribution
and its percentiles, when designing a degradation experiment.
Finally, even with a small am, it is still possible that some of
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Figure 3. Three charts for verifying IG/Wiener assumption over time.

the test units may not fail. Although we can further lower
am, we need to further increase the sample size to make the
resulting estimators as efficient as the estimators from actual
failure time data (as described in Section 4). In cases where
testing a large number of units in a DT is not feasible, a possi-
ble solution and also a direction for future study is to consider
time censoring.

APPENDIX A. PROOF OF PROPOSITION 4.1

The results in this appendix extend Tweedie [26], which dealt with
cases with only actual failure time data. The distribution of D ≡∑n

i=1
∑m

j=1 Dij = ∑n
i=1 Tim/n ≡ T m follows immediately from the

fact that Tim, i = 1, . . . , n, are independently identically distributed as
IG(am/η, a2

m/σ 2). Furthermore, rT m = rD is the UMVUE of µ, because
it is unbiased and a function of the complete sufficient statistic D. Note that
the likelihood function of Dij = dij is given in (11), whose exponent can
be written as

− r−2λ

2

n∑
i=1

k∑
j=1

(
r2

r2
j dij

− 1

md

)
− nλ

2

√ 1

r2d
−
√

d

µ2

2

= −λ

2
r−2v − nλ

2

√ 1

r2d
−
√

d

µ2

2

. (A1)

Consider the transformations:

Wij = Dij , for j = 1, 2, . . . , m − 1 and i = 1, 2, . . . , n,

Wim = Dim, for i = 1, 2, . . . , n − 1, and Wnm = D.

The Jacobian is n. Then, from (A.1), the joint pdf of Wij ’s is

n

 m∏
j=1

1

2r2
j π

π/2

λnm/2

 n∏
i=1

m−1∏
j=1

w
−3/2
ij

(
n−1∏
i=1

w
−3/2
im

)

×
nwnm −

 n∑
i=1

m−1∑
j=1

wij +
n−1∑
i=1

wim

−3/2

× exp

{
−λr−2v

2

}
exp

−nλ

2

(√
1

r2wnm

−
√

wnm

µ2

)2
 .

Because Wnm follows IG(r−1µ, nr−2λ), the conditional pdf of
(W11, . . . , Wn−1,m), given Wnm = wnm, can be written as

f (w11, . . . , wn−1,m|wnm) = Kλ(nm−1)/2 e−λr−2v/2

×g(w11, . . . , wn−1,m, wnm), (A2)

where K is a constant and g is a function of w11, . . . , wn−1,m, and wnm. Note
that

∫∫
. . .

∫
f (w11, . . . , wn−1,m|wnm)dw11 . . . dwn−1,m = 1,

for all λ > 0. (A3)
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Now consider the conditional moment generating function of r−2V , given
Wnm = wnm:

E(et(r−2V )|Wnm = wnm) =
(

λ

λ − 2t

)(nm−1)/2 ∫∫
. . .

×
∫

K(λ − 2t)(nm−1)/2e−(λ−2t)r−2v/2

× g(w11, . . . , wn−1,m, wnm)dw11 . . . dwn−1,m

= (1 − 2t/λ)−(nm−1)/2, for 0 < t < λ/2, (A4)

so E(et(r−2V )) = E[E(etr−2V |Wnm)] = (1 − 2t/λ)−(nm−1)/2. The last
equality in (A.4) follows from (A.3). Hence, (λr−2)V follows χ2

nm−1.
Furthermore, (A.2) or (A.4) proves that (λr−2)V or V is independent of
Wnm = D = T m and hence the proposition.

APPENDIX B: PROOF OF (20)

To evaluate F̂MMLE(t) in (19), let

ht (x1, x2) = �

[√
1

tx2

(
t

x1
− 1

)]
+ exp

2

x1x2

× �

[
−
√

1

tx2

(
t

x1
+ 1

)]
, (B1)

then, F̂MMLE(t) = ht (rT m, r−2V /(nm − 1)). Expanding ht (rT m,
r−2V /(nm − 1)) in a Taylor series about (µ, 1/λ), we can show

E(F̂MMLE(t)) = F(t) + 1

2

{(
∂2ht (µ, 1/λ)

∂x2
1

)
rµ3

nλ

+
(

∂2ht (µ, 1/λ)

∂x2
2

)
2

(nm − 1)λ2

}
+ O(n−2)

= F(t) + 1

2n

{(
∂2ht (µ, 1/λ)

∂x2
1

)
rµ3

λ

+
(

∂2ht (µ, 1/λ)

∂x2
2

)
2

mλ2

}
+ O(n−2), (B2)

and

Var(F̂MMLE(t)) =
{(

∂ht (µ, 1/λ)

dx1

)2
rµ3

nλ

+
(

∂ht (µ, 1/λ)

∂x2

)2 2

(nm − 1)λ2

}

+ O(n−2) = 1

n

{(
∂ht (µ, 1/λ)

∂x1

)2
rµ2

λ

+
(

∂ht (µ, 1/λ)

∂x2

)2 2

mλ2

}
+ O(n−2). (B3)

so, the MMLE is asymptotically unbiased. Note that the first-order terms (in
n) in (B.2) and (B.3) depend on a1, . . . , am through m and r .

We have Var(F̂MMLE,nk,am (t)) = 1
nk

{(
∂ht (µ,1/λ)

∂x1

)2
rµ3

λ
+
(

∂ht (µ,1/λ)
∂x2

)2

2
mλ2

}
and Var(F̂MMLE,n,a(t)) = 1

n

{(
∂ht (µ,1/λ)

∂x1

)2
µ3

λ
+
(

∂ht (µ,1/λ)
∂x2

)2
2

mλ2

}
,

up to O(n−1). Because r ≥ 1 and m ≥ 1, we obtain (20).

APPENDIX C: FIRST-ORDER BIAS OF (23)

Note that

E
T

(1)
m ,V (1)

∫ min
(
t ,U(1)

m

)
L

(1)
m

ht−z(µ0, 1/λ0)f̂
(
z
∣∣T (1)

m , V (1)
)
dz


= ht (µ, 1/λ) = F(t). (C1)

Now, we again expand ht−z(µ̂0, 1̂/λ0) about (µ0, 1/λ0) using a Taylor series

expansion and, by (C.1) and the independence among T
(1)

m , V (1), T
(2)

m , and
V (2), we obtain, for fixed k,

E
( ˆ̂
F
(
t
∣∣T (1)

m , V (1), T
(2)

m , V (2)
)) = F(t) +

(
1 − 1

r

)2
rµ3

2(n − k)λ

×E

∫ min
(
t ,U(1)

m

)
L

(1)
m

∂2ht−z(µ0, 1/λ0)

∂x2
1

f̂
(
z
∣∣T (1)

m , V (1)
)
dz


+
(

1 − 1

r

)−4 1

[(n − k)m − 1]λ2

×E

∫ min
(
t ,U(1)

m

)
L

(1)
m

∂2ht−z(µ0, 1/λ0)

∂x2
2

f̂
(
z
∣∣T (1)

m , V (1)
)
dz


+ O(n−2) = F(t) +

(
1 − 1

r

)2 1

2n

∂2ht (µ, 1/λ)

∂x2
1

rµ3

λ
+
(

1 − 1

r

)−4

× 1

2n

∂2ht (µ, 1/λ)

∂x2
2

2

mλ2
+ O(n−2). (C2)

from which we obtain the first-order bias of (23).

APPENDIX D: APPROACH TO DEALING WITH
RANDOM THRESHOLDS

When a product’s actual failure is tracked by an observable (Wiener)
degradation process with a fixed but unknown threshold, estimating the
failure time distribution and its parameters is possible only when one has
complete failure time data. This is because the failure time distribution
depends on the threshold a, but only through µ and λ in (5), which can
be estimated by the statistics (with r = 1) given in Proposition 4.1. If only
intermediate data are available, then estimating the lifetime distribution func-
tion appears to be impossible because how far to extrapolate the results from
intermediate data obtained at aj ’s depends on how far aj ’s are from a. Nor
is it possible for the traditional method of measuring the degradation process
at certain prespecified times, because this method gives estimates of the drift
parameter η and diffusion coefficient σ 2 in (5), and one needs to know a to
estimate the mean and variance of the lifetime distribution.

If the threshold a is random but with a known distribution (e.g., a uniform
or beta distribution over a given range), then our results using intermediate
data can be considered as conditional results (given a). Recognizing that
there will be no data on a, one approach is to first multiply the (conditional)
likelihood (given a) in (11) by the known density of a, and then integrate out
a to obtain the unconditional likelihood function. This unconditional like-
lihood (density), however, does not form an exponential family, nor does it
have a closed form; hence, estimators of unconditional lifetime parameters
such as MLEs or UMUVEs (if they exist) have to be obtained numerically.
Consequently, comparisons of various estimators of the lifetime distribution
function and its parameters appear to be analytically intractable under this
approach.

An alternative is to take an expectation with respect to a to all estimators
and parameters containing a. So, we have unbiased estimators, E(r)T m and
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E(r−2)V /(nm − 1), for E(µ) and E(1/λ), respectively, from Proposition
4.1. We can prove Var(T a) = E(r)(am/n)(σ 2/η3) for complete data case,
and Var(E(r)T m) = E2(r)(am/n)(σ 2/η3) for intermediate data case. Also,
we can prove Var(E(r−2)V /(mn − 1)) = [2σ 4/(mn − 1)][E((1/a2)2)]
for the complete data case, and Var(E(r−2)V /(mn − 1)) = [2σ 4/(mn −
1)][E(1/a2)]2 for the intermediate data case. Then, we can obtain a similar
conclusion as in Section 4.1; that is, the proposed estimator E(r)T m of E(µ),
based on only intermediate data with sample size nk, is at least as efficient
as the corresponding estimator T a based on complete failure time data with
sample size n, provided k ≥ E(r), where r = a/am and am is fixed (the con-
dition in Section 4.1 was k ≥ r whena is known). For the lifetime distribution
function, the problem may become that of estimating F(t |E(µ), E(1/λ)),
where F(·) is given in (4). The estimator in (15) of Section 4.2 for complete
failure data case remains unchanged, because a is not directly involved. For
the case with only intermediate data in Section 4.3.1, our proposed estima-
tor is ht (E(r)T m, E(r−2)V /(nm − 1)), with ht given in (B.1). Following a
similar derivation and using the variances of the two estimators given above,
we can obtain similar expressions as in (B.2) and (B.3). Then, using the
Jensen’s inequality (to prove E((1/a2)2) ≥ (E(1/a2))2), the conclusion
that F̂MMLE,n,a is outperformed by F̂MMLE,nk,am in Section 4.3.1 remains
valid, but the condition will become k ≥ E(r). For Section 4.3.2, our pro-
posed estimator of F(t |E(µ), E(1/λ)) is (23), with µ̂0 and 1̂/λ0 replaced
by their respective expectations with respect to a. First, equality in (C.2)
remains true when we replace all parameters by their respective expecta-
tions with respect to a. Then, the conclusion that the proposed estimator
in Section 4.3.2 outperforms the MLE and MMLE remains valid, provided
E(r) ≥ E((1 − 1/r)r), but this inequality is true because r ≥ 1 with
probability 1.
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