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 METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES

 IN AN OUT-OF-CONTROL MULTIVARIATE

 NORMAL PROCESS

 Chia-Ling Yen and Jen Tang

 National Tsing-Hua Unversity and Purdue University

 Abstract: Hotelling's Τ2 is a well-known statistic for testing the mean vector of a
 multivariate normal distribution. Control charts based on T2 have been widely used
 in statistical process control for monitoring a multivariate process. Although it is
 a powerful tool, the T2 statistic has a practical problem, namely, that a significant
 T2-value that normally signals an overall out-of-control condition in the process
 mean vector does not provide direct information about which variable or group of
 variables may have caused this out-of-control condition. We propose a diagnostic
 method to identify the influential variable(s) for cases with and without a speci
 fied out-of-control mean vector. Our approach, based on the likelihood principle,
 computes the conditional likelihood of a variable or sub-group of variables causing
 or not causing the overall out-of-control condition. Unlike many existing meth
 ods, our method assumes that an out-of-control condition already exists; hence, all
 conditional likelihoods in this paper are based on non-central distributions of the
 monitoring/testing statistics. By comparing these conditional likelihoods, we iden
 tify the influential variable(s). We use an example from the literature to illustrate
 our method and to demonstrate its effectiveness.

 Key words and phrases: Hotelling's T2 statistic, hypothesis testing, influential vari
 ables, likelihood, mean vector, multivariate process control, out-of-control.

 1. Introduction

 To test a hypothesis about the mean vector of a multivariate normal distri
 bution, Hotelling (1947) proposed a T2 statistic that has been widely used in sta
 tistical process control (SPC) to monitor a multivariate normal process. Thus a
 process/population with ρ quality variables (characteristics) in X = (X\,..., Xp)
 is assumed to follow a multivariate normal distribution with an unknown mean

 vector μ and unknown but constant (in-control) covariance matrix Σ. The pro
 cess is said to be in-control in its mean (or simply in-control) at a given time
 if the hypothesis Hq : μ = μο cannot be rejected based on a random sample
 taken from the process at that time, where μο represents the in-control process
 mean. On the other hand, μ can shift from μο at an unknown time, and the
 main purpose of SPC is to detect this shift as soon as possible.
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 848 CHIA-LING YEN AND JEN TANG

 Since the main concern in SPC practice is the stability of the mean vector,
 μο is normally not specified and is estimated using some reference/training data
 so a Τ2 control chart can be set up in Phase I for future process monitoring
 in Phase II. Assume we have reference observations, Xrj, i = 1 ,.,.,Ν, from
 the in-control process in Phase I. We compute Xr = J2iLi -Xr.î/X and Sr =
 ^2i=i{Xr,î ~ Xr){Xr,î ~ Xr)'/(X — 1) to estimate μο and Σ, respectively. To
 see the decision rule for monitoring the process mean during Phase II, assume a

 random observation X is taken from the process Νρ(μ, Σ). A monitoring statistic
 commonly used in practice (cf., Anderson (2003) and Hotelling (1947)) is

 T* = -X-i(x-xR)'s-R\x-xR).(1.1)

 It is well known that [(N — p)/((N — \ )p))T2 follows a non-central FPîn-p,\ dis
 tribution with non-centrality Λ = (N/(N + 1))(μ — μο)'Σ_1(μ — μο) (Anderson
 (2003)). Under Hq : μ = μο, Λ = 0 and the distribution is a central F distribu
 tion. Hence, our 100(1 — a)% decision rule is: Ho : μ = μο is rejected and an out
 control signal is triggered if T2 > tl(a) = [{N - l)p/(N - p)]FPiN-pfl(a), where
 Fp,n-p,o(oi) is the (1 — a) percentile of Ρρ,τν-ρ,ο- This ij)(a) is the 100(1 — a)%
 control limit on a T2 control chart.

 When T2 signals a change in the mean vector, corrective action is required.
 A Τ2 value, however, does not provide direct information about which variable
 is responsible for the overall out-of-control condition. This information is of
 practical importance because engineers/analysts need to know which individual
 variable requires adjustments after the process is declared out-of-control. Iden
 tifying the influential variable(s) in a Hotelling's Τ2 statistic has been studied
 by several authors. Alt (1985) proposed a set of Bonferroni control limits for
 each individual variable; Hayter and Tsui (1994) proposed a procedure to obtain
 control limits so that the overall alarm rate, a, is at or close to the desired value.
 A different approach, based on Rencher's (1993) decomposition of the T2 statis
 tic, can be found in the following references: the MTY decomposition of Mason,
 Tracy, and Young (1995, 1997) (more details can be found in Mason, Tracy, and
 Young (2002)); the union-intersection or step-down method of Roy (1958); the
 marginal contribution method of Murphy (1987); the numerical method of Do
 ganaksoy, Faltin, and Tucker (1991); the regression-adjusted variables method of
 Hawkins (1991, 1993); and the finite intersection test of Timm's (1996).

 Jackson (1991) and Fuchs and Benjamini (1994) recommended principal
 component analysis {PCA) for improving the interpretation of T2. Kourti and
 MacGregor (1996) provided another approach based on PC A and partial least
 squares. Contribution plots proposed by Wasterhuis, Gurden, and Smilde (2000)
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 METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES 849

 can be constructed, for the normalized principal component scores with high val
 ues, to find the variables responsible for the out-of-control signal. Maravelakis
 et al. (2002) proposed a new method based on PCA to identify the variable or
 variables responsible for an Out-of-control signal in the χ2 control chart.

 The cause-selecting chart (CSC) proposed by Zhang (1980, 1984, 1992) is a
 different approach to solving the problem of interpreting an out-of-control sig

 nal in the T2 chart. Wade and Woodall (1993) suggested a modification of the
 CSC chart for diagnostic purposes and also investigated the relationship be
 tween cause-selection control and the multivariate T2 chart. Sepulveda (1996)
 developed a Minimax control chart that can give evidence about which variable
 is causing the out-of-control signal. The Minimax control chart was again dis
 cussed in Sepulveda and Nachlas (1997) and is similar to the charts proposed
 by Hayter and Tsui (1994) and Timm (1996). Kalagonda and Kulkarni (2003)
 proposed a diagnostic procedure called 'D-technique,' using dummy variables in
 a multiple-regression equation.

 An important adjunct to the statistical procedures is a suitable graphical
 scheme that can display the basic features of the data (see Iglewicz and Hoaglin
 (1987), Fuchs and Benjamini (1994), Sparks, Adolphson, and Phatak (1997), and
 Atienza, Tang, and Ang (1998)). More recent approaches based on an artificial
 neural network and decision tree can be found in Aparisi, Avendano, and Sanz
 (2006), Chen and Wang (2004), Guh and Shiue (2008), and references therein.

 In this paper we propose a method based on the likelihood principle for
 identifying a variable or group of variables most likely to be responsible for the
 rejection of Ho : μ = μο- We consider the cases with and without a specified out
 of-control mean vector. When no out-of-control mean is specified, our method
 computes the conditional likelihood that an individual mean or a group of means
 is in-control, given that Ho : μ = μο is rejected. When an alternative hypothesis
 with a specified out-of-control mean is given, our method computes the condi
 tional likelihood that an individual mean or a group of means has shifted in the
 direction specified by the overall alternative, given that Ho : μ = μο is rejected.

 By comparing these conditional likelihoods, we identify the influential vari
 able(s). Our method assumes that the process is already out-of-control and
 is therefore a diagnostic tool. In contrast, many existing methods assume that
 Ho : μ = μο is true when deriving the distributions for their monitoring statistics;

 e.g., the central F distributions for the decomposed statistics in Mason, Tracy,
 and Young (1995) and ^-distributions for the regression-adjusted variables in
 Hawkins (1991). Note that, when Hq : μ = μο (in-control) is not rejected, we
 may not be interested in the identification problem.
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 850 CHIA-LING YEN AND JEN TANG

 This paper is organized as follows. Section 2 describes our proposed method
 and provides formulas for computing the conditional likelihoods used in the
 method. In Section 3, we illustrate our method using an example taken from
 the literature.

 2. The Proposed Method Based on the Likelihood Principle

 In Section 2.1, we describe our proposed method for identifying the influential

 variable(s) when Ho : μ = μο is rejected. Section 2.2 provides formulas for
 computing the likelihood of causing an out-of-control condition for each variable
 or group of variables.

 2.1. Description of proposed method

 We consider two cases for the alternative hypothesis: one specifies and the
 other does not specify the out-of-control mean. For the first case, let the specified

 out-of-control mean vector be μ* = (μ„^ ,···,μ*α^ )' {φ μο), where μ*α^ is
 a pj x 1 sub-vector and Y^k=iPj = ρ■ This μ* and its partition need to be
 determined before samples are taken from the process in Phase II, and they
 represent the user's belief or conjecture about the out-of-control mean vector.
 Hence, the two cases are

 (A) Ha : μ = μ*α,

 (Β) Ηa : not H0.

 Let X be a random sample taken from Νρ(μ, Σ) during Phase II and χ be the
 observed value. Assume that the observed t2 = (N/(N+1))(x—Xr) 'S-r\x-Xr)
 of Τ2 satisfies t2 > t^a), so Hq : μ = μο is rejected at significance level a. Note
 that, when Hq is rejected, X and XR do not have the same mean.

 For Case (A), to detect the out-of-control individual mean(s), we similarly

 partition μ = (pW,..., μW)', μ0 = (μ^ ,..., μ^ )', AT ξ (Α(1)',..., Aw')',
 and χ = (xW,. ,xW)'. Define Hoj : μ^ = μ\Ρ and Haj : μ^ = μ*α^\ for
 j = 1,..., k. Then, the question is: Which of the hypotheses Ha] is most likely to
 be true according to the data, given that Ha : μ = μ* is accepted? We compute

 the conditional maximum likelihood, ij (Haj | Ha), for each Haj. By comparing
 these likelihoods, we identify which mean vector is most likely responsible for the
 overall out-of-control condition. Our method is different from other critical-value

 types of approach (e.g., Mason, Tracy, and Young (1995) and Hawkins (1991)).
 The conditional maximum likelihood of Haj is calculated as

 £j(Haj\Ha)= max / U)(X{j) = xU) I T2 = t2), (2.1)
 μ^<ΞΗα] μ
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 METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES 851

 where /μο) (X^ — χβ") \ T2 = t2) denotes the likelihood of μ^\ also the condi
 tional pdf of ΧV) at x^\ given that H$ : μ = μο is rejected with T2 = f2. Since

 Haj in Case (A) is a simple alternative, (2.1) reduces to

 ij(Haj I Ha) = f .0)(X« = χ® I Τ2 = f2), j = l,...,k. (2.2)

 The largest A value corresponds to the sub-vector most likely to have caused the
 overall out-of-control condition.

 For Case (B), since no pj's are pre-specified, we need to consider all possible
 partitions of the mean vectors, μ and μο· For each partition, our question is:

 which hypothesis Hoj is least likely to be true according to the data, given that
 Ho is rejected with T2 = t2 (> i(2(«)). The conditional likelihood of Hq3 is similar

 to (2.1) and can be calculated as (since Hoj is simple):

 t'j(H0j I Ha) = f U)(X{j) = xU) I T2 = t2). (2.3) J Mo

 For each partition, we first select the sub-set with the smallest ^'-value. Then, we

 identify the variable or variables that have appeared in most or all of the selected

 sub-sets as the out-of-control variable(s).

 2.2. Calculations of conditional likelihoods

 To calculate the conditional likelihoods in (2.2) and (2.3), it is sufficient to
 consider only ί[(Ηοι | Ha) and l\(Ha\ \ Ha) for X-b with p\ (1 < p\ < p)
 univariate means, because conditional likelihoods for other sub-vectors can be

 computed similarly by rearranging and renaming the variables in A". To simplify
 the notation, we group all sub-vectors other than Xb) to obtain

 X = {xW,xWy, Χκ = {Χ$\χψ)', and SR = Sr, 11 S.R,1 2

 _Sr, 21 Sr, 22

 where Xb) an(j χ|μ are p3 χ 1 and A-2' and XR' are q\ χ 1 with q\ = ρ — p\.
 Similarly, μ, μο, and Σ are partitioned as

 Ση Σ12
 Σ2ι Σ22 μ = (μ(1)',μ(2)')', μ0 = (μ?} , μ^ )', and Σ =

 Define the partial (conditional) covariance matrices

 Σ22·ι = Σ22 — Σ2ιΣ111Σι2, and Sr,22-1 = Sr, 22 — Sr,2\Sr^uSr,12·
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 852 CHIA-LING YEN AND JEN TANG

 Then, Τ2 can be decomposed as (see, for example, Mason, Tracy, and Young
 (1995)):

 _ 4i)ys-iii(x(.) _ 4»)

 +
 Ν

 j[(X™ - 4") - SkuS^xV - 41»)]' N +

 :

 = T'i + T'h, say.
 Χ^,22·ΐ[(^(2) - 42)) - Sr,2iSrUXW ~ X^)}

 Theorem 1. (Proof in Appendix A)

 (i) T2 follows a non-central [(N — l)p\/{N — Piil-Fp^jv-pi.Ai distribution with

 non-centrality parameter \\ — [N/(N + l)]^1) — μ^ΥΈ^^μ^ — μ^); and

 (ii) The conditional distribution ofT^ = Τ^.χ/(l+Tf /(Ν—1)), given T2 — t\ =

 [N/(N + l)]^1) — ^^)'sjj\i (^"^ — a non-central [(AT — 1 )qi/(N —
 P)\Fqi,N-p,x2 distribution with

 λ2 = /+11 + ^-1)[^ " "»'> - Σ2ΐΣ"("(Ι) - "i"'!'
 χΣ^,[(μ<2> - μ™) - Σ21Σ»'(μ"> - μ'1')]

 λ-Αι

 (l + f2/(iV-l))·

 Note that the unconditional distribution of Τ%Λ can be obtained from (i) and

 (ii) above, and is given by /<2>0 I Ά)ίτ'* (tÎ)dtj· This unconditional
 distribution can be used to replace the central F-distributions for the decom

 posed monitoring statistics in the MTY decomposition and can thus be used as

 a diagnostic tool (assuming that Ho is rejected).

 To compute the conditional likelihood / (p (A1^1) = a^1) | y2 = t2) when Hq is

 rejected, we first note from (i) and (ii) of Theorem 1 that the conditional distribu

 tion ofT2, given (Α^Ι,Α^, S^n) = (x(1), ββ,ιι), is (1 + t\/{N - 1))[(AT -
 l)qi/{N - p)\Fqi, ΛΓ-Ρ,λ2 + t2, which depends on (χ^,ζ^,βΛ,η) but through
 t\ = [N/(N + 1)](χ(1) _ £^)'δ;Λι(χ^ — F1·"0111 the fact that A^, A

 (i)
 R '

 and <Sr,ii are independently distributed as ΝΡι(μ^\ En), Νρι(μ^\ (1/Ν)Σχχ),
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 METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES 853

 and WPl (Ν — 1, [1 /(Ν — l)]En), respectively, we have

 fr

 /τ2(ί2)

 4 4,>o4/<*,i>™<4ua.>.)(*<1)·'21 ΐ«)·ί«·"»%>^1)» 'SR,11>U JxR

 xfsR,n(sR,u)dxR dsRth

 fxw(xW)
 Ιτ<

 xfsR:1i{sR^i)dx(RdsR^i.

 It L>.4 w<'>,4".«..>>(t21 ι(1>.ϊ2,.»«,π)/ί,.,(^))

 Note that /T2|(X(i) Sr u)(<2 I ζ(1\ζβ\«β,ιι) = 0 if if > t2. Furthermore,
 this last conditional distribution is the conditional distribution of Τ2 ξ Τ2 + Τ2Λ

 or t\ + Τ2λ and, from the proof of Theorem 1, it depends on a^1), 4)\ Sfijl but
 through f2. A simple transformation gives

 = frl.Kxw^Ksn^2 - I x(1)>*R>SR,ll)
 t2 -ti — t ( l ι (1) -(1)

 - %(*)|(X(1),41),5h,1i)V(1 + t\/{N - 1)) 1 X ,SR'n (1 + t\/{N — 1)) '

 where the conditional distribution of , given Τ2 = f2, can be found in The
 orem 1 (ii). Thus, we have

 = *<>> 112)

 _ fwl'1'1) f f , t2 - , (l) ,<l) >f(i)(®W) f ft ( t — tf ι (1) -(1) \
 Μ2) l+t2/(N-l))lX 'Xr 'SR'n)

 fxW (xr^ÎSr,!! {sR^dx^ dsRjU (1 + n/(N — 1))'

 fx w(x{1))F*

 t2-t2

 422.W|(XW,xW,5H,11)((1+i2/(iV1_1))h(1)'^)'5All)(1 + i2/(Ar_1)J'(2·4)

 where the conditional expectation, E*, is with respect to Xr} and Sr,n, sub

 jected to t\ — [N/(N + l)](x^1) — Xr^)'Sr\ι(χ^ — ^r1^) an<i < i2·
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 854 CHI Α-LING YEN AND JEN TANG

 Since it is generally difficult to compute the conditional expectation E* in
 (2.4), we propose the following asymptotic results for the conditional expectation
 (proof in Appendix B):

 [[ ( E/SmpiV-H0(Ar-^+1)))4(1)(41))/Sfl)11(^11)d41)dSjR,ii!
 m ο V^=0 J R

 «Λ,11>0,Χβ ,tj<t2

 (2.5)
 where

 = Σ" (i - <2, -b/f h -tih
 {jl+-+j7=h}

 jb "r (Η^)^ΐ4)(«2"<',/2+Λ45)(«46)(ί2. «
 (2.6)

 and the summation J]* is over j,'s such that all φ 0. For example, when
 m = 2, (2.5) becomes

 /[ (A°L·, + AIL·,»'1 + AIL·,»'2 +

 fs^nisR^dx^ dsR,n,

 with

 AO) -(λ-λΟ^+ί*?-*2)^ / y" (*2 - Îf)gi/2-i+A ,χ_ Λι\/? fqi/2+j9A .
 Jasymp T(qi/2 + β)β\ V 2 ;

 fW = g-(A-Ai)/2+(t2-t2)/2 y (t2 - ^)q1/2^1+/3 Λ - λιγ (ηι/2+β)
 Josymp e T(qi/2 + β)β\ V 2 )

 ((\-\i)t\ {l-t\){l-t\-2p) (\—t1)(l—t2 — 2pi)
 4

 +y(y ~ Ρ _ 1) _ (^2 + +Ρι ~ (2·8)
 f 2)

 and fasymp given in Appendix Β (Β. 16).
 To compute both conditional null and alternative likelihoods, we note that

 (2.5) depends on certain unknown model parameters that need to be estimated
 from the reference or current data. First, the in-control μο and Σ are respectively

 estimated by Xr and Sr from the reference data. For ii(Hai | Ha) in Case (A),
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 METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES 855

 μ = (μ^',μ^')1 is replaced by μ* = (μ*^1'', μ*(2)')'; for 1[(Ηοι | Ηα) in Case
 (Β), μ = (μί1)' , μ-2'')' is estimated by (μ^ All other parameters are
 known, and variables such as t2 and t\ are given. Furthermore, since the training
 sample size is normally Ν = 20 or 25 in a univariate case and much larger in a

 multivariate case, the two-term approximation in (2.5) suffices. We demonstrate
 this in the next section.

 3. Illustration of Method Using Example

 We use an example from the literature to illustrate and evaluate our proposed

 method. Out-of-control variables are identified for Case (B) and for Case (A).

 3.1. Identifying out-of-control variables for Case (B)

 We use the data in Flury and Riedwyl (1988, p.151), where five dimensions of
 switch drums are measured: Αχ is the inside diameter of a drum; X2- A3, A4, and

 A5 are the distances from the head to the edges of four sectors cut in the drum,

 respectively. Hawkins (1991) treated the mean and covariance matrix computed
 from these data as the in-control population mean and covariance matrix:

 μ0 = (17.960,10.3,13.76,11.08,11.08,8.26)', (3.1)
 Σ = a'Ra, (3.2)

 where

 R

 1

 0.1388 1

 0.3496 0.7324 1

 0.0829 0.9130 0.6824 1

 0.2652 0.6932 0.8214 0.7640 1

 is the (symmetric) correlation matrix with standard deviations σ = (1.8622,
 1.7053,1.7090,1.8718,2.2114)'. Hawkins then simulated Ν = 35 training obser
 vations from Ν$(μο, Σ) and 15 observations after adding an upward shift of 0.5σχ

 and 0.25σ5 to the in-control mean of X\ and A5, respectively, while keeping all

 other process parameters unchanged. The reference/training sample mean and

 covariance matrix based on the first Ν — 35 observations are respectively (in our
 notation)

 XR = (17.6289,10.3365,13.6189,11.1776,8.2437)', (3.3)
 where
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 856 CHIA-LING YEN AND JEN TANG

 Sr =

 2.7355

 0.5193 2.4673

 1.3496 1.6465 2.2259

 0.8029 2.5275 1.9026 3.4201

 1.4865 2.0266 2.4228 2.9601 4.5689

 (3.4)

 A Τ2 statistic is computed for each of the observations 36—50. There is an out-of
 control signal at a — 5% for observation 48; namely, X = (13.065,11.625,14.923,
 12.589,12.446)', with the observed T2 = t2 = 22.2447 > «§(0.05) = (5(35 -
 1)/(35 - 5))F5,35-5 (0.95) = 14.3568. Note that the individual distances of vari
 ables between this X and the estimated in-control mean Xr are: —2.7594σχ,
 0.8203σ2, 0.8741σ3, 0.7632σ4, and 1.966σ5· The complete data is given in Hawkins
 (1991).

 For Case (B) where no alternative is specified, Table 1 gives the (approxi

 mated) conditional null likelihood, ij(Hoj | Ha). for each X<JK Only two terms
 in (2.5) are used to compute each likelihood. First, to see the accuracy of our
 approximation, we used simulation to estimate the exact likelihood because the
 exact likelihood in (2.4) is difficult to compute (each simulated likelihood was
 obtained based on 10,000 iterations). The simulation procedure is given in Ap
 pendix C. The data in Table 1 indicate that our approximations are quite accu
 rate.

 We interpret the results in Table 1. If we believe, for example, that there

 is only one out-of-control variable (so pj = p\ = 1), then X\ is the most likely
 one and its likelihood of being in-control is about 1/7 of the in-control likelihood
 for the next variable, X5. On the other hand, if we think there are two out-of
 control variables (pi = 2), then X\ and X§ are the most likely pair. The same
 interpretation applies to the cases for pi = 3 and 4.

 From Table 1, we see that the sub-groups containing the two out-of-control
 variables X\ and X5 always rank high under each p\ (from 1 to 4), which in
 dicates that our method is quite effective. Furthermore, we can also compare
 results from different p\ values. For example, while the individual conditional
 in-control likelihood for X\ and X5 is 3.189E-0.3 and 2.145E-02, respectively, the
 joint conditional likelihood that X\ and X5 are simultaneously in-control is sig
 nificantly lower (at 4.355E-07), which is reasonable because these two variables
 are indeed simultaneously out-of-control in this example. Furthermore, when
 an in-control variable X4 is added (to obtain the first case under p\ = 3), the
 joint in-control conditional likelihood becomes smaller (5.299E-08), but not sig
 nificantly smaller (note that A4 is in-control but the observed value is 0.7632σ4
 from its in-control mean). If one is to identify three variables, they are: Αχ, X4
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 METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES 857

 Table 1. Conditional Null Likelihood, l'j ( i/o ; | Ha), for The Example in
 Section 3.1.

 Pi  Variable  Simulation (std error)*  Approximation
 1  1  3.289E-03  (7.876E-06)  3.189E-03

 5  2.324E-02  (1.999E-05)  2.145E-02

 4  1.649E-01  (1.872E-05)  1.553E-01

 2  1.849E-01  (2.438E-05)  1.740E-01

 3  1.854E-01  (2.722E-05)  1.744E-01

 2  1  5  3.946E-07  (3.401E-09)  4.355E-07

 1  3  6.850E-06  (4.716E-08)  7.654E-06
 1  4  1.899E-04  (6.734E-07)  1.944E-04

 1  2  2.840E-04  (9.285E-07)  2.890E-04

 4  5  4.242E-03  (4.917E-06)  3.951E-03
 3  5  6.125E-03  (6.625E-06)  5.707E-03

 2  5  7.043E-03  (5.910E-06)  6.534E-03

 3  4  5.607E-02  (6.789E-06)  5.314E-02

 2  3  6.596E-02  (8.465E-06)  6.250E-02

 2  4  8.381E-02  (8.866E-06)  7.960E-02

 3  1  4  5  4.898E-08  (4.075E-10)  5.299E-08

 1  2  5  1.161E-07  (9.284E-10)  1.260E-07

 1  3  5  1.810E-07  (1.433E-09)  1.987E-07

 1  2  3  1.783E-06  (1.214E-08)  1.954E-06

 1  3  4  2.139E-06  (1.390E-08)  2.366E-06
 1  2  4  1.093E-04  (3.662E-07)  1.123E-04

 3  4  5  1.505E-03  (1.805E-06)  1.409E-03

 2  4  5  1.894E-03  (2.180E-06)  1.776E-03
 2  3  5  2.373E-03  (2.259E-06)  2.218E-03

 2  3  4  3.060E-02  (2.782E-06)  2.929E-02

 4  1  3  4  5  1.461E-08  (1.037E-10)  1.438E-08
 1  2  4  5  2.924E-08  (1.963E-10)  2.938E-08
 1  2  3  5  3.392E-08  (2.345E-10)  3.427E-08

 1  2  3  4  9.502E-07  (5.611E-09)  1.032E-06
 2  3  4  5  5.155E-04  (7.543E-07)  4.931E-04

 ^Simulated averages (with std errors) are based on 10,000 iterations. See Appendix
 C for the simulation procedure.

 and X5. The reason that X4 was included before Xi or X3 is less clear, and
 one has to consider the trade-off between some of the distances in (-2.7594σι,
 0.8203σ2, 0.8741σ3, 0.7632σ4, 1.966as), the correlations, and the regression coef-.
 ficients in the non-centrality of the conditional likelihood. Nevertheless, the null
 likelihoods of the first three subgroups under pi = 3 are fairly close.

 According to our procedure in Section 2.1, { Αι}, {Αι, A5}, {Αχ, A4, A5},
 and {Ai, A3, A4, A5} are first selected (for each pj in Table 1). Since Ai and
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 X$ appear in almost all of the sub-sets, they are (correctly) identified as the
 out-of-control variables.

 We would like to point out that the ranking of the variables based on our
 conditional likelihood approach may be different from that obtained using the
 marginal T2 statistic (Mason, Tracy, and Young (1995)) and z-statistic (Hawkins
 (1991)) for each individual variable. This is mainly because their methods do
 not assume that an overall out-of-control condition existed; hence, all their non
 centralities were assumed to be zero. We are interested in the identification

 problem when Hq : μ = μο is rejected.

 3.2. Identifying out-of-control variables for Case (A)

 Since our method for Case (A) can easily be illustrated in terms of shifts
 in means, we define the parameter A = μ — μο = (Δ^1)',..., Δ^')' and the
 hypothesized shifts Δ* ξ μ* — μο = (Δα^ ,..., Δα )'. Then, Haj can be
 rewritten as Haj : A^ = Aa"'. Because Δ* is only a hypothesized vector
 pre-specified by the user before the process monitoring in Phase II begins, it is
 possible that the process shifts in a direction different from the Δ* during Phase
 II. To study the ability of the proposed method to detect out-of-control mean(s),

 let μα = {μίϊ* ,·■■■, μα * )' be the actual out-of-control mean and Δα = μα — μο =

 (Δ<1} ,..., AÎk) )' be the actual shift.
 We use the example from Section 3.1 to illustrate and evaluate our method.

 With Δα = (2.5σι, 0,0, 0,0)' and pj = 1, we simulated a random sample from the
 out-of-control process Νε,(μα, Σ), with μα = μο + Aa, to obtain X = (23.19104,
 10.53652,13.89620,11.01731,9.57183)' with t2 = 17.99087 > ig(0.05) = 14.3568.
 Hence, Hq was rejected. Here μο and Σ are given in (3.1) and (3.2), respectively.
 First, we assume the pre-specified shift is the same as the true shift, Δ* = Δα

 For pj = 1, the individual conditional likelihoods, ij(Haj | Ha), for X\ to X5 are:
 0.31519, 0.25097, 0.26626, 0.21544, and 0.15556, respectively.

 From these likelihoods, Ha 1 : Δ^1) = 2.5σι for Αι is first and correctly
 identified by our sample as the most likely sub-group alternative. Furthermore,

 since Aa ' = 0 for j = 2,..., 5, the sub-group alternative Haj : A^ = 0 (which
 is Aa^), j = 2,..., 5, should be true. Indeed, they also receive high £j values.
 So, by confirming that X2 to X5 are in-control, we are able to single out X\ as
 the out-of-control variable. We look to see if we still can detect X\ when the

 pre-specified shift is Δ* = (0,2.5σ2,0,0,0)' φ Aa. Because the true mean shift
 is Δα = (2.5<τι, 0,0,0,0)', Ha\ : Δ^1) = 0, and Ha2 : Δ(2) = 2.5σ2 are expected
 to be the two least likely alternative hypotheses. Indeed, the £j{Haj | Ha)
 values for Xx through A5 are 0.00011, 0.03088, 0.31536, 0.25647, and 0.17074,
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 respectively. These values indicate that A3-A5 are most likely to be in-control
 and X2 is unlikely to be out-of-control. Again, we are able to detect X\ as the
 out-of-control variable.

 This example illustrates our method with only one sample. To extend it, we

 also considered Δα = (2.5σι, 0,0,0,2.Sus)' with shifted means in both X\ and A5.

 We simulated 500 random samples, each of size of 1, from Νζ(μο + Δα, Σ). Note

 that for a pre-specified Δ*, each of the 500 simulated samples gives Cf = 10 ij
 values for comparison if pj = 2. Assume Δ* = (2.5σι, 2.5a2,2.5σ3,2.5σ4,2.5us)'.
 Based on the ^-values, #a( 1,5) : (ΔΜ,Δ(5)) = (2.5σι,2.5σ5) was first and cor
 rectly picked as the most likely alternative in 90.2% of the 500 simulated samples.

 If Δ* = (0,0,0,2.5σ4,0)', our method first identified #α(2,3) : (Δ^2\ Δ^3^) = (0,0)
 as the most likely sub-group alternative in 86.6% of the 500 simulated cases.
 This result is reasonable because the true and hypothesized means are equal for
 (A2,A3); thus, our methods eliminated X2 and A3 as out-of-control variables.
 Other alternative hypotheses for pairs of two variables were considered unlikely,
 because their hypothesized shift vectors were not equal to the respective true

 shift vectors. For example, the ij values of #0(1,4) : (Δ1#,Δ1#) = (0,2.5σ4),
 #o(2,4) : (Δ(2),Δ(4)) = (0,2.5σ4), and #α(4)5) : (Δ(4\Δ(5)) = (2.5σ4,0) were
 ranked first in only 0.2%, 0.0%, and 0.0% in the 500 simulated cases, respec
 tively. From this, we see that A4 is unlikely to be out-of-control, and we again
 identify the out-of-control variables X\ and A5. Yen (2008) has conducted a more

 extensive simulation study and found that our method is effective in identifying

 out-of-control variable(s) in all scenarios considered.

 Appendix A: Proof of Theorem 1

 Part (i) follows immediately from Anderson (2003, p.143). Next, we find

 the distribution of T| | {(A^,Sr^u) = s#,n)}. Since (Theorem
 3.3.9 of Gupta and Nagar (2000))

 <Sr,21 I {Sr,u = sh,h} ~ Α9ΐ;Ρ1(Σ2ΐΣ111ββιιι,-γΣ22·ι <2> «λ,ιι),

 we have

 SR,2iS^n(xW - 4") I = (iC'.lg', ««,„)}
 ~ N*(EaiEri'B.iKRii^1' " Α"). ^Fr^Sa-i), (A.1)

 with ί2 = (N/(N + 1))(χ(χ) — — Furthermore, since A, Xr,
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 and Sr are independent, from (A.l) and the fact that

 (X<2> - X<?>) I {(X<>>, 4") =
 A + 1

 ~ Nqi (μ(2) - μί,2) - Σ21Σ-V1) - - (μ^ - μ™)), -fi-Vn-l)

 we have

 ((X'i»-^))-S«,aSJ1u(Jr<1)-41,))|{(-X'(1,.4I).SRii) = (®(1).41).'«,ii)}

 Ν,Λβ™- Mo") - Σ2ΐΣΓ,1(μ<1> - rf>), ~(1 + ^^<5)222.,). (A.2)

 From (A.2), Anderson (2003, p.143), and the fact that Sr,221 ~ Wqi(N — pi —
 1, (1/(A — 1))Σ22·ι) is independent of (5r,21, <5β,ιι)> the conditional distribution

 of TfW = TiJil + tj/iN-l)), given (Χ^,^,^λ,π) = (#, zgVsAn)>
 is a non-central [(AT — l)qi/(N — p)]Fqi,N-p,\2 distribution with non-centrality
 λ2 as given in the theorem. Since this conditional distribution depends on

 (ajWjiCj^jSj^ii) but through t\, it is also the conditional distribution of
 given t\, so we have proved Theorem 1.

 Appendix B: Approximation to Expectation in (2.4)

 From Theorem l(ii), the integrand in (2.4) can be written as

 qi/2-Ι+β
 e—λ2/2 « {\2/2f {f-t\)/[(N-l){l+tV{N-l))\
 A — 1

 3=0 £(^p,f +β)βϊ 1 +
 t2-t  2

 (N-l)(l+t{/(N-l))
 (Ν—ρι)/2+β \+t\/(N-l)

 - c-(N-\)(X-\^/\2(N-\+th} (N ~ 1 + tï)N/2
 (Α - 1 + t2)NI2

 OO

 X  v ((A - 1)(λ - Λι)/2)^(ί2 - «2)91/2-1+/» (A - 1 + ί2)-Ρ/2-' 2^ FK(N-n\/9. η,/9 4-/91/91 t/V_ 1 4-/21-Pl/2+θ '
 0=0

 where

 £((A - p)/2,91/2 + /9)/3! (A - 1 + «2)-Ρχ/2+/9 '

 r((A-p)/2 + ft/2 + )9)

 r((A-p)/2)r(y2 + /?)'
 B(V-I+^)1"=X_ Ι"1Γ1 (1 (B'2)

 We find the asymptotic expansion in A-1 for (B.l) by finding the asymptotic
 expansion for each factor in (B.l).

 We need the following result to derive several asymptotic expansions.
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 Lemma B.l. If g{x) — Yfk=i<^kx k {1 < m < oo), then exp(g(x)) = Yl'jLo
 (m)x~3, where β3 's satisfy the following recursive relation:

 mill (j,m)

 β0(m) = 1, (τη) = - ka^j-kim^x-3, j = 1,2,.... (B.3)
 J fe=o

 Note that the /3j's depend on m only through the number of terms in the
 two sums in Lemma B.l. This m will be omitted and replaced by, if any, the
 variables (but not the fixed model parameters) affecting the values of /3j's. When
 m > 3, we have: βο = 1, β\ = ai, /?2 = 2α2 + a2, and βζ = 3a3 + 4aia2 + af.
 The /3j's can be computed rather easily because of the recursive relation in (B.3).

 Begin with the first term in (B.l). We note

 Λ — λχ l.rwi -t
 Λ oo Λ ,o

 P-^)[E(W]
 j=ο

 — — ~ W ~ ^ι)^ι(^· ~ ^i)J" 1 Ζ"J_V
 ~ 2 ^ 2 VjV7 '

 l=i

 and hence (from Lemma B.l),

 e_(XV—1)(λ—λι)/[2(ΛΤ—l+t?)] =6-(λ-λ1)/26ΣΓ=ι(1/2)(λ-λι)ί?(1-ί?)Λ-1(1/Ν)'=
 m

 = β-(λ-λι)/2^ β(ϊ)^Ν-ή + 0(AT-(m+1))), (Β.4)
 j 1=0

 with α*= (A - Ai)tf(l - φ*-1/2; /γ,'/φ = 1, 1 (ί^) = (λ - λι)φ2, and
 /5<"(φ = (λ - λ,)φΐ - φ/2 + ((λ - λ1)ίφ2)2.

 Next, using the Taylor series expansion for the log function, we obtain

 ι Λ αλδ7ν τ ^/4aw\ t
 log ί1 " jv) =-ί,ο+Σ(ττΓ)Λ'

 fc=l

 and, from Lemma B.l, we obtain
 1 *r τη

 (ι - |f) = e_b°( £ +0(lV-(-+1))), (B.5)
 J12=0

 where β^\α, bfs satisfy (B.3) with a*, = -bak+1 /(k +1). For example, β^'\α, b)

 = 1, /3^2') (a, fe) = —ba2/2, and β^\α,ά) = -2ba3/S + b2a4/A. For the second term
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 in (B.l), we now apply (B.5) to obtain:

 I = (N-1 + t2)~N/2 = N~n'2 ( 1 - 1 ~t2) ~N/2 (Ν — 1 +t2)^/2 V Ν )
 πι

 = N~N/2e^-t2)/2(^ Σ ~ -l/2)N~j2 + 0(lV-(m+1))), (B.6)
 J2=0

 where β{2){1 - ί2,-1/2) = 1, β[2\ΐ - ί2, —1/2) = (1 - ί2)2/4, and β{2\\ -
 t2, —1/2) = (1 — t2)3/3 + (1 — ί2)4/16. Similarly,

 (Ν — 1 + t2)N'2 = NN'2(l - l-^-)N'2
 πι 1

 = NN/2e-^~t2^2^ J2 β{£θ- - *1, ^N~h + 0(A^m+1))), (B.7)
 33=0

 (3) (2)

 with Pj3 s satisfying the same recursive relation as β·^ in (B.5); for example,

 ^3)(1 - t2,1/2) - 1, β[3\ΐ - t2,1/2) = -(1 - t2)2/4, and β{3\ΐ - t2,1/2) =
 -(1-ί2)3/3 + (1-ί2)4/16.
 Next, for the first term inside the summation in (B.l), we note that

 (<"-!)<*-A

 = (λ^ΑiyNej2((-iy*cf4)N-», (B.8)
 J4=0

 where C'j4 is the Binomial coefficient. If we define β^\β) = (—l)J'4Cj^fy'4</9,
 where indicator function ΙΗ<β = 1 for fy < β, and = 0 otherwise, (B.9) can be
 rewritten as (for all m)

 (^)V{ f; ^44)(/3)iV^4+iV-(m+1)}. (B.9)
 .74=0

 For (B.2), we use the asymptotic expansion of the log gamma function (An
 derson (2003, p.318) and Lemma B.l to obtain, for each β > 0,

 Τ(Ν/2-ρ/2+ς1/2+β) /Ν\<η/*+β
 r(JV/2-j>/2)  "(τ)«p(j:«^-* + 0(jv-(

 k=1

 = (y)9l/2+/?( Σ β$\β)Ν~ί5 + 0(Ν-^)),(Β.10)
 Α=ο
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 where ar = ατ(β) = [(-2)r/(r(r + l))](Br+1(-p/2) - Br+i((9i - ρ)/2 + /?))
 (5)

 and the β-J {β) satisfy the recursive relation in (B.3). Here, Br+1(·) is the
 Bernoulli polynomial of degree r+1 and order of unity defined by re'lT/(er — 1) =

 X]^=0(rr/r!)i?I.(h) (see Anderson (2003, p.318). For example,

 tf'W) = l,

 β[5\β) = ο, = ΙΑfy(^) - + ffl)

 = (|+«(|-Ρ + /5-1).
 /lf(/3) = 2a2 + al

 where

 w-l)·
 Therefore, we obtain the following asymptotic expansion:

 KV.f+<r
 = Γ(|+β)]"1(|)"/2+ί(^/ί<„5'(«Λί-Λ+0{Λί-("'+1>)). (Β.11)

 J5=0

 For the last ratio in (B.l), we note that

 (Ν - 1 + t2)pι/2'β = Νρι/2-β (l - \^_γι,2~β
 τη

 = βζ](^,β)Ν-^ + 0(AHm+1))), (Β.12)
 j6=0

 where β^'s satisfy (B.3) with ak = -(1 - t2)k(pi/2 - β)/k. For example,
 /?<jV,/3) = 1, β[6\ί2,β) = (1 t2)(p\/2i β), and β^(t2,β) = (l-t2)2(Pl/2
 β)(ρι/2 - β - 1). Similarly,

 (Ν — 1 + ί\)-ρΙ2~β = Ν-ρ'2~β(ΐ - ΙζΑγρ/2~β
 m

 = Ν-ρ/ΐ-β(^ £ ^(ί?, 0)ΛΓ·>'7 + 0(Ν-^+ιγ, (Β.13)
 J7=0
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 with ak = (1 - i\)k{p/2 + β)/Η. For example β^\ί\,β) = 1, β^\ί\,β) =
 (! - ^i)(p/2 + β), and β%\ί\, β) = (1 - ίι)2(ρ/2 + 0)(ρ/2 + β + 1).

 Finally, using (Β.4) —(Β.13), (B.I) can be written

 00 ( (±1 -ζ-2 \ Qi /2 l-f-/3 171

 Σ { ΓΪ*/2+β)βΙ ^(^ί2)/2β-(Λ-Λι)/2(

 (^1) V( f; β£\β)Ν-ύ + ΛΓ(^)) χι

 J4=0
 m

 ,Λ7/9 /

 Λγ-αγ/2( ^(2)^ _ ^ -~)N~j2 + 0(Ν-^+^ή
 j2=0

 πι 1

 ΛγΛ72( ^(3)(1 _ ^ _)iV-j3 + o(7V-(m+1)))
 J3=0

 (y)9l/2+^( Σ β%\β)Ν~15 + θ(Ν~^ή
 15=0

 πι

 Ννι/2-β^ γ β^^,β)^^ +
 J6=0
 πι -ν

 ^-ρ/2-/^ ^ β{Τ)^β)Ν-07 + o(iV-(m+1))) I. (Β.14)
 J7=0

 If we group the powers of Ν, (B.l) and (B.14) become

 £ J Σ - t\-WS( 1 - 4, f )
 ^=0 O'l-t \-ji}=h

 xN~h + 0(iV-^m+1^)
 πι

 = 21 + 0(ΛΓ-('"+1,)> (B.15)
 /i=0

 where fisymp is given in (2.6). We need to note that the summation in (2.6) is
 over all jl's such that their beta coefficients are different from zero. The beta's

 are easy to compute because they satisfy the recursive relation in (B.3). The
 fasymp's are also easy to calculate. As examples, /isymp and falymp are given in
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 (2.7) and (2.8), respectively, and

 f(2) = -(λ-λ!)/2+(ί?-ί2)/2y- /Χ - Χι\β (ηι/2+β)
 Jasymp Τ(ςι/2+β)β\ V 2 J

 x { (41}(*i) + 42)(1 - + 43)(1 - *i, 5)

 +#(/?) + 45)(/3) + βξ'\t2, β) + β{7){ί\,β))

 +β[1\ί2)( + β?\ι -12, -i) + β[3\ι - tl 1)

 +β{Α\β) + β[5\β) + β["\ί2,β) + β[7\ίΙβ))

 +Pf\l-t2,-\)fô\t2) + β?\ΐ-^~)

 +β[4\β) + β[5\β) + β[6\ί2, β) + β[7\ί2, β))

 +Μ3)(ΐ - *?> |)(/?ί1}(^) + Μ2)(ΐ -12, ~\)

 +β[4\β) + β[5\β) + β[6\ί2,β) + β(?\ίΙβ))

 +β[*\β)(β[ι\4) + β[2\ΐ-^,-1-)

 +β[3\ΐ - tl 1) + β[5\β) + β[6\ί2, β) + β[7\ί2, β))

 +β[5\β)(β[1\ί2) + β[2\ι-ί2,~)

 +β[3\ΐ - tl i) + /?ί4)(/3) + β[6\ί2, β) + β?\ίΙ β))

 +β[6\ί2,β)(β{1\ί2) + /?ί2)(1 - ί2, -^)

 +^ί3)(1 - ί2,1) + ^!4)(/3) + /?ί5)(/?) + Μ7)(ί?, /3))

 +/3Î7)(i2,/3)(/3Î1)(t2) + /3Î2)(l-i2,-i)

 +/?ί3)(1 - ί?, + β[4\β) + β{ι\β) + Μ6)(ί?, β)) }· (Β.16)

 Finally, we integrate (Β. 15) or (Β. 16) with respect to and Sr,η to obtain
 (2.5).

 Appendix C: Simulation Procedure for Table 1

 To obtain the simulated values of (2.4) in Table 1, we first note that fxw (x^1))

 and fT2(t2) in (2.4) are, respectively, the pdfs of Νρι(μ^·1\ Σ1Χ) and [((Ν —
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 l)p)/(N-p)\FPtN-p,x with λ = (N/(N+ 1))(μ-μ0)'Έ 1(μ-μ0). The function

 inside (2.4), fT2(*)^T2((t2 — if)/(1 + t\/(N — 1))) | if), can be obtained from The
 orem 1 (ii) with Λ2 = (Λ — λχ)/(1 + t\/(N — 1)), where Λχ = (Ν/(Ν + 1))(μ^' —

 μ^)'Σ^(μ^-μ^).
 To simulate the conditional expectation in (2.4), we took a random sample

 from xj^ ~ Νρι(μ§\ Ση/Ν) and Sr,u ~ WPl(N — l, Ση/(Ν-1)), respectively,
 and computed if = (N/(N + l))(x^^ — X^)'S^ii(a^ — xj^)· If this if was
 less than or equal to the given i2 value, we computed the value of fT2(*)iT2((t2 —

 if)/(l+if/(iV —1))) I if)/[l+if/(iV —1)] and, along with fx(i)(z(1)) and
 we obtained a value for (2.4). The non-centrality λ was estimated by the observed

 value of (Ν/(N + 1))(X — Xr)'S^1(X — Xr) when i2 was computed and an out
 of-control signal occurred. Since some of the parameters in these distributions

 depend on unknown μ = μο = ^ )', and Σ = (Σ^·) in our
 example, they were estimated by the observed/given values of X = (xj^ , Χ'2'')',

 Xr = (X£} ,Xr^ )', and Sr — (Srjj), respectively. Note that, for Case (B)
 considered in Table 1, μ -1) = μ^1 , hence both were estimated by the given value

 ο'*!11·
 We repeated the procedure described above 10,000 times. The average and

 the standard error of the 10,000 simulated values of (2.4) for each case are given
 in Table 1.
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