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a b s t r a c t

To assess a product’s reliability for subsequent managerial decisions such as designing an extended warranty

policy and developing a maintenance schedule, Accelerated Degradation Test (ADT) has been used to obtain

reliability information in a timely manner. In particular, Step-Stress ADT (SSADT) is one of the most commonly

used stress loadings for shortening test duration and reducing the required sample size. Although it was

demonstrated in many previous studies that the optimum SSADT plan is actually a simple SSADT plan using

only two stress levels, most of these results were obtained numerically on a case-by-case basis. In this paper,

we formally prove that, under the Wiener degradation model with a drift parameter being a linear function of

the (transformed) stress level, a multi-level SSADT plan will degenerate to a simple SSADT plan under many

commonly used optimization criteria and some practical constraints. We also show that, under our model

assumptions, any SSADT plan with more than two distinct stress levels cannot be optimal. These results are

useful for searching for an optimum SSADT plan, since one needs to focus only on simple SSADTs. A numerical

example is presented to compare the efficiency of the proposed optimum simple SSADT plans and a SSADT

plan proposed by a previous study. In addition, a simulation study is conducted for investigating the efficiency

of the proposed SSADT plans when the sample size is small.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Continued advances in manufacturing technology, coupled with

consumer desire for high quality products, have prompted the in-

dustry to design and manufacture products that can operate without

failure for years. However, for such highly reliable products, it is not an

easy task to assess the product reliability within short test durations

because sufficient lifetime data are generally required to precisely es-

timate product’s lifetime (failure time, time-to-failure) distribution.

Precise reliability estimation is an important part of subsequent man-

agerial decisions such as determining the burn-in time (Sheu & Chien,

2005; Tsai, Tseng, & Balakrishnan, 2011; Ye, Shen, & Xie, 2012), es-

tablishing a warranty or maintenance policy (Chien, 2008; Jung &

Park, 2003), or pricing extended warranties. To increase the likeli-

hood of observing failures, Accelerated Life Test (ALT) is commonly

used by exposing and testing products under a higher stressed con-

dition (e.g., higher temperature, voltage, pressure, vibration, electric
∗ Corresponding author. Tel.: +886 4 2632 8001x15501.

E-mail addresses: chhu@mail.ncku.edu.tw (C.-H. Hu), mylee@pu.edu.tw (M. Lee),
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t

a

h

c

http://dx.doi.org/10.1016/j.ejor.2014.09.003

0377-2217/© 2014 Elsevier B.V. All rights reserved.
urrent, etc.). Seo, Jung, and Kim (2009) proposed accelerated life test

ampling plans satisfying producer’s and consumer’s risk require-

ents for deciding the lot acceptability. However, for many highly

eliability products, it might still be difficult to obtain enough failure

ata with short test duration even if an ALT is used. For products like

hese, an Accelerated Degradation Test (ADT) provides an alternative

ffective tool to estimate the lifetime. ADT has been successfully ap-

lied to many modern products like Light-Emitting Diodes (LED), as

n the study by Pan and Crispin (2010).

In an ADT, units are exposed to a relatively severe environment.

owever, in addition to collecting exact failure time data, measure-

ents of a certain product Quality Characteristic (QC) are recorded

t various inspection times. The QC usually degrades (or increases)

ver time and the lifetime of the product is normally related to the

evel of the QC. For example, the life of an alloy can be defined when

ts crack (the QC) reaches size 1.6 inches (Meeker & Escobar, 1998).

he life of a certain self-regulating heating cable is related to its resis-

ance (Whitmore & Schenkelberg, 1997). For some elastomers, which

re critical materials for hoses and dampers, the life is related to its

ardness measure (Elsayed, 2012).

Since the QC of a product degrades over time, the product’s life

an then be defined as the first-passage time when the QC crosses a
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re-specified threshold. ADT data normally consists of measurements

f the QC at each measuring time under different stress levels and pos-

ible failure times. After ADT data is collected, a statistical model is

equired for analyzing the observed degradation data and to estimate

he product’s lifetime under use condition. There are many different

odels in the literature for fitting a degradation path; for example,

he mixed effects nonlinear regression model (Lu & Meeker, 1993;

hou, Gebraeel, & Serban, 2012), the Gamma process model (Tsai

t al., 2011; Tseng, Balakrishnan, & Tsai, 2009), the inverse Gaus-

ian process model (Wang & Xu, 2010), the linear and exponential-

ased degradation model (Si, Wang, Chen, Hu, & Zhou, 2013), and the

iener process model (Doksum & Hoyland, 1992; Lee & Tang, 2007).

i, Wang, Hu, and Zhou (2011) provided a review on many stochastic

odels for estimating the remaining useful life. In this paper, we con-

ider the Wiener process to model the degradation path of a product’s

C. Under this assumption, it is well-known that the product’s life

ollows an Inverse Gaussian (IG) distribution. The Wiener/IG model

as been used for many applications in a variety of studies. For ex-

mple, Sherif and Smith (1980) and Bhattacharyya and Fries (1982)

onsidered a fatigue failure model in which accumulated decay is

overned by a Wiener process. Doksum and Hoyland (1992) used a

ime-transformed Wiener process to model an accelerated degrada-

ion sample path. Doksum and Normand (1995) assumed biomarker

rocesses such as calibrated log CD4 blood cell counts were Wiener

rocesses in their HIV study. Whitmore and Schenkelberg (1997) also

sed a time-transformed Wiener process to model resistance of self-

egulating heating cables. Elwany and Gebraeel (2009) used a Brown-

an motion with positive drift and the IG lifetime distribution to obtain

conservative estimate of an operating component’s mean remaining

ife for subsequent managerial decisions. For other research efforts

sing the Wiener degradation model, see, for example, Whitmore,

rowder, and Lawless (1998), Padgett and Tomlinson (2004), Tseng,

ang, and Ku (2003), Tseng and Peng (2004), Balka, Desmond, and

cNicholas (2009), Gebraeel, Lawley, Li, and Ryan (2005), Park and

adgett (2005), Lehmann (2009), and Wang (2010).

Before an ADT is conducted, one needs to decide how the stress

evel (stress loadings) should be increased or decreased. Several

ypes of stress loading have been proposed in the literature includ-

ng Constant-Stress ADT (CSADT) and Step-Stress ADT (SSADT). For

CSADT, Yu and Tseng (1998) proposed a stopping rule for termi-

ating a degradation test. Park and Yum (1997) developed plans in

hich they determined the stress levels, the proportion of units allo-

ated to each stress level, and the measurement times such that the

symptotic variance of the Maximum Likelihood Estimate (MLE) of

he mean lifetime at the use condition is minimized. Typically, a test

lan is designed so that a precise estimate can be obtained. For other

eferences about CSADT, see Meeker and Escobar (1998), Yu (2003,

006), Wu and Chang (2002), and Lim and Yum (2011).

Recently, researchers have considered using some time-varying

tress loadings in order to further shorten test duration and reduce

he number of test devices and the sample size. SSADT is a special

ype of stress loading in which all units are tested together and the

tress level is increased step-wisely. When there are only two stress

evels (i.e., one change), the test plan is often referred to as a sim-

le SSADT plan. SSADT is commonly used because it is often easier

o administer than a general time-varying stress plan and has the

dvantage that only a few test units are needed. It has been shown

hat using step-stress stress loading can provide equivalent estima-

ion precision to that from other stress loadings (see Hu, Plante, &

ang, 2013; Liao & Elsayed, 2010). Further, Lee and Tang (2013) have

hown that there exist SSADT plans that can generate a Fisher infor-

ation matrix identical to that derived from a general stress loading

unction. Given these advantages of using SSADT, extensive studies

ave been conducted to obtain optimum SSADT plans. For example,

ang, Yang, and Xie (2004) designed a SSADT to minimize the total

xpected test cost, which is a function of sample size, test duration,
nd the number of inspections. Liao and Tseng (2006) provided SSADT

lans to minimize the variance of estimated p-percentile under a bud-

et constraint. Recently, Tseng et al. (2009) introduced a SSADT plan

inimizing the approximate variance of the estimated MTTF when

he degradation path follows a gamma process. Zhang, Jiang, Li, and

ang (2010) and Ge, Li, Jiang, and Huang (2011) have also provided

lgorithms to obtain SSADT plans for several different objectives. For

n overview of degradation test models, as well as design problems,

efer to Boulanger and Escobar (1994), Meeker and Escobar (1998),

elson (2005a, 2005b), and Yum, Lim, and Seo (2007).

Although extensive research efforts, including the articles cited

bove, have been devoted to obtaining optimal SSADT plans, most

f their results are based primarily on numerical studies. It is im-

ortant to mention that, in many of these research efforts, the nu-

erical results suggest that the optimum SSADT design is actually a

imple SSADT using only the minimum and maximum stress levels

ven when their objectives are quite different. In this paper, we for-

ally show that this result holds for many commonly used objective

unctions. Secondly, when focusing on designing a simple SSADT, the

ptimal allocations of inspection efforts are derived under various op-

imization criteria. The remainder of this paper is organized as follows.

n Section 2, we describe the accelerated degradation model used in

his paper and introduce the decision variables and constraints con-

idered in designing a SSADT plan. In Section 3, we derive the MLEs of

he model parameters and the Fisher information matrix. Using this

atrix, we show that for several commonly used objective functions,

he optimal SSADT plan is indeed a simple one. Optimal simple SSADT

lans are then derived in Section 4. In Section 5, a numerical example

s provided to compare the efficiency of a SSADT plan proposed by

previous study and the optimum plans proposed in this paper. A

imulation study is also conducted for investigating the efficiency of

ptimum SSADT plans when the sample size is small. Finally, con-

luding remarks and possible directions for future study are given in

ection 6.

. The model and design for a SSADT

In this section, we introduce the notations and the model assump-

ions used throughout this paper. Decision variables, as well as con-

traints, for designing a SSADT plan are also discussed.

.1. A SSADT plan

.1.1. Decision variables

In a SSADT, all test units are exposed to an initial stress level

denoted by s1) and tested independently until a pre-specified stress

hange time. The stress is then adjusted to another level (denoted by

2) for the surviving test units. There may be more than one stress

djustment before the test is terminated. Under each stress level, si,

he surviving units are inspected and the degradation increments are

ecorded at pre-specified time points tij, j = 1, 2, . . . , li, i = 1, 2, . . . , k

here k is the total number of stress levels and li is the number of

nspections under si. We assume that under all stress levels, inspec-

ions are conducted at the same inspection time interval, �t. Hence,

he total test duration under si is li × �t. In this paper, we assume that

he sample size (N), the inspection interval (�t), and the stress levels

si, i = 1, 2, . . . , k) are pre-specified and the decision variables are the

umber of inspections under each stress level (i.e., li, i = 1, 2, . . . , k)

hen optimizing several of the commonly used objective functions

escribed in Section 3.

.1.2. Constraints in SSADT planning

To shorten the test duration, one of the most commonly used

onstraints is the time constraint. That is, a SSADT is terminated at

pre-specified time, since the total test budget is often limited in

ractice. The budget does affect not only the test duration but also the
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number of inspections. In this paper, we assume the total test time (T)

and hence the total number of inspections (L) are constrained, where

T =∑k
i=1 li × �t = L × �t. An optimum SSADT plan is obtained by

determining the number of inspections at each stress level to optimize

a particular objective with the presence of the constraints.

2.2. Model assumptions

We first assume that there exists an upper stress bound, sH , below

which the failure mode is the same as the one under the normal

use stress level, sU . That is, the applied stress should not be too high

so that the underlying failure mechanism may become different. For

a multi-level SSADT using stress levels si, i =1, 2, . . . , k, define the

standardized stress levels as

xi = si − sU

sH − sU
, for i = 1, 2, . . . , k,

and hence the range of xi ∈ [0, 1] , for all i.

We assume that the degradation path (possibly transformed) of a

unit, under a constant stress level, say xi, follows a stochastic Wiener

process (denoted as Wi(t)) with drift and dispersion parameters ηi >

0 and σ 2 > 0, respectively:

Wi(t) = ηit + σB(t), t ≥ 0. (1)

where B(·) is a standard Brownian motion. That is, Wi(t) is expected to

increase at a rate of ηi under xi. Being a continuous-time version of the

discrete-time cumulative sum (CUSUM) process, Wi(t) is the solution

for the stochastic linear growth model dWi(t) = ηidt + σdB(t).
Suppose there are N units available for a SSADT that uses stress

levels {x1, x2, . . . , xk} and the degradation path of each (surviving)

unit is measured every �t units of time. Because a Wiener process

has independent increments and is memoryless, the degradation in-

crements over a time interval depend only on the stress level over

the interval and its length, not the past history of the path. Hence,

the j-th (j = 1, 2, . . . , li) degradation increment on Wi(t) in (1) under

stress level xi for the h-th unit, yhij, follows a normal distribution

N(ηi�t, σ 2�t) independently with a Probability Density Function

(PDF):

f (yhij) = 1√
2πσ 2�t

e−(yhij−ηi�t)2
/2σ 2�t, for all

j = 1, 2, . . . , li, i = 1, 2, . . . k, and h = 1, 2, . . . N. (2)

Further, we assume that the relationship between the standard-

ized stress level xi and the corresponding drift parameter is linear.

The linear parameter–stress relationship is commonly used in many

studies about Accelerated Degradation Test; for example, see Tang

et al. (2004), Yu (2003) , and Lim and Yum (2011). Specifically, we

assume

ηi = α + βxi, (3)

where (α,β, σ 2) are unknown parameters to be estimated.

Under model (1), the product’s lifetime under use condition (x0 =
0), denoted by T0, can be defined as the first-passage time of the

degradation process (W0(t)) over a constant threshold, a (>0), i.e.,

T0 = inf {t ≥ 0|W0(0) = 0; W0(t) ≥ a} . (4)

It is well-known that T0 follows an inverse Gaussian distribution,

denoted by IG(μ,λ), with location (i.e., mean) and scale parameters

μ = a

α
and λ = a2

σ 2
. (5)

The PDF and the Cumulative Distribution Function (CDF) of T0 are

f (t) =
√

λ
3

e−(λ(t−μ)2/2μ2t), t > 0, (6)

2π t w
(t) = 	

⎛
⎝
√

λ

t

(
t

μ
− 1

)⎞⎠+ e(2λ/μ)	

⎛
⎝−
√

λ

t

(
t

μ
+ 1

)⎞⎠ , t > 0.

(7)

For a detailed introduction of the IG distribution, refer to Chhikara

nd Folks (1989) and Seshardi (1999). Based on the model assump-

ions in this section, we consider the optimum SSADT plans in the

ext section.

. Fisher information matrix and optimization criteria

Most reliability measures such as MTTF and IG lifetime percentiles

re functions of the model parameters, α, β , and σ . In this section, we

btain the MLEs of these parameters and derive the Fisher information

atrix, which is normally used to quantify the information about

he model and the parameters obtained from the data/experiment.

e then describe several existing criteria, all based on the Fisher

nformation matrix, for determining an optimum SSADT plan.

Based on assumptions (1), (2), and (3), the log-likelihood function

f the parameters from the N test units is

(α,β, σ ) = −NL
(
ln(2π)+ ln(σ 2)

)
2

−
N

k∑
i=1

(
li × ln(�t)

)
2

−
N∑

h=1

k∑
i=1

li∑
j=1

(yhij − (α + βxi)�t)2

2σ 2�t
(8)

here L =∑k
i=1 li is the total number of inspections. The MLEs of

arameters (α,β, σ 2) can be obtained by setting the first partial

erivatives of (8) with respect to each parameter to 0 and solving

he equations jointly. We have

ˆ = 1

NT

⎛
⎝ N∑

h=1

k∑
i=1

li∑
j=1

yhij − β̂N�t

k∑
i=1

xili

⎞
⎠ , (9)

ˆ =

(
N∑

h=1

k∑
i=1

li∑
j=1

yhij

)(
k∑

i=1

xili

)
− L

N∑
h=1

k∑
i=1

li∑
j=1

xiyhij

N�t

⎡
⎣( k∑

i=1

xili

)2

− L
k∑

i=1

x2
i
li

⎤
⎦

, (10)

ˆ 2 = 1

NL

N∑
h=1

k∑
i=1

li∑
j=1

(yhij − (α̂ + β̂xi)�t)
2

�t
. (11)

In models that meet standard regularity conditions (including

he model presented in this paper), the large-sample asymptotic

ariance–covariance matrix of these MLEs is the inverse of the Fisher

nformation matrix (Ma & Meeker, 2008). The Fisher information ma-

rix, I(α,β, σ ), is obtained by taking the expected values of the neg-

tive second derivatives of the log-likelihood function in (8) with

espect to the parameters, resulting in:

(α,β, σ ) = N

σ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k∑
i=1

li�t

k∑
i=1

xili�t 0

k∑
i=1

xili�t

k∑
i=1

xi
2li�t 0

0 0 2

k∑
i=1

li

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

here N is the total sample size.
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Since the asymptotic variance–covariance matrix of the MLEs

s the inverse of the information matrix, many optimal SSADT de-

ign criteria are based on (12) if the goal of conducting an exper-

ment is to estimate the model parameters (e.g., MTTF) or their

unctions (e.g., lifetime percentiles). We will show that the op-

imum multiple k-level SSADT plan will degenerate into a sim-

le SSADT plan using only the minimum and the maximum stress

evels for several optimization criteria. Before proceeding further,

e briefly review the definitions of some commonly used crite-

ia based on the discussion in Ng, Balakrishnan, and Chan (2007),

s follows.

[C1] Maximize the determinant of the Fisher information matrix

(D-optimality). D-optimality is one of the most popular design

criteria used for designing an ALT/ADT. The asymptotic covari-

ance matrix of the MLEs of the model parameters is propor-

tional to the inverse matrix of the Fisher information matrix.

As a univariate measure of overall variability, the determinant

of this inverse matrix is often used and is called the gener-

alized variance (Johnson & Wichern, 2007). Minimizing this

determinant is equivalent to maximizing the determinant of

the original Fisher information matrix, and hence the criterion

of the D-optimality. Furthermore, the volume of a joint confi-

dence region for all model parameters is inversely proportional

to the square root of the determinant of the Fisher information

matrix (Meeker & Escobar, 1998). Hence, by maximizing the

determinant of the Fisher information matrix, we obtain the

smallest volume for the Wald-type joint confidence region and

thus the highest join precision of the model parameter estima-

tors (Han & Ng, 2013). For more details, see Nalimov, Golikov,

and Mikeshina (1970) and Montgomery (2013).

[C2] Minimize the asymptotic variance of the estimated MTTF at

use condition, x0 = 0. MTTF at use condition is an important

measure of a product’s reliability. Criterion [C2] focuses on

the asymptotic variance of the MLE of this MTTF. In our case,

the MTTF under x0 is a/α (see (5)), the MLE is a/α̂, and fol-

lows a normal distribution, N
(
a/α, Var(a/α̂)

)
, asymptotically.

The asymptotic variance can be obtained by using the Delta-

method (Meeker & Escobar, 1998), pages 619–620), i.e.,

Var
( a

α̂

)
=
[
− a

α2
0 0

]
I−1(α,β, σ )

[
− a

α2
0 0

]′
.

[C3] Minimize the trace of the first-order approximation of the

variance–covariance matrix of the MLEs of the model param-

eters (A-optimality). Unlike [C1], where one uses the determi-

nant of the asymptotic covariance matrix of MLEs for the model

parameters as a univariate measure of overall variability, [C3]

uses the trace. Hence, A-optimality criterion minimizes the

total variance of the parameter estimates, which is also the

sum of the eigenvalues of the inverse of the Fisher information

matrix (Han & Ng, 2013).

[C4] Minimize the asymptotic variance of the estimated p-th per-

centile (Var(t̂p)) of the failure time distribution (i.e., the IG dis-

tribution) at use condition x0. In addition to the MTTF in [C2],

percentiles of the product’s lifetime distribution at use condi-

tion are other important reliability measures to be estimated

(Liao & Tseng, 2006). Nelson (2005a, 2005b) also mentioned

that, among various optimization criteria, this is the criterion

used in most references when developing ALT plans. Using the

Delta-method, the variance of the estimated p-th percentile

can be expressed as (Lee & Tang, 2013)

Var(t̂p) =
[

∂tp

∂α
0

∂tp

∂σ

]
I−1(α,β, σ )

[
∂tp

∂α
0

∂tp

∂σ

]′
,

where
∂tp

∂α
= 2a

σ 2
e2aη/σ 2

	

(
−
√

a2

tpσ 2

(
ηtp

a
+ 1

))
f −1(tp),

∂tp

∂σ
=
(

2a

σ 2
√

tp

φ

(√
a2

tpσ 2

(
ηtp

a
− 1

))

− 4aη

σ 3
e2aη/σ 2

	

(
−
√

a2

tpσ 2

(
ηtp

a
+ 1

)))
f −1(tp),

whereφ(·)and 	(·)are the PDF and CDF of the standard normal

distribution; and f (·) is the PDF of IG(a/η, a2/σ 2) in (6).

For each of the four objectives, we investigate the optimum SSADT

lan in the next section.

. Optimum SSADT plan

In this section, we first show that for each criterion described in

ection 3, a multi-level SSADT plan, when optimized, degenerates to a

imple SSADT plan. This result establishes a rationale for considering

simple SSADT. Then, we consider the design problem of a simple

SADT plan and present the optimal allocation of inspections at each

tress level for different criteria.

.1. Degeneration of an optimum multi-level SSADT plan

In this section, by considering the decision variables (l1, l2, . . . , lk),
s well as the constraints (fixed �t, L, and T = L × �t), we formally

rove this observed phenomenon for the objective functions consid-

red in Section 3. The following proposition summarizes our result:

roposition 1. If a product’s quality characteristic follows the Wiener

egradation process in (1) and the parameter–stress relationship is lin-

ar (satisfying (3)), a multi-level SSADT plan using stress levels x1 < x2

· · · < xk is reduced to a simple SSADT plan using only the minimum

nd maximum stress levels, x1 and xk, when optimized with respect to

ach of the criteria, [C1]–[C4], given in Section 3.

Before proceeding to proving this proposition, we first present the

ollowing lemma which will be used in the proof.

emma 1. Let X be a discrete random variable with finite pos-

ible outcomes (x1, x2, . . . , xk) where x1 < x2 < · · · < xk. For every

robability allocation (p1, p2, . . . , pk) where pi = Pr(X = xi) f or all i =
, 2, . . . , k and

∑k
i=1 pi = 1, one can find a probability allocation

p′
1, 0, . . . , 0, p′

k
) (i.e., assigning probabilities to the maximum and mini-

um outcomes,x1andxk) that results in the same expected value but the

ariance or the second moment of X using (p′
1, 0, . . . , 0, p′

k
) is greater

han or equal to the one with (p1, p2, . . . , pk). The inequality is strict if

ny of p2, . . . , pk−1 is not zero.

roof. For a given (p1, p2, . . . , pk), define (p′
1, p′

k
) = (p1 +∑k−1

j=2

jqj, pk +∑k−1
j=2 pj(1 − qj)) where 0 < qj < 1 is the percentage satis-

ying xj = x1qj + xk(1 − qj), for j = 2, . . . k − 1. The existence of such

j’s is guaranteed because we assume x1 < x2 < · · · < xk. Since the

quare function is strictly convex, we have xj
2 < x1

2qj + xk
2(1 − qj),

or j = 2, . . . k − 1, by Jensen’s inequality, and consequently

1p′
1 + xkp′

k = x1

⎛
⎝p1 +

k−1∑
j=2

pjqj

⎞
⎠

+ xk

⎛
⎝pk +

k−1∑
j=2

pj(1 − qj)

⎞
⎠ =

k∑
i=1

xipi,

k∑
i=1

xi
2pi ≤ x1

2p1 +
⎛
⎝k−1∑

j=2

pj

(
x1

2qj + xk
2(1 − qj)

)⎞⎠+ xk
2pk

= x1
2p′

1 + xk
2p′ .
k
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Therefore, (p1, p2, . . . , pk−1, pk)and (p′
1, 0, . . . , 0, p′

k
)have the same

expected value but the second moment of X (and thus the vari-

ance) using (p′
1, 0, . . . , 0, p′

k
) is greater than or equal to the one with

(p1, p2, . . . , pk) as claimed. The inequality above is strict if any of

p2, . . . , pk−1 is not zero.

Based on Lemma 1, we have the following corollary.

Corollary 1. For a positive discrete random variable X with finite possi-

ble outcomes(x1, x2, . . . , xk) where 0 < x1 < x2 < . . . < xk, to maximize

E(X2)/E(X), Var(X)/E(X), or
√

Var(X)/E(X) (the coefficient of variation),

one should assign probabilities to x1 and xk only.

The proof of Corollary 1 follows the conclusion from Lemma 1

directly, and, therefore, it is omitted here. Lemma 1 and Corollary 1

give a similar conclusion regarding the allocation of probabilities to

maximize certain variation measurements. That is, to maximize ei-

ther the variance or the coefficient of variation of a discrete random

variable, one should assign probabilities to the minimum and max-

imum outcomes. In our original non-linear optimization problem of

designing a SSADT plan, we consider k decision variables (l1, l2, . . . , lk)

with
∑k

i=1 li = L. However, when the total number of inspections (L)

is fixed, the original problem can be transformed by considering the

proportions of inspections under each stress level, l1/L, l2/L, . . . , lk/L.

These inspection proportions will be treated as probabilities in

Lemma 1. Based on these results, we now present the proof of

Proposition 1.

Proof of Proposition 1. For [C1]: For fixed N, L =∑k
i=1 li, and the

censoring time, T =∑k
i=1 li�t, the determinant of matrix (12) is

2N3L3�t2

σ 6

⎛
⎜⎝ k∑

i=1

xi
2

(
li
L

)
−
⎛
⎝ k∑

i=1

xi

(
li
L

)⎞⎠
2
⎞
⎟⎠ ,

where li/L is the relative inspection frequency under stress level xi.

Define a discrete random variableX with finite possible outcomes

xi and let pi ≡ Pr(X = xi) = li/L for i = 1, 2, . . . , k. When N, L, and �t

are fixed, the determinant above is proportional to the variance of X.

The original problem is then to maximize the variance of X. Thus, by

Lemma 1, for an arbitrary given allocation of inspections (l1, l2, . . . , lk),
there exists another allocation (denoted as (l′1, 0, . . . , 0, l′

k
)) that yields

same expected value but equal or larger variance. Therefore, we have⎛
⎜⎝ k∑

i=1

xi
2

(
li
L

)
−
⎛
⎝ k∑

i=1

xi

(
li
L

)⎞⎠
2
⎞
⎟⎠

≤
((

x1
2

(
l′1
L

)
+ xk

2

(
l′
k

L

))
−
(

x1

(
l′1
L

)
+ xk

(
l′
k

L

))2
)

.

The inequality above is strict if any of (l1, l2, . . . , lk) is not zero.

That is, any multi-level, non-simple SSADT cannot be optimal. Thus,

the optimum SSADT plan is a simple SSADT as claimed.

For [C2]: The inverse of (12) is

σ 2

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k∑
i=1

xi
2 li�t

(
k∑

i=1

li�t

)(
k∑

i=1

xi
2 li�t

)
−
(

k∑
i=1

xili�t

)2

−
k∑

i=1

xili�t

(
k∑

i=1

li�t

)(
k∑

i=1

xi
2 li�t

)
−
(

k∑
i=1

xili�t

)2 0

−
k∑

i=1

xili�t

(
k∑

i=1

li�t

)(
k∑

i=1

xi
2 li�t

)
−
(

k∑
i=1

xili�t

)2

k∑
i=1

li�t

(
k∑

i=1

li�t

)(
k∑

i=1

xi
2 li�t

)
−
(

k∑
i=1

xili�t

)2 0

0 0 1

2
k∑

i=1

li

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
o the asymptotic variance of the MLE of MTTF is

a2σ 2

α4N�tL

⎛
⎜⎜⎜⎜⎜⎝

k∑
i=1

xi
2
(
li/L
)

(
k∑

i=1

xi
2
(
li/L
))−

(
k∑

i=1

xi

(
li/L
))2

⎞
⎟⎟⎟⎟⎟⎠ .

Hence, when N, L, and �t are fixed, minimizing this variance is

quivalent to maximizing

−

(
k∑

i=1

xi

(
li/L
))2

k∑
i=1

xi
2
(
li/L
) .

Consider the discrete random variable X as defined in the previous

roof. The optimization problem is to maximize (by choosing the

llocation of inspections)

− E(X)2

E(X2)
.

For an arbitrary given allocation of inspections (l1, l2, . . . , lk),
y Lemma 1, we can always find another allocation (denoted as

l′1, 0, . . . , 0, l′
k
)) using the minimum and maximum stresses that

ields the same expected value (say c) but the variance or second

oment is greater than or equal to the one with (l1, l2, . . . , lk). There-

ore,(
1 − c2

E(X2)

)∣∣∣∣
(l1/L,l2/L,...,lk/L)

≤
(

1 − c2

E(X2)

)∣∣∣∣
(l′1/L,0,...,0,l′

k
/L)

.

Furthermore, according to Lemma 1, the inequality above is strict

f any of l2, . . . , lk−1 is non-zero. That is, any multi-level, non-simple

SADT can be improved. Thus, a simple SSADT is optimal, as claimed.

For [C3]: Based on the variance–covariance matrix given in the

roof for [C2], the criterion [C3] is to minimize

σ 2

NL

⎛
⎜⎜⎜⎜⎜⎝

1

�t

k∑
i=1

xi
2
(
li/L
)+ 1

(
k∑

i=1

xi
2
(
li/L
))−

(
k∑

i=1

xi

(
li/L
))2

+ 1

2

⎞
⎟⎟⎟⎟⎟⎠ .

Following the same approach, the current optimization problem

s to choose an allocation that maximizes

1 − (E(X))2
/E(X2)

1 + 1/E(X2)
.

For an arbitrary allocation (l1, l2, . . . , lk), we can always find

l′1, 0, . . . , 0, l′
k
) which has an identical expected value (without loss

f generality, assume E(X) = c) but has equal or larger E(X2) value as

hown in the previous proof. Hence, for this objective function, we

ave

1 − c2/E(X2)

1 + 1/E(X2)

∣∣∣∣
(l1/L,l2/L,...,lk/L)

≤ 1 − c2/E(X2)

1 + 1/E(X2)

∣∣∣∣
(l′1/L,0,...,0,l′

k
/L)

.

Therefore, for any allocation of inspections, the objective function

alue is larger than or equal to the optimum simple SSADT plan when

sing the minimum and maximum stresses. The optimum SSADT plan

s thus a simple SSADT as claimed.

For [C4]: Based on the variance–covariance matrix given in the

roof for [C2], the criterion [C4] is to minimize
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ar(t̂p) = σ 2

NL

×

⎛
⎜⎜⎜⎜⎜⎜⎝
(

∂tp

∂α

)2
1

�t

k∑
i=1

xi
2
(
li/L
)

⎡
⎣( k∑

i=1

xi
2
(
li/L
))−

(
k∑

i=1

xi

(
li/L
))2
⎤
⎦

+ 1

2

(
∂tp

∂σ

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

Because both ∂tp/∂α and ∂tp/∂σ do not depend on li’s, following

he same approach used in the previous proofs, the current optimiza-

ion problem involves choosing an allocation that minimizes

k∑
i=1

xi
2
(
li/L
)

(
k∑

i=1

xi
2
(
li/L
))−

(
k∑

i=1

xi

(
li/L
))2

.

Hence, based on the discussion in the proof for [C2], the optimum

SADT plan is a simple SSADT that uses only the minimum and max-

mum stresses under criterion [C4]. �

emark. The results in Proposition 1 can be extended to cases where

he relationship between the drift level and the standardized stress

evel follows a general linear model, i.e., ηi = α + βg(xi), for some

onotone function g(·). This can be shown by renaming g(xi) as x′
i

nd our proof of the proposition follows for these new x′
i
s.

Notice that Lemma 1 together with the Proposition 1 provide an

mportant insight regarding the optimum design of a SSADT plan. That

s, a SSADT plan using more than two distinct stress levels or a simple

SADT plan using any of the intermediate (i.e., non-maximum or non-

inimum) stress levels cannot be optimal. This observation is useful

or searching for an optimum SSADT, since one needs to focus only on

imple SSADTs using the minimum and maximum stress levels. Based

n this observation, we derive the optimal allocation of inspection

fforts in a simple SSADT plan in the next section.

.2. Optimal simple SSADT plan

In Section 4.1, we have shown in Proposition 1 that for several com-

only used optimization criteria, the optimum multi-level SSADT

lan is a simple SSADT using the minimum and maximum stress lev-

ls. In what follows, we provide the optimal allocation of inspections

t each stress level in a simple SSADT plan for each criterion.

When using only the minimum and maximum stress levels (x1

nd xk), the information matrix (12) becomes

(α,β, σ ) = N

σ 2

⎡
⎢⎢⎣

l1�t + lk�t x1l1�t + xklk�t 0

x1l1�t + xklk�t x1
2l1�t + xk

2lk�t 0

0 0 2(l1 + lk)

⎤
⎥⎥⎦.

The only decision variable is the number of inspections under x1

i.e., l1) since we assume the total number of inspections is pre-fixed

L) (so lk = L − l1 if l1 is decided). The optimum allocation for each

riterion is given in the following proposition.

roposition 2. For each of the criteria proposed in Section 3, the opti-

um SSADT plan is given as follows:

(i) For [C1], the optimum plan assigns inspections: l1/L = lk/L = 1/2.

(ii) For [C2] and [C4], the optimum plan assigns inspections: l1/L =
1 − lk/L = xk/(x1 + xk).

(iii) For [C3], the optimum plan assigns inspections: l1/L = 1 − lk/L =
(xk

2+1)−
√

(xk
2+1)(x1

2+1)

xk
2−x1

2 .

roof. For (i): By the proof of Proposition 1 for [C1] and

emma 1, to objective function for criterion [C1] is to maximize
x1
2(l1/L)+ xk

2(lk/L))− (x1(l1/L)+ xk(lk/L))2. To facilitate our discus-

ion, let p1 = l1/L = 1 − lk/L. By taking the first derivative of the

bjective function with respect to p1 and setting the results zero,

t is straightforward to show that the maximum determinant of

he information matrix is reached by setting the proportions as

1/L = lk/L = 1/2. This conclusion is consistent with the lemma pro-

osed by Murthy and Sethi (1965). The optimum simple SSADT plan

hus commits half of the inspection efforts at each stress level.

For (ii): As discussed in proofs of Proposition 1 for [C2] and [C4],

he objective function is to maximize

− (x1(l1/L)+ xk(lk/L))2

x1
2(l1/L)+ xk

2(lk/L)
.

To facilitate our discussion, let p1 = l1/L = 1 − lk/L. The objective

unction becomes

− (x1p1 + xk(1 − p1))
2

x1
2p1 + xk

2(1 − p1)
.

Take the first derivative with respect to p1 and let the result equal

o 0, it is straightforward to show that the optimal value of l1/L is

k/(x1 + xk).
For (iii): As discussed in the proof of Proposition 1 for [C3], the

bjective function is to maximize(
x2

1p1 + x2
k
(1 − p1)

)− (x1p1 + xk(1 − p1))
2(

x2
1p1 + x2

k
(1 − p1)

)+ 1
,

here p1 = l1/L.

Similarly, by taking the first derivative with respect to p1 and

etting the result be equal to 0, we obtain p̂1 = (xk
2+1)−

√
(xk

2+1)(x1
2+1)

xk
2−x1

2 .

ince x1 < xk, the obtained p̂1 is always feasible because

=
(
xk

2 + 1
)−

√(
xk

2 + 1
)(

xk
2 + 1

)
xk

2 − x1
2

<

(
xk

2 + 1
)−

√(
xk

2 + 1
)(

x1
2 + 1

)
xk

2 − x1
2

<

(
xk

2 + 1
)−

√(
x1

2 + 1
)(

x1
2 + 1

)
xk

2 − x1
2

= 1. �

Based on Propositions 1 and 2, a simple SSADT plan uses the op-

imal allocation of inspections could generate the most efficient sta-

istical results. However, note that this research does not intend to

uggest that a simple SSADT is the best and only choice for designing

degradation experiment. An experimenter may need to use more

han two stress levels in order to verify whether the linear relation-

hip in (3) is valid. At times it could be beneficial to use more than two

tress levels to attain more flexibility with some loss of efficiency.

In the next section, we study a numerical example for compar-

sons of efficiency between an existing multiple steps SSADT and the

ptimal simple SSADT.

. A numerical example

Tseng and Wen (2000) proposed a numerical example analyzing

he degradation of a certain type of LED lamps. LED lamps are a key

omponent in contact image sensors used in fax machines, document

canners, copy machines, mark readers, and other office automation

quipments. The lifetime of an LED lamp is highly correlated with

ts light intensity (brightness). However, the light intensity degrades

ery slowly. Thus, it is difficult to use an ALT to assess the product’s

ifetime with few test units and limited test duration. To overcome

his issue, a SSADT with a time constraint was conducted to collect

imely degradation data for accessing the reliability of this product.

n Tseng and Wen’s study, temperature was chosen as the accelerated
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variable and five different levels of temperature were used in the ex-

periment. The used temperatures and the temperature change times

are as follows:

temperature

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

25 degrees Celsius
45 degrees Celsius
65 degrees Celsius
85 degrees Celsius
105 degrees Celsius

when 0 ≤ t < 1104 hours.
when 1104 ≤ t < 3120 hours.
when 3120 ≤ t < 5808 hours.
when 5808 ≤ t < 8110 hours.
when 8110 ≤ t < 9118 hours.

In this experiment, 22 LED lamps were tested under this SSADT

plan and the light intensities were measured every 168 hours ex-

cept for the first interval [0, 1104). Following the assumptions used

in Tseng and Wen (2000), we have sU = 25 degrees Celsius (use

condition), sH = 105 degrees Celsius (highest test temperature), and

N = 22. Therefore, the standardized stresses are

standardized temperature

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = 0.00
x2 = 0.25
x3 = 0.50
x4 = 0.75
x5 = 1.00

when s1 = 25 degrees Celsius;
when s2 = 45 degrees Celsius;
when s3 = 65 degrees Celsius;
when s4 = 85 degrees Celsius;
when s5 = 105 degrees Celsius.

Moreover, their allocation of inspections in this SSADT plan was(
l1, l2, l3, l4, l5

) ≈ (6.57, 12, 16, 13.70, 6
)
.

Some of these numbers are not integers because the original test

duration at each stress level may not be a multiple of 168 hours.

As an illustrative example, we modify the original SSADT plan by

rounding up the non-integer values and consider
(
l1, l2, l3, l4, l5

) =(
7, 12, 16, 14, 6

)
, L =∑5

i=1 li = 55. Later, results from the optimal de-

sign of SSADT are compared with those from this modified SSADT

plan. For more detailed experimental settings, as well as the graph of

the degradation paths of the 22 LED lamps, refer to Tseng and Wen

(2000).

5.1. Optimum step-stress accelerated degradation plans

Because the original five steps SSADT plan in Tseng and Wen

(2000) was not statistically optimal, Liao and Tseng (2006) obtained

optimal SSADT plans by minimizing the variance of the estimated p-th

percentile subject to a test budget constraint. They used a negative log

and a time scale transformation of the original standardized degrada-

tion paths so that the transformed paths would follow the Wiener/IG

distribution model as described in Section 2. For the parameter–stress

relationship, they considered the Arrhenius reaction rate model and

the estimated relationship between ηi and the temperature stress si

to be

η̂i = exp

(
5.3669 + −2546.7

273.16 + si

)
,

and the MLE of σ 2 to be 0.00082, as obtained from the data in Tseng

and Wen (2000). Another commonly used parameter–stress relation-

ship is the linear relation described in (3) (see Tang et al., 2004; Yu,

2003). To compare both relationships and stay consistent with our

assumption, we fitted a simple linear regression line for the esti-

mated η̂i from the Arrhenius reaction rate model and the standard-

ized stress levels xi within the range of the test temperature (from

25 degrees Celsiusto105 degrees Celsius) and obtained:

η̂i = 0.0212 + 0.2096xi.

The coefficient of determination, R2, is 97.3 percent , which sug-

gests that within the given range of temperature in this example, the

difference between the two models is not significant; they both pro-

vide a reasonable fit to the parameter–stress relationship and (3) may

be easier to interpret from a practical point of view.
From the fitted simple regression line and following the trans-

ormation used in Liao and Tseng (2006), we assume that the

arameters in the model described in Section 2 are (α̂, β̂, σ̂ 2) =
0.0212, 0.2096, 0.00082) and �t = 4.26. Furthermore, to calculate

ariances of the estimated MTTF and p-th percentile of the IG dis-

ribution under use condition, it is necessary to specify the value of

he threshold (a) so that the product is considered failed when the

iener degradation path crosses this threshold. Usually, the thresh-

ld for the brightness of an LED lamp is specified as 50 percent of

ts original brightness (Lee & Tang, 2007). Therefore, after a negative

og transformation, the threshold value for the assumed Wiener/IG

istribution model is −ln(0.5) = 0.693147.

Suppose 22 LED lamps are available for testing, the previous five

tress levels are to be used when conducting a SSADT and there are

5 inspections to be allocated into each stress level. Then, according

o Proposition 2 in Section 4, the optimal allocations of inspections

re: for [C1], we have (l′1, l′5) = (27.5, 27.5); for [C2] and [C4], we have

l′1, l′5) = (55, 0); and for [C3], we have (l′1, l′5) = (32.22, 22.78). Note

hat these numbers are calculated by multiplying the theoretical op-

imal proportions by 55 and thus the resulting allocations might not

e integers. Therefore, we use the nearest integers and require that

t least 20 percent of inspections be taken at both s1 and sk. For ex-

mple, if one would like to maximize the determinant of the Fisher

nformation matrix (under [C1]), we would conduct (27, 28) or (28, 27)

nspections at stress levels (25 degrees Celsius, 105 degrees Celsius),

espectively. If the goal is to estimate the MTTF or the 10th per-

entile of the IG distribution at 25 degrees Celsius ([C2] and [C4]),

hen we will allocate 44 inspections at 25 degrees Celsius and 11 in-

pections at 105 degrees Celsius. Finally, if the goal is to minimize

he trace of the variance–covariance matrix (under [C3]), then the

ptimal SSADT plan will have (32, 23) or (33, 22) inspections at stress

evels (25 degrees Celsius, 105 degrees Celsius), respectively.

To compare any given SSADT plans with the above optimal simple

SADT plan, we calculated the values of the objective function for each

SADT plan. In addition, we also computed the Relative Efficiency (RE)

f a SSADT plan to the corresponding optimal SSADT plans under [C1]

o [C4] as defined in Ng et al. (2007):

E(l1, . . . , l5)

= det(I) corresponding to the SSADT plan(l1, . . . , l5)

det(I) corresponding to the optimal SSADT plan for [C1]
,

E(l1, . . . , l5)

= Var(a/α̂) corresponding to the optimal SSADT plan for [C2]

Var(a/α̂) corresponding to the SSADT plan (l1, . . . , l5)
,

E(l1, . . . , l5)

= Trace(I−1) corresponding to the optimal SSADT plan for [C3]

Trace(I−1) corresponding to the SSADT plan(l1, . . . , l5)
,

nd

E(l1, . . . , l5)

= Var(t̂0.1) corresponding to the optimal SSADT plan for [C4]

Var(t̂0.1) corresponding to the SSADT plan (l1, . . . , l5)
.

Table 1 presents the results of comparisons between the optimal

SADT plans and the original SSADT plan of Tseng and Wen (2000).

For both [C1] and [C3], we rounded the optimal allocation of in-

pections to the two nearest integer solutions. Notice that the pro-

osed optimum SSADT plans have higher efficiency than the plan

rom Tseng and Wen (2000) under all criteria. For criterion [C4], the

mprovement in efficiency is not very significant. However, in the

ost extreme case, the optimum plan could improve the efficiency

y 67 percent (for [C2]). We also notice that the SSADT plan for [C3]

n Table 1 not only optimizes the criterion [C3] but also provides high
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Table 1

Comparisons between the SSADT plan used in Tseng and Wen (2000) and the optimal plans.

(l1 , l2, l3, l4, l5) Det(I) (RE) Var(a/α̂) (RE) Trace(I−1) (RE) Var(t̂0.1) (RE)

Original plan (7, 12, 16, 14, 6) 1.0337 × 1019 (0.3547) 1.4428 (0.3272) 2.7413 × 10−6 (0.4618) 0.0333 (0.9054)

[1] (27, 0, 0, 0, 28) 2.9147 × 1019 (1.0000) 0.7693 (0.6136) 1.2994 × 10−6 (0.9743) 0.0311 (0.9690)

(28, 0, 0, 0, 27) 2.9147 × 1019 (1.0000) 0.7418 (0.6364) 1.2878 × 10−6 (0.9831) 0.0311 (0.9718)

[2] and [4] (44, 0, 0, 0, 11) 1.8660 × 1019 (0.6402) 0.4721 (1.0000) 1.5319 × 10−6 (0.8265) 0.0302 (1.0000)

[3] (32, 0, 0, 0, 23) 2.8376 × 1019 (0.9735) 0.6491 (0.7273) 1.2661 × 10−6 (1.0000) 0.0308 (0.9813)

(33, 0, 0, 0, 22) 2.7991 × 1019 (0.9603) 0.6294 (0.7500) 1.2668 × 10−6 (0.9994) 0.0307 (0.9833)

Note: [i] implies the optimal SSADT plan for [Ci] where i = 1, 2, 3, and 4. RE refers to the relative efficiency between the proposed plan

and the corresponding optimal plan.
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E for other criteria. It may be practically beneficial to use this kind

f robust plan that could provide reasonable high RE for many opti-

ization criteria at the same time when one is not only interested in

particular objective function. In addition, even some SSADT plans

n Table 1 are obtained by rounding the theoretical optimal num-

ers of inspections to their nearest integer values, this rounding does

ot affect the efficiency significantly. Based on the results in Table 1,

n experimenter could gain significant improvement in efficiency by

sing the optimal number of inspections.

.2. Simulation study for small sample size

The objective functions, as well as the corresponding optimum

SADT plans, are all based on the asymptotic variance–covariance

atrix under the assumption of a large sample size. Therefore, it

s necessary to investigate the performance of the proposed opti-
Table 2

Theoretical asymptotic results for each SSADT plan under different sample sizes.

L (l1, l2, l3, l4, l5) Theoretical asymptotic results

Det(I) (RE) Var(a/α̂)

10 (2, 2, 2, 2, 2) [equally allocated] 2.2219 × 1014 (0.5000) 45.3524

(5, 0, 0, 0, 5) [1] 4.4438 × 1014 (1.0000) 30.2349

(8, 0, 0, 0, 2) [2] and [4] 2.8440 × 1014 (0.6400) 18.8968

(6, 0, 0, 0, 4) [3] 4.2660 × 1014 (0.9600) 25.1958

20 (4, 4, 4, 4, 4) [equally allocated] 1.7775 × 1015 (0.5000) 22.6762

(10, 0, 0, 0, 10) [1] 3.5550 × 1015 (1.0000) 15.1175

(16, 0, 0, 0, 4) [2] and [4] 2.2752 × 1015(0.6400) 9.4484

(12, 0, 0, 0, 8) [3] 3.4128 × 1015 (0.9600) 12.5979

30 (6, 6, 6, 6, 6) [equally allocated] 0.5999 × 1016 (0.5000) 15.1175

(15, 0, 0, 0, 15) [1] 1.1998 × 1016 (1.0000) 10.0783

(24, 0, 0, 0, 6) [2] and [4] 0.7679 × 1016 (0.6400) 6.2989

(18, 0, 0, 0, 12) [3] 1.1518 × 1016 (0.9600) 8.3986

Note: [i] implies the theoretical optimal SSADT plan for [Ci] where i = 1, 2, 3, and

Table 3

The average of 1000 simulated results from estimated Fisher information

L (l1, l2, l3, l4, l5) The average of each objective

Det(I) (RE) Va

10 (2, 2, 2, 2, 2) [equally allocated] 4.4187 × 1014 (0.4746) 16

(5, 0, 0, 0, 5) [1] 9.3113 × 1014 (1.0000) 4

(8, 0, 0, 0, 2) [2] and [4] 5.5262 × 1014 (0.5935) 2

(6, 0, 0, 0, 4) [3] 8.6273 × 1014 (0.9265) 3

20 (4, 4, 4, 4, 4) [equally allocated] 2.5004 × 1015 (0.5268) 2

(10, 0, 0, 0, 10) [1] 4.7463 × 1015 (1.0000) 1

(16, 0, 0, 0, 4) [2] and [4] 3.1459 × 1015 (0.6628) 1

(12, 0, 0, 0, 8) [3] 4.5689 × 1015 (0.9626) 1

30 (6, 6, 6, 6, 6) [equally allocated] 0.7376 × 1016 (0.5000) 1

(15, 0, 0, 0, 15) [1] 1.4753 × 1016 (1.0000) 1

(24, 0, 0, 0, 6) [2] and [4] 0.9550 × 1016 (0.6473)

(18, 0, 0, 0, 12) [3] 1.4166 × 1016 (0.9602)

Note: [i] implies the theoretical optimal SSADT plan for [Ci] where i = 1, 2
al SSADT designs when the sample size is only moderate or even

mall (which often occurs for newly developed products). A simula-

ion study is conducted here to demonstrate that the SSADT designs

resented earlier can also attain better performance than other SSADT

lans when the sample size is small.

To simulate random Wiener degradation paths for this

tudy, the following experimental settings are used: N = 3,

= 5, (x1, x2, x3, x4, x5) = (0, 1/4, 2/4, 3/4, 1), (α,β, σ 2) = (0.02121,

.2096, 0.00082), a = 0.6931, and the total number of inspection

L)= 10, 20, and 30 are used to represent small sample size scenarios.

or each value of L, we obtain the optimum SSADT plans according

o Proposition 2 and compare their results to an equally allocated

SADT plan. When the theoretical allocation is not an integer, we

ound it to the nearest integer as above. For each SSADT plan, we

imulate 1000 degradation data sets, each with N = 3 degradation

aths, and then calculate the MLEs of model parameters, as well as
(RE) 45.3524 (0.4167) Trace(I−1) (RE) Var(t̂0.1) (RE)

(0.4167) 8.4243 × 10−5 (0.6065) 1.3021 (0.9335)

(0.6250) 5.2163 × 10−5 (0.9795) 1.2527 (0.9704)

(1.0000) 6.1787 × 10−5 (0.8269) 1.2156 (1.0000)

(0.7500) 5.1093 × 10−5 (1.0000) 1.2362 (0.9833)

(0.4167) 4.2121 × 10−5 (0.6065) 0.6511 (0.9335)

(0.6250) 2.6081 × 10−5 (0.9795) 0.6263 (0.9704)

(1.0000) 3.0893 × 10−5 (0.8269) 0.6078 (1.0000)

(0.7500) 2.5547 × 10−5 (1.0000) 0.66181 (0.9833)

(0.4167) 2.8081 × 10−5 (0.6065) 0.4340 (0.9335)

(0.6250) 1.7388 × 10−5 (0.9795) 0.4176 (0.9704)

(1.0000) 2.0596 × 10−5 (0.8269) 0.4052 (1.0000)

(0.7500) 1.7031 × 10−5 (1.0000) 0.4121 (0.9833)

4.

matrix for each SSADT plan under different sample sizes.

function from 1000 simulated degradation paths

r(a/α̂)(RE) Trace(I−1) (RE) Var(t̂0.1) (RE)

8.2340 (0.1272) 7.7536 × 10−5 (0.6097) 1.3068 (0.9298)

1.1620 (0.5198) 4.8357 × 10−5 (0.9775) 1.2533 (0.9695)

1.3960 (1.0000) 5.7905 × 10−5 (0.8164) 1.2151 (1.0000)

0.6692 (0.6976) 4.7271 × 10−5 (1.0000) 1.2379 (0.9816)

7.6857 (0.3647) 4.0483 × 10−5 (0.6133) 0.6510 (0.9353)

6.6390 (0.6068) 2.5361 × 10−5 (0.9789) 0.6244 (0.9752)

0.0972 (1.0000) 2.9786 × 10−5 (0.8335) 0.6089 (1.0000)

3.8773 (0.7276) 2.4827 × 10−5 (1.0000) 0.6184 (0.9846)

6.8068 (0.3862) 2.7528 × 10−5 (0.6040) 0.4327 (0.9360)

0.8789 (0.5966) 1.6997 × 10−5 (0.9782) 0.4175 (0.9701)

6.4904 (1.0000) 2.0088 × 10−5 (0.8277) 0.4050 (1.0000)

8.9006 (0.7292) 1.6627 × 10−5 (1.0000) 0.4125 (0.9818)

, 3, and 4.
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the estimated Fisher information matrix for each data set. The asymp-

totic results obtained by using matrix (12) and the average of 1000

simulated objective function values are presented in Tables 2 and 3,

respectively.

The simulation results in Tables 2 and 3 show that the proposed

optimal SSADT plans presented earlier continue to hold for relatively

small sample sizes. For criteria [C3] and [C4], it seems the choice of

the SSADT plan is not crucial since all plans generate high or nearly

full efficiency. However, criteria [C1] and [C2] are relatively sensitive

to the plan used because the optimum SSADT plans have significantly

higher efficiency than do other plans.

6. Summary

In this paper, a Wiener process/IG distribution model is assumed

to describe the accelerated degradation path of certain quality char-

acteristics and the lifetime of a highly reliable product. We consider

a special type of degradation test, namely the Step-Stress ADT, under

which the stress is held constant and changed at some specified times.

Even though many research efforts have been devoted to finding the

optimum SSADT plan, most of the results are primarily empirical in

nature. In this paper, we have derived the optimal SSADT plan based

on the proposed Wiener model with a linear drift parameter–stress

relationship in a formal manner. Our results suggest that the opti-

mal SSADT used only the minimum and maximum values of stress for

several commonly used optimization criteria. Furthermore, we derive

the optimal allocation of inspections at each stress level.

A numerical example, a study of the step-stress accelerated degra-

dation paths of the brightness of LED lamps, is provided for com-

parison. Both theoretical and simulation results suggest that the ef-

ficiencies could be improved by using the optimum simple SSADT

plan. In addition, we observe that (through a numerical study), when

the parameter-stress relationship is not a linear function, the opti-

mal SSADT design needs to be investigated case by case due to the

complexity of the information matrix and the optimal plan may not

be a simple SSADT plan. Therefore, one promising and useful future

research direction is to investigate the scenarios under which the an-

alytical results in this paper continue to hold for other degradation

models and parameter–stress relationships. Also, it will be useful to

search for a robust SSADT plan in the sense that the plan could provide

reasonable efficiencies to many objectives of interest simultaneously.
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