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ABSTRACT 

Using data from a simple Step-Stress Accelerated Life Testing (SSALT), a nonparametric 

Proportional Hazards (PH) model is proposed for obtaining Upper Confidence Bounds (UCBs) for the 

cumulative failure probability of a product under normal use conditions. The approach is 

nonparametric in the sense that most of the functions involved in the model do not assume any 

specific forms, except for certain verifiable conditions. Test statistics are introduced to verify 

assumptions about the model and to test the Goodness of Fit (GOF) of the proposed model to the data. 

A numerical example, using data simulated from the lifetime distribution of an existing parametric 

study on Metal-Oxide-Semiconductor capacitors, is used to illustrate the proposed methods. 

Discussions on how to determining the optimal stress levels and sample size are also given. 

 

Keywords:  Lifetime distribution; Accelerated life test; Step-stress tests; Nonparametric approach; 

Proportional hazards model; Cumulative exposure; Goodness-of-fit test; Optimal 

design. 
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1.  INTRODUCTION  

The lifetime distribution of a product is often used to assess the cumulative likelihood of product 

failure up to a certain time. Such information is important to managers when, for example, 

establishing a warranty period or when pricing extended warranties. To obtain an estimate of the 

lifetime distribution of a product in a timely manner, Accelerated Life Testing (ALT) is widely used in 

industry. In an ALT, test units are exposed to relatively greater stress with the objective of increasing 

the likelihood of observing failures. Inferences about the true lifetime distribution under normal use 

conditions can then be made based on these observed accelerated failure times.  

Different stress strategies are used when conducting an ALT. For example, in a Parallel 

Constant-Stress ALT (PCSALT), test units are divided into groups and each group is tested under a 

different stress level throughout the test. Another strategy is the Step-Stress ALT (SSALT). In a simple 

SSALT, the test begins by exposing all test units to a pre-specified stress level. For those test units that 

survive up to a pre-specified time, the stress level is changed and held constant until all units fail 

(uncensored test) or until a pre-specified test termination time is attained (censored test).  

SSALTs are commonly used; for example, in testing diodes, electrical cable insulation, 

insulating fluid (Bai and Chun (1991)), rear suspension aft lateral link (Lu, Leiman, Rudy, and Lee 

(2006)), etc. Possible advantages of using SSALTs include:  

(i)Time saving: A SSALT can substantially shorten the duration of the test without affecting the 

accuracy of lifetime distribution estimates (Zhao and Elsayed (2005)). 
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(ii) Practical: Relative to a PCSALT, a SSALT is more practical in the sense that fewer test units 

are required (Tseng and Wen (2000)). 

(iii) Adaptable: A SSALT is a flexible test strategy, especially for new products when one 

presumably has little information regarding appropriate test stresses. In a SSALT, the later 

stress levels, as well as the transition times, could be dynamically adjusted as failure 

information is being gathered over time.  

(iv) Economical: Testing units at higher stress levels often incurs greater costs. Therefore, testing 

all units at a lower stress level at the beginning of a SSALT may lower the expected cost. For 

example, Tang, Yang, and Xie (2004) proposed an optimal step-stress accelerated degradation 

plan that requires fewer samples and less test time, and hence reduces the total test cost, than 

an existing degradation test. 

Khamis (1997) studied the SSALT and PCSALT, assuming a Weibull lifetime distribution, and 

concluded that SSALT should be considered as an alternative to the PCSALT when there is heavy 

censoring for the PCSALT at lower stress levels. Ma and Meeker (2008) concluded that a SSALT can 

have a smaller variance for the Maximum Likelihood Estimates (MLEs) of the quantiles of a lifetime 

distribution than the PCSALT when the scale parameter of the assumed lifetime distribution (Weibull 

or lognormal) is large or when the failure probability at the censored time under high stress levels is 

relatively small. 

1.1.  Parametric and Nonparametric Models 
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In a parametric analysis for a SSALT, one assumes a true lifetime distribution (e.g., exponential, 

Weibull, or lognormal) with certain unknown parameters and an acceleration function to relate these 

parameters to stress levels (Zhao and Elsayed (2005)). Other assumptions such as Nelson’s (1980) 

Cumulative Exposure (CE) assumption (being described later) are used for deriving the accelerated 

lifetime distribution for the data obtained from a SSALT, to obtain sample estimates of the true 

lifetime parameters. Tang, Sun, Goh, and Ong (1996) proposed a linear CE model and obtained the 

MLEs of the lifetime parameters in a multi-censored SSALT. Balakrishnan and Han (2008) and Han 

and Balakrishnan (2010) considered an exponential SSALT with competing risks. For more recent 

studies regarding parametric inferential methods of SSALT, see, for example, Balakrishnan, Zhang, 

and Xie (2009), Balakrishnan, Beutner, and Kateri (2009), Wang (2010), and Lee and Pan (2010).  

As to optimally designing a SSALT, Ismail and Aly (2009) and Srivastava and Mittal (2010) 

considered the optimum plan for a partial SSALT. Most of the literature assumed Nelson’s CE 

assumption with different lifetime distributions and censoring schemes. For example, Miller and 

Nelson (1983), Bai and Chun (1991), Bai and Kim (1993), Alhadeed and Yang (2005), Elsayed and 

Zhang (2005), and Gouno (2007). Since the parametric approach is not the main focus of the paper, 

the reader is referred to Nelson (1990, 2005a, 2005b) for comprehensive overviews on theory of 

parametric PCSALT and SSALT. 

Although specific parametric lifetime distributions are used for certain types of products, Nelson 

(1990) pointed out that the assumed form of the lifetime distribution is questionable for many 

Page 5 of 34



4 

 

products (also see Pascula and Montepiedra (2003)). Moreover, when assessing the ability of several 

potential lifetime models, it can be difficult to assess which one provides a better fit to the data. 

Significant errors in the extrapolation of ALT results could occur if the assumed model does not 

provide a good approximation of the actual failure mechanism. Thus, a nonparametric model absent 

specific assumptions regarding lifetime distributions should be considered. 

A few research efforts have considered the nonparametric approach for analyzing failure time 

data under a PCSALT (Schmoyer (1986)). In particular, for a PCSALT with two parallel 

constant-stress levels, Schmoyer (1988, 1991) suggested a nonparametric estimation procedure for 

obtaining an Upper Confidence Bound (UCB) for the cumulative failure probability at any given point 

under normal use conditions. Some nonparametric approaches for SSALT have been proposed, 

including Shaked and Singpurwalla (1983) and Tyoskin and Krivolapov (1996). 

1.2.  Objective and Organization of the Paper 

Given the advantages of SSALT and the lack of a nonparametric model for data analysis, we 

propose a nonparametric approach for estimating the true lifetime Cumulative Distribution Function 

(CDF) based on data obtained from a simple step-up SSALT, where the stress level is switched to a 

high level at certain stress change time.  

The paper is organized as follows. In Section 2, a Proportional Hazards (PH) based 

nonparametric model is introduced for the underlying lifetime distribution. The CE assumption of 

Nelson (1980) is also used, in lieu of acceleration functions common to the parametric approach, to 
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derive the lifetime CDF under a simple SSALT. Using data from this CDF, we obtain in Section 3 a 

nonparametric UCB for the lifetime CDF under normal use conditions. Section 4 provides methods 

for verifying the sufficient conditions in the development of the UCB in Section 3. Section 5 develops 

a procedure for assessing the Goodness of Fit (GOF) of the underlying PH model to the data. A 

simulated numerical study utilizing the work of Elsayed and Zhang (2005) regarding 

Metal-Oxide-Semiconductor capacitors is provided in Section 6 to both illustrate the implementation 

and to empirically assess the sensitivity of the proposed method to various stress levels and sample 

size. Discussions on how to determine the optimal stress levels and sample size are also given. Finally, 

Section 7 summarizes the results and suggests directions for future research. 

2.  A PH-BASED NONPARAMETRIC MODEL 

In this section, a nonparametric PH model for the lifetime CDF is introduced. Then, with the CE 

assumption, we derive the lifetime CDF under a simple SSALT. 

2.1.  The PH Model  

Consistent with the work of Schmoyer (1991), the lifetime CDF for a given constant-stress is 

assumed to follow a general PH model. A PH model assumes that the effect of stress is multiplicative 

in the hazard rate and that the ratio of hazard rates under two different stress levels is constant over 

time. That is, if a unit is tested under stress level x throughout the test, the hazard rate function at any 

given time t is  

( ; ) ( ) ( )t x g x h tλ ′= , 0t ≥                                         (1) 
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where 

( )g x ≡ the damage rate function which is a non-negative and non-decreasing sigmoid function 

of stress defined on [0, )∞ ; 

( )h t ≡
 
a non-negative, non-decreasing, and differentiable function of time. 

A non-negative and non-decreasing function is sigmoid if there is a point [0, )M ∈ ∞ to the left of 

which the function is convex and to the right concave. (The cases 0M =  or M = ∞ , i.e., concave 

or convex, are admitted). Several commonly used damage rate functions in parametric models 

conform to such assumptions (see examples in Schmoyer (1988, 1991)). 

Let 
0

x  be the normal use stress level and 1
x  and 

2
x (

0 1 2
x x x≤ < ) be two test stress levels, 

which are assumed to be pre-determined and fixed. The hazard functions for units under these two 

different test stress levels are proportional since 
1 2 1 2

( ; ) ( ; ) ( ) ( )t x t x g x g xλ λ =  is constant for all 

0t ≥ . The model in (1) is nonparametric because we do not specify any parametric forms of the 

functions ( )g x
 
and ( )h t , except certain verifiable conditions to be described later. It follows from 

(1) that the lifetime CDF under a constant-stress 
i

x  (i = 1, 2) is  

( ) 1 exp( ( ) ( )), 0
i i

F t g x h t t= − − ≥    .                                  (2) 

2.2.  Lifetime CDF Under a Simple SSALT 

Let τ  be the stress change time (from 
1

x  to 
2

x ) in a simple SSALT. To derive the lifetime 

CDF under the simple SSALT, a model is required to relate this CDF to the two CDFs in (2) under 

constant 
1

x  and 
2

x , respectively. For this purpose, Nelson’s (1980) CE assumption is used. This 
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assumption assumes that the remaining life of a test unit at any given time depends only on the 

cumulative exposure it has received up to that time and the current stress level, regardless of how the 

exposure was accumulated.  

Under the CE assumption, there exists a time, denoted by s ( τ< ), such that the cumulative 

amount of exposure at τ  under stress level 
1

x  is equivalent to the CE amount at s  as if the ALT 

had been conducted with stress level 
2

x  (see Figure 1). Since the CEs are equivalent, we have 

2 1
( ) ( )F s F τ= , and hence 2 1

( ) ( ) ( ) ( )g x h s g x h τ= . Therefore, the lifetime CDF of a test unit under a 

simple SSALT is  

1 1

2 2

( ) 1 exp( ( ) ( )),

( )

( ) 1 exp( ( ) ( )),
SS

F t g x h t t

F t

F t s g x h t s t

τ

τ τ τ

= − − ≤
=

− + = − − − + >





                         if 
                     

 if 

                 (3) 

============ 

Figure 1 

============ 

3.  UCBs OF LIFETIME CDF UNDER NORMAL CONDITIONS  

A nonparametric UCB, based on data obtained from a simple SSALT, is developed for the 

cumulative failure probability under normal use conditions, 
0

x . The UCB is derived with the 

following additional assumption on ( )g ⋅  (a method for verifying this assumption will be proposed in 

Section 4): 

0 1

0 1

( ) ( )g x g x

x x
≤ ,  or 0 0

1 1

( )

( )

g x x

g x x
≤ .                                    (4) 

Denote Pr( | ) ( )
i i

t x F t≡
 
and Pr( | ) ( )

SS
t SS F t≡ . Then, using (4) and the fact that Pr( | )t SS  

1
Pr( | )t x= , for t τ≤ , we can prove  
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Proposition 1.  Under model (3) and assumption (4), the following inequality holds: 

[ ] 0 1

0
Pr( | ) 1 1 Pr( | ) ,

x x

t x t SS≤ − −  0t ≥ .                             (5) 

Let P̂r( | )t SS  be the empirical CDF for ( )
SS

F t , a conservative100(1 )%α− UCB of Pr( | )t SS  in 

(5) is (Meeker and Escobar (1998)) 

 

1

ˆ ˆ(1 ;2 Pr( | ) 2;2 2 Pr( | ))

P̂r( | )
Pr ( | ) 1

ˆ( Pr( | ) 1)
n t SS n n t SS

n n t SS
t SS

n t SS F
α

α

−

− + −

−
= +

+

  
 
  

%  ,               (6) 

where n is the total number of test units, and ( )1 2
; ;p v v

F  is the p-th percentile of the F distribution with 

1 2
( , )v v degrees of freedom. Then by (5), 

0 1

0.05
1 1 Pr ( | )

x x

t SS− −  % provides a 95% UCB for 
0

Pr( | )t x .      

4.  VERIFICATION OF ASSUMPTION (4)  

A method for verifying assumption (4) is provided in Section 4.1. To simplify the notation, 

denote 
1 2

( ) ( )c g x g x≡ , which is a constant since 
1

x and 
2

x  are fixed. Then (0,1)c ∈ . 

Estimation procedures for c are given in Sections 4.2-4.4. 

4.1.  Verification Procedure and Unimodality 

Since the damage rate function ( )g x is assumed to be sigmoid, the function ( )g x x
 is unimodal 

(Schmoyer (1988)). Non-increasing and non-decreasing functions are considered unimodal functions 

(with infinite mode). Assume that 

1 2

1 2

( ) ( )g x g x

x x
≤ ,  or equivalently 

1

2

x
c

x
≤ ,                             (7) 

then ( )g x x  cannot be non-increasing over (0, )∞ .  First, if ( )g x x  is non-decreasing, then 

assumption (4) is true for 
0 1

0 x x< ≤ .  On the other hand, if ( )g x x  has a finite mode, then 
1

x  

has to be to the left of the mode because of (7). This implies that ( )g x x  is non-decreasing in the 
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interval 
1

[0, ]x , and hence assumption (4) is true for 
0 1

0 x x< ≤ . Consequently, if we can verify (7), 

then (4) is true. 

 According to (3) and the definition of s , we have 

(1 Pr( | ))

(1 Pr( | ))

ln t SS
c

ln t s SSτ

− −
=

− − − +
, for all [ , ]t s τ∈ .                        (8)           

An UCB of the left hand side of (8) can be obtained as the ratio of a 100
1/2

(1 )α− % UCB of 

Pr( | )t SS  to a 
1/2

100(1 ) %α−
 
lower confidence bound of Pr( | )t s SSτ− + . If this UCB for the left 

hand side of (8) is smaller than 
1 2

/x x , we conclude that (7) is valid up to a certain level of 

confidence. Schmoyer (1991) used a similar procedure for a PCSALT. However, unlike Schmoyer 

(1991), the range of useful t for a simple SSALT is limited to the interval [ , ]s τ , where s  as well as 

c  are unknown parameters to be estimated. 

4.2.  Modified Likelihood Function of Parameter c 

We propose a modified likelihood function for obtaining an estimate of c. This likelihood 

function will also be used later for developing a GOF test of the PH model to the data.  

Suppose that the parameter s is known or well-estimated. Let 
111 12 1,

, , ... ,
n

t t t be the observed 

failure times (under the stress level 1
x ) within the interval [ , ]s τ  and 

2
21 22 2,

, , ...,
n

t t t
 
be the observed 

failure times (under the stress level 2
x ) after time τ . Let 

2 2j j
t s t τ′ ≡ + − ,

2
1, ...,j n= , be the shifted 

failure times. Under model (3) and Figure 1, {
111 12 1,

, ,... ,
n

t t t } and {
221 22 2,

, , ...,
n

t t t′ ′ ′ } are considered as 

two samples from the two CDFs under 1x  and 2x , respectively, over the same interval [ , ]s τ . Note 

that the PH model in (3) also holds for any monotone transformation of the failure times in the sense 
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that the distributional form in (3) stays the same. Hence, for the estimation (and hypothesis testing) 

problem about the model unknown parameters to remain invariant under these time transformations, 

the estimators (and test statistic) will depend only on the ranking information of 
111 12 1,

, ,... ,
n

t t t and 

221 22 2,
, , ...,

n
t t t′ ′ ′  (see Kalbfleisch and Prentice (1980, Chapter 4) and Schmoyer (1991)). The joint 

ranking information is characterized by 
10 1

( ,  ,  ... ,  )
n

a a a , where 
i

a  is the number of 
2 j

t′ ’s such that 

1 2 1, 1i j i
t t t +

′≤ <  with 10
t s≡  and 

1
1, 1n
t + ≡ ∞ , for 

1
0,  1,  ...,  i n= . 

Let exp( ( ) ( ))
it i

R g x h t≡ − , which is the survival probability of a test item at time t  as if the 

item had been exposed to the constant stress level 
i

x
 
throughout the test. The conditional likelihood 

function of c is (derivation in Appendix) 

 
11

1

1 1

1

1 2

0 1 1 2 2

1 0

1

! ! 1
( | , , ..., , , , ) ( )

!
( 1)

i
an

n

n s n

i kn

j

j i

n n
L c a a a s n n R c

a
a n i c k

−

= =

=

=

+ − + +

 
 
 
 
 
 

∏∏
∑

,          (9) 

where 
2s

R  is unknown. However, according to the CE assumption, 
2 1s

R R τ= . Thus, the empirical 

survival probability, 
1

ˆ ˆ1 Pr( | )R SSτ τ= −  is used as an estimate of 
2s

R  in (9) to obtain an 

approximate conditional likelihood function of c . 

4.3.  Search Procedure for Parameters s and c 

It is apparent from equations (8) and (9) that estimation of s  depends on c  and vice versa. In 

this section, a search procedure is suggested for the simultaneous estimation of these two parameters. 

The proposed joint estimation procedure is iterative and based on the following considerations: 

(a) For a given c, an estimate of s ( [0, ]τ∈ ) is that satisfying (8); 
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(b) If s is given (estimated), the MLE of c can be obtained via (9). 

The proposed search procedure is given as follows: 

Step 1. Assume we have an initial estimate of c, say 
1

c  (a method for obtaining a good 
1

c  is 

provided later in this section). We re-parameterize s such that s ατ= , where (0, 1)α ∈ . Let 

t′  be the last failure time such that P̂r( | ) 1t SS = , for all t t′≥ . We seek an estimate of α  

(and hence of s) such that the following average squared error is minimized: 

( )

( )

2

1

1

2

1

1
( ( , ) )

,
1

( ( , ) )

t

c t c dt t
t

SV c

c t c dt t

ατ τ

ατ

τ

ατ

α τ τ ατ
τ

α

α τ τ ατ
τ ατ

′+ −

′− − ≤ −
′ −

=

′− − > −
−








∫

∫

,      if  

 

 ,          if  

           (10) 

where (cf. (8)) 

   
ˆ(1 Pr( | ))

( , )
ˆ(1 Pr( | ))

ln t SS
c t

ln t SS
α

ατ τ

− −
≡

− − − +
, [ , min( , )]t tατ ατ τ τ′∈ + − .  

The rationale for (10) is related to consideration (a) above. The minimizing α  value is 

denoted by 
1

α  and the corresponding 
1

s  by 
1 1

s α τ= . 

Step 2. Using 
1 1

s α τ=  as an estimate of s , we find c to maximize the likelihood function (9) . The 

resulting estimate of c is denoted by 
2

c . 

Step 3. Replace 
1

c  in Step 1 by 
2

c  and repeat these steps until the estimated values of ( , )c s  

converge. 

Initial Estimate of c 

We propose the following procedure for obtaining a good initial estimate of c, 
1

c . 

(i) The procedure begins by obtaining a reasonable estimate of s  within the interval (0, )τ . Recall 
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from (8) that ( , )c t α , as a function of t and α, should be constant, for all ( , )t s τ∈ . In other 

words, the most reasonable estimated value of  ( )s ατ=  would be the point which generates the 

most stable quantities of ( , )c t α  for all ( , )t ατ τ∈ . Let ( )c α  be the average of ( , )c t α  over 

( , )t ατ τ∈ . The following modified criterion of (10) provides a useful means for obtaining a 

reasonably good initial value of s or α : 

    ( )
( )

( )

( )

2

2

1
( , ) ( )

, ( )
1

( , ) ( )

t

c t c dt t
t

SV c

c t c dt t

ατ τ

ατ

τ

ατ

α α τ τ ατ
τ

α α

α α τ τ ατ
τ ατ

′+ −

′− − ≤ −
′ −

=

′− − > −
−








∫

∫

 ,      if 

   

 ,          if 

       (11) 

(ii)  Substitute the estimated s ατ≡  into (9) to obtain 
1

c  for Step 1 of the search process. 

Note that taking logarithmetic transformations in (10) and (11) provides the following alternative 

criteria, which may be computationally more convenient:  

 

( )
( )

( )

( )

2

1

1

2

1

1
( ( , )) ( )

, ( )
1

( ( , )) ( )

t

ln c t ln c dt t
t

SV ln c

ln c t ln c dt t

ατ τ

ατ

τ

ατ

α τ τ ατ
τ

α

α τ τ ατ
τ ατ

′+ −

′− − ≤ −
′ −

′ =

′− − > −
−








∫

∫

 ,      if 

    

 ,          if 

    (12) 

and 

 

( )
( )

( )

( )

2

2

1
( ( , )) ( ( )

, ( ( )
1

( ( , )) ( ( )

t

ln c t ln c dt t
t

SV ln c

ln c t ln c dt t

ατ τ

ατ

τ

ατ

α α τ τ ατ
τ

α α

α α τ τ ατ
τ ατ

′+ −

′− − ≤ −
′ −

′ =

′− − > −
−








∫

∫

 ,      if 

   

 ,          if 

 

 

(13) 

4.4.  Modified Likelihood Function of c for Type-I Censored SSALT 

To obtain data in a timely manner, censoring is common in life testing. Consider a simple 

SSALT which is terminated at time η  with some surviving items. Our search procedure for c  
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developed for the uncensored case in Section 4.3 can be directly applied to the censored SSALT; but 

the conditional likelihood function for c requires some modifications, as follows.  

For a given s , two scenarios may occur following a transformation of the censored time from 

η  to ( )sη η τ′ ≡ + − . 

Scenario I: η τ′ ≥  (see Figure 2) 

As shown in the figure, after transforming the failure times under 2x , one could still count the 

number of transformed failure times within each interval 
1 1, 1 1

( , ),  0,1,...,
i i

t t i n+ = , to observe the joint 

ranks, 
10 1

( , , ..., )
n

a a a . Hence, the conditional likelihood function of c in (9) for the uncensored 

SSALT can be used directly for this scenario. 

Scenario II:  η τ′ <  (see Figure 3) 

First, let 
1m
t  be the last observed failure time under 

1
x  before η ′ . Under this scenario, one 

would not be able to obtain the exact number of transformed failure times falling within each interval 

1 1, 1
( , )

i i
t t + , for i m≥ . Thus, define 

m
a  as the number of surviving items plus the number of 

transformed failure times under stress 
2

x  that exceed 
1m
t . Instead of 

10 1
( , , ..., )

n
a a a , one would only 

observe 
0 1

( , , ..., )
m

a a a  and the conditional likelihood function of c  based on 
0 1

( , , ..., )
m

a a a  is  

1

2

0 1 2 2

1 0

! ! 1
( | , , ..., , , , ) ( )

!
( 1)

i
am

m

m s m

i km
j

j i

m n
L c a a a m n s R c

a
a m i c k

−

= =

=

=
+ − + +

 
 
 
 
 
 

∏∏
∑

.          (14) 

================= 

Figures 2 and 3 

================= 

To estimate parameters c and s under type-I censoring, we replace t′  with the censored time η  in 
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Step 1 in Section 4.3 and use the likelihood function (14) instead of (9) in Step 2 if Scenario II occurs. 

5.  GOF Test of PH Model 

In this section we first derive a GOF Likelihood Ratio Test (LRT) for the assumed PH model 

when the test is uncensored. We then extend the proposed methodology to accommodate Type-I 

censoring schemes in Section 5.2.   

5.1.  GOF for Uncensored SSALT 

Under the PH assumptions, if we have an uncensored SSALT, then the joint ranks 

10 1
( , , , )

n
a a aK  are observed and the constrained likelihood function based on the joint ranks 

10 1
( , , , )

n
a a aK  is provided in (9). Without the PH assumptions, the unconstrained conditional 

likelihood of 
10 1

( , , )
n

a a aK  is (see Schmoyer (1991)) 

1

1

2

00 1 2
, ,...,

ia
n

i

in

n a

a a a n=

   
   

  
∏ .                                         (15) 

The LRT statistic for the GOF test of the PH model is then the ratio of (9) to (15). 

The exact null distribution of the LRT statistic, when the joint ranks 
10 1

( , , ..., )
n

a a a  are 

considered random, is difficult to obtain analytically. However, via simulation of 
10 1

( , , ..., )
n

a a a , we 

can obtain an observed significance level (i.e. p-value) for the current observed value of the LRT 

statistic. Since 
10 1

( , , ..., )
n

a a a  is invariant under any monotone transformation of the failure times, 

the distribution of the LRT statistic is therefore independent of ( )h ⋅  in the PH model and depends on 

1
( )g x  and 

2
( )g x  only through 

1 2
( ) / ( )c g x g x= . However, unlike Schmoyer’s (1991) approach in 

which two constant stress levels are applied in parallel over time [0, )t ∈ ∞ , the interval for          
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comparison in a simple SSALT is limited to ( , )t s τ∈ . Therefore, the Monte Carlo simulation 

approach of Schmoyer (1991) is revised for the simple SSALT, as follows. 

(i) Generate 
1

n  pseudorandom failure times, 
111 12 1,

, , ... ,
n

t t t , from the 
1

(1)
ˆ

Exp
c

 distribution 

(where ĉ  is the final estimate of c  obtained from Section 4) satisfying 

P̂r( | )-ths SS percentile of 
1

(1)
ˆ

Exp
c

1i
t≤ ≤ P̂r( | )-thSSτ percentile of 

1
(1)

ˆ
Exp

c
. 

(ii) Generate 
2

n  pseudorandom failure times, 
221 22 2,

, ,... ,
n

t t t′ ′ ′ , from (1)Exp , conditioned on    

  P̂r( | )-thSSτ percentile of (1)Exp 2 j
t′≤ .  

(iii) Based on the simulated failure times from (i) and (ii), the values of 
1

0 1
( , ,..., )

n
a a a  and the 

likelihood ratio are obtained. 

Repeat (i) to (iii) many times (1000 is sufficient). The significance level (p-value) for the LRT statistic 

from the data is then the percentile of the observed value of the likelihood ratio relative to the 

simulated likelihood ratios. Hence, the decision is to reject the null hypothesis, 0
:H  PH model is 

adequate, at α = 5% significance level if  

           p-value ≡ 
#{simulated ratio the ratio from data}

0.05.
1000

≥
≤  

5.2.  GOF Test for Type-I Censored SSALT 

For a Type-I censored SSALT, the previous GOF test procedures in Section 4.4 require some 

minor modifications but only for Scenario II, because under Scenario I we still observe the joint ranks 

10 1
( , , ..., )

n
a a a  here. The modifications are: Replace 

1
n  with m  and τ  with η ′  in (i), and 

replace 
10 1

( , , ..., )
n

a a a  with 
0 1

( , ,..., )
m

a a a  in (iii). 
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6.  NUMERICAL EXAMPLE 

6.1.  Underlying Model and Data Generation 

Elsayed and Zhang (2005) introduced an example in which a simple SSALT plan was designed 

for Metal-Oxide-Semiconductor capacitors to estimate the reliability distribution at designed 

temperature, 
0

x = 50oC. In their parametric model, the lifetime CDF in (3) is  

 

1

2

273.16 2

0 1

273.16 2

0 1

1 exp ( 2) ,

( )

1 exp ( ( ) ( ) 2) ,

x

SS

x

e t t t

F t

e t s t s t

β

β

γ γ τ

γ τ γ τ τ

−
+

−
+

− − + ≤

=

− − − + + − + >

    
   

     


    
  
    

                             if 

 if 

 

with β = 3800, 
0

γ =
 
0.0001, and 

1
γ = 0.55. Here 273.16( ) xg x e

β
−

+=  and 
2

0 1( ) ( 2)h t t tγ γ= +
 
in our 

notation. The optimal simple SSALT plan given by Elsayed and Zhang (2005) is: 
o

1
145x C= , 

o

2
= 250x C , and 262.5τ = hours. Since s satisfies

1 2
( ) ( )F F sτ = , we have 105.46s = 0.4τ= and 

c =
3800 3800

273.16 145 273.16 250e e
− −

+ + = 0.1614. Using these models and parameters, a total of n = 200 failure times 

(assumed in Elsayed and Zhang (2005)) are generated from ( )
SS

F ⋅  to obtain the corresponding 

empirical CDF, P̂r( | )t SS , needed in our analysis. 

6.2.  Estimations of Parameters c and s 

To estimate s  and c  using the iterative search procedures developed in Section 4.3, we need 

initial estimates of these two parameters. All results are obtained by using Matlab. 

Initial Parameter Estimates 

To obtain 
1

c  for Step 1 of Section 4.3, criterion (13) was first used to obtain a reasonable 

estimate of α (and hence s). The plot of ( ), ( ( ))SV ln cα α′ in (13) against α  shows the minimum 
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occurs at α  = 0.439, and hence s ≡ ατ =115.237.
 
This value is then substituted into (9) to obtain the 

first conditional MLE of c, 
1

c = 0.177. The estimates of ( , )c s
 
in the following 3 search iterations 

are: (0.177, 123.38), (0.168, 120.75), and (0.165, 120.75), respectively. Recall the actual values of s 

and c are 105.46 and 0.1614, respectively. Hence, the search procedure provided reasonable estimates 

of the parameters. The final values, (c, s) = (0.165, 120.75), will be used in the following numerical 

analysis. 

Sensitivity Analysis of the Initial Value of 
1

c  

Because of the random nature of data, we chose the following initial values of 
1

c  to assess the 

sensitivity of the search results to 
1

c :
1

0.177 10%(0.177)c = ± ,
1

0.177 20%(0.177)c = ± , 
1

0.177c =  

30%(0.177)± , and 
1

0.177 100%(0.177)c = + .
 
The resulting convergent estimates of (c, s) are shown 

in Table 1. 

============= 

Table 1 

============= 

From the results in Table 1, parameter estimates with a reasonably good initial estimate for 
1

c  tend 

to converge to the same final estimates. However, when the initial 
1

c  is substantially biased, the 

search procedure can produce biased results (the last two cases in Table 1). This suggests the 

importance of an appropriate initial estimate of 
1

c . 

6.3.  GOF Test of PH Model 

The GOF test of the PH model for ( ),  1, 2,
i

F t i =  is conducted following the procedure 

proposed in Section 5, the parameter estimates used to implement the test are listed below: 
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     (c, s) = (0.165, 120.75), 
1

109n = , 
2

23n = , P̂r( | ) 0.34s SS = , and P̂r( | ) 0.885SSτ = . 

1000 samples are simulated and the corresponding likelihood ratios are calculated. The resulting 

p-value of the observed data is 0.477, and hence the PH model assumption is not rejected at α = 5% 

significance level. 

6.4.  Data Analysis - Verification of (7) 

Recall that Proposition 1 is used to construct UCBs for the lifetime CDF at different times, 

provided that (4) is true. Further, a sufficient condition for (4) is provided by (7). Two methods are 

introduced for verifying (7): one is based on Wilks’ likelihood ratio statistic and the other is based on 

the upper bound approach developed in Section 4. 

Likelihood Ratio Approach (Method 1) 

To assess whether 
1 2

c x x≤ /  in (7) is true, we first use Wilks’ LRT statistic, defined by 

ˆ( ) ( ) / ( )R c L c L c= , where ( )L c  is given in (9), to obtain a 100(1 )%α−  UCB of c. Since 

2 ( ( ))ln R c−  is approximately distributed as a Chi-square with one degree of freedom, an approximate 

( )100 1 %α−
 
likelihood based confidence interval for c is the set of all c’s satisfying  

2

1
2 ( )) (1 )ln R c χ α− ≤ −( ,                                           (16) 

from which an UCB of c can be obtained. The plot of 2 ( ))ln R c− (
 
against c give an approximate 95% 

confidence interval (0.10, 0.28) with an UCB of c  at 0.28, which is less than the ratio 
1 2

0.58x x = . 

Condition (7) and hence (4) is verified with 95% confidence. 

Upper Bound Method of Section 4.1 (Method 2) 
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The upper bound method of Section 4.1 uses equation (8). That is, if we can find an UCB of the 

left side of (8), using the empirical CDF, then we have an UCB for c . More specifically, using this 

method, any [ , ]t s τ∈ = [120.75, 262.5] could be selected and used to establish an UCB of c . We 

chose some values of t in this interval and all UCBs obtained were less than 
1 2

0.58x x =
 
(figure is 

available from authors), suggesting that condition (7), and hence (4), is valid.  

6.5.  UCBs for CDF Under Normal Use Conditions 

Since assumption (4) is valid, the nonparametric UCB of 
0

( | )P t x  can now be obtained from 

Proposition 1. Using (5) and (6) in Section 4, we obtain nonparametric UCBs of 
0

Pr( | )t x  at t = 100, 

150, 200, 250, 300, and 350 hours. For each t, the true probability value, the corresponding estimated 

nonparametric UCB, and the relative difference (bias) between the two are shown in Table 2. 

============ 

Table 2 

============ 

6.6.  Experimental Analysis for Optimal Design of SSALT 

We consider the design problem of SSALT under our current model setting. In traditional 

parametric ALT models, optimal stress levels are normally determined by minimizing asymptotic 

variances of unbiased estimates of (or functions of) parameters of a given lifetime distribution. 

However, this approach is not possible in a nonparametric setting because the lifetime distribution is 

not completely specified. Therefore, minimizing the Mean Squared Error (MSE) of estimated UCBs 

of lifetime CDF would provide a more appropriate criterion for the selection of the stress levels. 

Hence our approach uses a statistical experimental design with the following 4 factorial combinations 
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of stress levels 
1 2

( , )x x : 
o o

(55 C, 150 C) , 
o o

(55 C, 200 C) , 
o o

(100 C,150 C) , and 
o o

(100 C, 200 C) . 

The low accelerated stress level is set at 1
x = 55

o
C, which is close to the normal level, 0

x = 50
o
C. We 

used the same stress change time as Elsayed and Zhang (2005): τ =  262.5 hours. For each stress 

combination, we simulated 100 simple SSALTs, each with a sample of 200 test units. The averages 

and standard errors of the 100 simulated estimated 95% UCBs (Equations (5) and (6)) at various t are 

given in Table 3. Using the MSE of our estimated UCB as the objective function, we conclude that 

1
x

 
should be kept as close to 0

x  as possible before the stress change time τ . After τ , the second 

stress level, 2
x , should also be kept as low as possible. This is true for any t . Further, as a part of the 

experimental analysis, we had graphed the main and interaction effects of the first and second stress 

level. Results suggest that the interaction effect between the two stress levels on the MSE is 

negligible. 

============ 

Table 3 

============ 

In addition, we have considered another design variable, namely, the sample size. A similar 

simulation study with several different sample sizes {50, 100, 200, 300, and 500} was conducted 

using 
o o

1 2
( , , ) (145 , 250 , 262.5)x x C Cτ = . The results are shown in Table 4. Both the mean and 

standard error of the estimated UCB at a given time appear to decrease as the sample size increases. 

That is, the estimated UCB becomes tighter and more precise as the sample size increases. In addition, 

before the stress change time, the standard error at a given time follows a typical inverse square-root 

type of relationship to the sample size (We also simulated a case with even lower stress levels, this 
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relationship holds). The sample standard error becomes stable once the sample size reaches 200, 

which suggests a minimum sample size if one would like to obtain a more precise (smaller variance) 

estimated UCB of the lifetime CDF at use conditions. 

============ 

Table 4 

============ 

7.  SUMMARY 

In this paper we propose a nonparametric PH based model, combined with Nelson’s (1980) CE 

assumption, for estimating the UCBs of the lifetime distribution under normal use conditions, via a 

simple SSALT. Procedures are also developed for testing the model assumptions. A parametric simple 

SSALT model was used to illustrate the proposed procedure. The results imply that the performance 

of the estimated UCBs was sensitive to the choices of the stress levels, 
1

x  and 
2

x . As expected, the 

closer these stress levels are to the normal stress level, the better the bounds performed. Such 

observations suggest that the design of a simple SSALT has critical effects on the inferences and 

should thereby be considered with care. 

Notice that the proposed procedures are not applicable to another type of SSALT, the step-down 

SSALT, in which the stress level decreases over time. The step-down SSALT has important 

applications in practice because it can reveal certain “lurking degradation/failure modes” that are 

independent of the main observed failure mode at high stress or less accelerated by the stress variables 

being used (hence the CE assumption is not satisfied). Thus, the development of nonparametric 

analytic models for step-down SSALTs should be considered. Some other areas for future research 
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include (1) extending this research from the PH model to the Accelerated Failure Time (AFT) model, 

and (2) the nonparametric analytical procedure for products that provides degradation data. 
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Appendix. Derivation the Conditional Likelihood Function in (9) 

We first consider the following case where, under both stress levels, data are left truncated at s 

but there is no right censoring time for both stress levels. Recall that 
11 2 1,

, ,... ,
n

t t t
 
are the observed 

failure times (under the stress level 
1

x ) within the interval [ , ]s τ  and 1( ) ( )

2 1

g x h

s
R R e

τ
τ

−= =
 
is the 

surviving probability under stress 
1

x  at time τ . Similar to Schmoyer (1991), we can derive the 

conditional likelihood function of parameter 
1 2

( ) ( )c g x g x= (conditional on s, n1, and n2), based on 

observations on 
10 1

( , ,... , )
n

a a a .  Let { }
1

11 12 1,
...

n
s t t tΩ = ≤ ≤ ≤ ≤ < ∞ . Then  

10 1 1 2
Pr( , ,..., | , , )

n
a a a s n n

1

1 10 1 1 2 11 12 1, 1 1

1

Pr( , ,..., | , , , , ,..., ) ( )

n

n n i

i

a a a s n n t t t dF t
Ω

=

= ∏∫  

                  

0 1
1

1

1

1

1 1

1
2 2 1,2 1, 1 2 1,2 11 2

1

10 2 2 2

( ) ( )

1 1 1

1

1 ( )( ) ( )( ) ( )
!

, ...,

                              ( ) ( )

ni

i

aa a
n

ni i

in s s s

n

g x h t

i i

i

n F tF t F tF t F s
n

a a R R R

g x h t e dt

−
+

Ω
=

−

=

−−−
=

′×

      
      

      
∏∫

∏
 

Let 2 1
( ) ( )

i
g x h t

i
v e

−= , the joint distribution above can be rewritten as

 

      
{ }

2
1 1

01 1

1
1 1 21 1

1

1
2 1

1 2 1 1
0 ...

0 1 12

1
! ( ) ( ) ( ) .

,...,
ni

n n s

n
n n

aa an c

s i i n i i
v v v R

n i is

n
n c R v v v v v dv

a a R −

−
−

+≤ ≤ ≤ ≤ ≤
= =

  
− −  

  
∏ ∏∫  

Define 
j

w ’s  by 
2

1

i

i s j

j

v R w
=

= ∏ , [0,1]
j

w ∈  for all j , then the function above becomes 

      

( )
1

2
1 1

1 21

1

1 ( 1) 1
2 1

1 2

0 12 0

1
! (1 ) ( )

,...,

n

j

j ii

n
n a c n i

n n an

s i i i

n is

n
n c R w w dw

a a R

=

+ − + −
+ −

=

∑  
−  

  
∏ ∫ , 

which can be simplified to (9).

 

 Note that, in a simple SSALT, the failure times under 1
x  are right 

censored at τ . Now, when there is censoring under 1
x  but not 2

x , the joint ranks 
10 1

( , ,..., )
n

a a a  

are still observed and hence, according to Schmoyer (1991), we could still use the conditional 

likelihood function of parameter c as above. 
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Figure 1.  Lifetime CDF under Simple SSALT with Cumulative Exposure Assumption 

 

 

Figure 2.  Joint Ranks 
1

1 2
( , , )

n
a a aK

 
for Scenario I under Type-I Censoring 

Figure 3.  Joint Ranks 
1 2

( , , )
m

a a aK

 
for Scenario II under Type-I Censoring 
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Table 1.  Sensitivity Analysis of (c, s) to the Initial Value 
1c  

1
c  Final Estimates 

0.177 (1 10%)× −  ( , ) (0.165,120.75)c s =  

0.177 (1 10%)× +  ( , ) (0.165,120.75)c s =  

0.177 (1 20%)× −  ( , ) (0.165,120.75)c s =  

0.177 (1 20%)× +  ( , ) (0.165,120.75)c s =  

0.177 (1 30%)× −  ( , ) (0.165,120.75)c s =  

0.177 (1 30%)× +  ( , ) (0.222,144.38)c s =  

0.177 (1 100%)× +  ( , ) (0.300,168.00)c s =  

 

 

 

Table 2.  Estimated UCBs of CDFs at Different Times Under 
o o

1 2
( , ) (145 , 250 )x x C C= . 

Stress Levels 1 2( , )x x  Time True CDF Estimated 95% Upper bound Bias 

100 0.0213 0.1021 0.0808 

150 0.0472 0.2324 0.1852 

200 0.0824 0.3748 0.2924 

250 0.1258 0.5459 0.4201 

300 0.1760 0.8873 0.7113 

(145
o
C,250

o
C) 

350 0.2316 1.0000 0.7684 

     Stress change time is 262.5hrsτ =  and n = 200.
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Table 3.  The Averages and Variances of Estimated UCBs of CDFs at Different Times Under 

Different Stress Levels Combinations. 

Stress Levels 1 2( , )x x  Time True CDF 
Estimated 95% Upper bound 

Average (Standard error) 
Bias MSE 

100 0.021274 0.044206 (0.013327) 0.022932 0.000703 

150 0.047232 0.079038 (0.015053) 0.031806 0.001238 

200 0.08242 0.123823 (0.014230) 0.041403 0.001917 

250 0.125759 0.176903 (0.007742) 0.051144 0.002676 

300 0.175959 0.366602 (0.024795) 0.190643 0.036960 

(55
o
C,150

o
C) 

350 0.231582 0.607265 (0.028918) 0.375683 0.141974 

100 0.021274 0.047426 (0.012355) 0.026152 0.000837 

150 0.047232 0.083429 (0.014936) 0.036197 0.001533 

200 0.08242 0.126361 (0.013928) 0.043941 0.002125 

250 0.125759 0.177006 (0.007594) 0.051247 0.002684 

300 0.175959 0.480236 (0.028972) 0.304277 0.093424 

(55
o
C,200

o
C) 

350 0.231582 0.810161 (0.025562) 0.578579 0.335407 

100 0.021274 0.073070 (0.011897) 0.051796 0.002824 

150 0.047232 0.139683 (0.014722) 0.092451 0.008764 

200 0.08242 0.225317 (0.018142) 0.142897 0.020749 

250 0.125759 0.321474 (0.008740) 0.195715 0.038381 

300 0.175959 0.488555 (0.020955) 0.312596 0.098155 

(100
o
C,150

o
C) 

350 0.231582 0.654820 (0.028119) 0.423238 0.179921 

100 0.021274 0.073120 (0.013331) 0.051846 0.002866 

150 0.047232 0.138630 (0.015221) 0.091398 0.008585 

200 0.08242 0.222718 (0.014797) 0.140298 0.019902 

250 0.125759 0.319650 (0.009226) 0.193891 0.037679 

300 0.175959 0.567286 (0.026154) 0.391327 0.153821 

(100
o
C,250

o
C) 

350 0.231582 0.813783 (0.033183) 0.582201 0.340060 

Each of combination uses 100 replications each with sample size 200. The stress change time is 

262.5hrsτ = . 
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Table 4.  Sampling Statistics of Estimated 95% UCBs of CDFs at Different Times and Different 

Sample Sizes.  

Sample size Time Average of estimated upper bounds Standard error of estimated upper bounds 

100 0.156527 0.030644 

150 0.288459 0.040735 

200 0.447552 0.045764 

250 0.602557 0.029588 

300 0.914696 0.075995 

50 

350 0.997205 0.015973 

100 0.139803 0.020534 

150 0.267650 0.030159 

200 0.413278 0.030695 

250 0.558457 0.021348 

300 0.857066 0.064858 

100 

350 0.995598 0.017511 

100 0.126722 0.015132 

150 0.250260 0.019901 

200 0.394987 0.022479 

250 0.545360 0.015857 

300 0.839190 0.060806 

200 

350 0.991334 0.020733 

100 0.119654 0.012844 

150 0.241626 0.016922 

200 0.385172 0.017845 

250 0.533965 0.014134 

300 0.814647 0.039393 

300 

350 0.989501 0.022712 

100 0.117343 0.008949 

150 0.236356 0.012132 

200 0.378582 0.013519 

250 0.521545 0.00843 

300 0.794793 0.028789 

500 

350 0.985406 0.025261 

The experimental settings are 
o o

1 2
( , , ) (145 , 250 , 262.5)x x C Cτ = . 
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