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Abstract

Our study contributes to the literature on industry and firm dynamics. We focus on the
question why the number of firms in the semiconductor market follows an inverse U-shaped
pattern throughout different product generations. We pay special attention to the fact that
the number of firms declined after the mid 1990’s. We disentangle the impact of changes
in market demand and changes in entry costs on the number of firms in the market. We
estimate a dynamic model in which firms make production, entry and exit decisions applying
the two-step estimator developed by Bajari, Benkard and Levin (2007). A counterfactual
experiment provides evidence that increasing entry costs (rather than diminishing growth in
demand) is the main reason why the semiconductor industry experience a shake out in mid
1990’s.
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1 Introduction

Seminal studies in the area of industry and firm dynamics concentrate on the link between market

structure and market performance.1 Dunne, Roberts and Samuelson (1988) and Klepper and

Graddy (1990) highlight the fact that many industries follow a similar pattern in the evolution

of the number of firms: it is increasing up to a point when a sudden shake out process drastically

reduces the number of firms. There are several explanations in the literature that aim to explain

industry dynamics.

One strand of literature on industry dynamics considers market growth to be a major driving

force that explains market entry and exit.2 One established finding is that the number of firms

is positively correlated with market size. Another strand of literature on industry dynamics

emphasizes that higher entry costs provide a disincentive for market entry. The escalation in

entry costs is considered to constitute a barrier to entry.3 Moreover, Asplund and Nocke (2006)

have shown that higher entry costs are negatively related to entry rates. Entry costs are related

to the cost of capital required to enter a market, i.e., the investments required to establish

new plants equipped with advanced production machinery, and to the technological progress.

Jovanovic and MacDonald (1994a and 1994b) emphasize that technology-based mechanisms

contribute to shake outs and explain life cycles. Along this vein, Klepper and Simons (2000)

provide an explanation for the sudden shake out process in the tire industry. In line with

Utterback and Suarez (1993), they explain the shake out process by technological progress and

argue that a major innovation was the cause for the drastic decline in the number of firms.

Unproductive firms which did not adopt a new production technology exited the market.

The goal of our study is to explain why the number of firms in one of the semiconductor

markets evolves according to an inverse U-shaped pattern over time, or throughout different

product generations. More specifically, the dynamic random access memory (DRAM) market

is characterized by an interesting pattern of market dynamics.4 The DRAM industry was

characterized by a significant market growth. The number of firms increased from 15 in the 4K

1Prominent studies in this area are Dasgupta and Stiglitz (1980), Shaked and Sutton (1987), Klepper and
Simons (2000), Mueller and Tilton (1969), Acs and Audretsch (1988), Griliches and Klette (1997), Klepper
(2002), Klepper and Graddy (1990), Klepper and Simons (2000), Scherer (1998) and Sutton (2001).

2See e.g., Schmalensee (1989), Scherer and Ross (1990), Shaked and Sutton (1987), Sutton (1991 and 1998),
Dasgupta and Stiglitz, (1980), Bresnahan and Reiss (1991) and Asplund and Sandin (1999).

3See e.g. Baumol, Panzar, and Willig (1982, pp. 291), Hopenhayn (1992), Martin (2002) and Geroski (1995).
4Dynamic random access memories are components within the family of semiconductors. They are designed

for storage and retrieval of information in binary form and are classified into generations according to their storage
capacity. For more information on the industry, see Section 3.
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generation in 1978 to over 30 in the 4MB generation in the late 1990’s when market demand

experienced a boom due to the increased sales of personal computers. After the 4 MB generation,

growth in demand slowed down and the number of firms declined to 21 in the 128MB generation

and 14 in the 256MB generation in 2004, and it declined even further to under 10 firms in

successive generations.

We are interested in analyzing the causes of the inverse U-shaped pattern in the number of

firms, especially those which determined the decline in the late 1990’s. While in our study a

growth in demand may well explain the increase in the number of firms for early generations, it

still remains unclear why the number of firms declined for more recent generations. Using a fully

dynamic oligopoly model, we aim to explain to what extent the evolution of market structure

is driven by changes in market growth and entry costs.

Throughout product generations, the production of DRAM chips became increasingly com-

plex. More advanced production techniques and lithographic processes required higher in-

vestments into more advanced equipment and machinery. Consequently, entry costs increased

throughout different product generations. One challenging task in our study is to identify entry

costs as they are product-specific and not observed. We thus estimate entry costs and exploit

the fact that firms have to recoup their entry costs from their generated profits.

Our model is formulated in the tradition of Ericson and Pakes (1995) in which forward looking

firms make entry, exit and production decisions. Firms maximize their expected discounted

sum of profits over the product life cycle accounting for learning-by-doing and firm-specific

productivities. The model is estimated using the two stage estimator by Bajari, Benkard and

Levin (2007).5 In the first step, we estimate the policy functions (production, entry and exit);

in the second step, we estimate the structural parameters, i.e., generation-specific entry cost.

Our results show that the entry cost drastically increased from approximately USD 18 million

for the 4MB generation to USD 65 million and USD 118 million for the 16MB and 64MB

generation, respectively. Our entry cost estimates are close to the establishment costs for new

DRAM generations that are occasionally reported in the engineering literature. This confirms

the reliability of our entry cost estimates. Our estimations also return reasonable results for

the production, entry and exit policies. We also find that the share of entry costs on profits

5Ryan (2012) was the first who applied the BBL estimator to a fully dynamic structural model. While we
concentrate on the industry dynamics, he studied the costs of environmental regulation on firms’ profits in the
cement industry.
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is relative low (around 25%) for early generations and increased to 37%, 58% and 44% for the

latter generations in our sample. This results confirms the fact that part of the entry costs

on profits was increasing throughout generations, such that it was more difficult to recover the

entry costs from the profit streams.

We also perform a counterfactual experiment to separately identify, whether the decline in

the number of firms was primarily caused by the diminishing growth in demand or the increasing

entry costs. Our counterfactual builds on the assumption that market growth did not decline

after the 4MB generation, but continued growing at the same rate as before. Hence, we isolate

the market growth from the increase in entry costs. Our counterfactual generates predictions

for firms’ profits, exit probabilities, and the shares of entry costs on profits for every generation.

The results provide evidence that the share of entry costs on profits only marginally declines

from 58% to 54% for the 64MB generation. This share is about 25% higher than in previous

generations, indicating that diminishing growth in demand has a minor impact on the shake out

process. The main impact on the decline in the number of firms is explained by the increasing

entry costs. A similar results applies to the 128MB generation.

To summarize, our results show that the increase in entry costs in combination with dimin-

ishing growth in demand explains the inverse U-shaped pattern in the number of firms across

generations. For early generations, the growth in demand dominated the accelerated entry costs

such that more firms were attracted to enter the market. A slowdown in growth of demand in

conjunction with substantial increase in entry costs in the late 90’s caused a main shake out for

the 16MB generation and thereafter. Most interestingly, our study provides evidence that the

main reason for the shake out is driven by the increasing entry costs after the 4MB generation.

The remainder of the paper is organized as follows. In the next section we discuss the relevant

literature. Section 3 describes the industry and provides insights into the development of new

process technologies. This section also describes the data and presents summary statistics.

Section 4 introduces our dynamic oligopoly model and Section 5 illustrates the econometric

model. In Section 6 we discuss the empirical results. We conclude in Section 7.

2 Literature Review

A large strand of the literature on industry dynamics focuses on explaining the evolution of

market structure. Klepper (2002) studies the evolution of market structure in the automobiles,
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tires, televisions, and penicillin markets, which initially grew and then experienced a sharp

decline or shakeout. Firms invest in R&D to lower their average cost. Since the total return

from lowering average cost is scaled by the output of the firm, larger firms earn a greater return

from R&D and are more likely to survive. Smaller firms earn a lower return from R&D and exit

disproportionately, contributing to a shakeout. Gort and Klepper (1982) analyze the evolution

of the number of firms in 46 industries characterized by shake out patterns. Klepper and Simons

(2005) investigate the shake out processes in four different industries which are characterized

by many firms entering the market. Jovanovic and MacDonald (1994b) explicitly focus on

the DRAM industry in which firms introduce cost reducing technological improvements within

generations, and explained the expansion in industry output and the decline in prices. Jovanovic

and MacDonald (1994a) analyze the U.S. automobile tire industry and provide a technology-

based explanation on sudden shake out processes, which drastically reduced the number of

firms in the U.S. automobile tire industry. They explain the shake out process in the 1910-20

period by an exogenous technological invention developed outside the industry. Those firms that

implemented the innovation stayed in the industry and increased their output as the optimal

scale increased. Technological laggards exited the market.

To investigate how the evolution of entry costs and the growth in demand throughout different

product generations affect market structure, we estimate a dynamic game. Recent studies on

the estimation of dynamic games focus on reducing the computational burden by simulating

instead of calculating the continuation values and apply two step estimation algorithms.6 The

estimator by Bajari, Benkard and Levin (2007) builds on the idea by Hotz, Miller, Saunders,

and Smith (1994) and uses forward simulations to obtain the continuation values given optimal

policies.7 Prominent studies that estimate a fully dynamic oligopoly model while applying a

two-step algorithm are, e.g. Beresteanu, Ellickson and Misra (2010), Collard-Wexler (2010),

Gowrisankaran, Lucarelli, Schmidt-Dengler, and Town (2008), Van Biesebroeck and Hashmi

(2007), Macieira (2009), Ryan (2010), and Sweeting (2007).8 Ryan (2010) evaluates the welfare

6See e.g., Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry
(2007), Pesendorfer and Schmidt-Dengler (2008) for more detailed information.

7For further discussion and a description of the different methods, see also Ackerberg, Benkard, Berry and
Pakes (2005).

8One common feature in these studies (similar to our study) is that state variables are commonly observed by
the players and the econometrician. Studies on dynamic discrete choice models which accommodate unobserved
heterogeneity are Hu and Shum (2008 and 2010) and Kasahara and Shimotsu (2008). For more information
about how to correct for serially correlated unobserved state variables, see also Bajari, Benkard, and Levin
(2007), Ackerberg, Benkard, Berry and Pakes (2006), Ackerberg, Caves and Frazer (2005), Levinsohn and Petrin
(2003), Olley and Pakes (1996), Rust (1994) and Wooldridge (2005). For discussions on the problems caused by

4



costs of the 1990 Amendments to the Clean Air Act on the US Portland cement industry. He

estimates the distributions of sunk entry costs and capacity adjustment costs and finds that the

Amendments have significantly increased the sunk cost of entry. Hashmi and Van Biesebroeck

(2007) focus on the automobile industry and apply a two-step estimation method to simulate

the effects of mergers on innovative activity. They find that the effect on innovation depends on

the original level of concentration. If the industry is (not) originally concentrated, consolidation

may reduce (increase) the innovation incentives.

3 Industry and data description

In this section, we present the data sources and provide descriptive statistics, especially with

regard to the number of firms in the market throughout different product generations. We also

describe the manufacturing process of DRAM chips as well as the process of entering new DRAM

generations.

3.1 DRAMs

DRAMs are one part of the microelectronics industry and a key input for electronic goods, such

as computers, workstations, communication systems and graphic subsystems. DRAM products

are typically classified by the number of bits per chip, their capacity of storing memory. DRAMs

store each bit of information in a memory cell consisting of one transistor and a capacitor.

The capacitor stores data and the transistor transfers data to and from the capacitor. New

operating systems of electronic products impose a minimum requirement for memory capacity.

Thus, permanent research effort is required to increase the memory, reduce the size and cost,

and increase the density and speed of DRAM chips. Moore’s law is usually used to describe the

growth pattern of the number of transistors on an integrated circuit over time. Moore predicted

that the number of transistors per chip doubles every 24 months, resulting in a fourfold increase

in bits per chip. The increase in transistors per chip is mainly due to three factors: reductions in

cell size per bit, improved lithography processes and an increase in die size manufacturability.9

unobserved correlated state variables in dynamic models, see also Heckman (1981) and Pakes (1994).
9For example, improved nm process technologies are associated with improved lithography, improved substrate

materials and metalization as well as device architecture optimization. The cost of developing the 90 nm process
is estimated to be around USD 400 million, while the 45 nm process is estimated to cost USD 600 million. For
more details regarding the description of production processes, see also Gruber (1996a), Irwin and Klenow (1994),
Flamm (1993) and El-Kareh and Bronner (1997).
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3.2 Data

Our study uses firm level and industry level information on prices and quantities for different

DRAM generations which are compiled by Gartner Inc. The data set encompasses 12 prod-

uct generations, namely the 4K, 16K, 64K, 256K, 1MB, 4MB, 16MB, 64MB, 128MB, 256MB,

512MB, and 1GB generation. It entails quarterly data from January 1974 until December 2004.

The data set covers firm and industry units shipped, the average selling price, and the number of

firms in the market. Figure 1 shows the industry shipments across different generations, i.e., the

4K till the 1GB generation. This figure illustrates that every DRAM generation is characterized

by a product life cycle that lasts for approximately 10 years.

3.3 Number of firms in the market

Table 1 shows that firms introduce new generations in a subsequent manner. Hence, once firms

exited one generation, they will not reenter into a subsequent generation. Figure 2 shows the

evolution of the number of firms throughout different product generations. We observe similar

patterns across product cycles and overall we note that the number of firms increased for the

early generations and decreased for latter generations. Table 2 shows the number of firms and

the number of new entrants in the different generations. The number of firms increases from

15 firms in the 4K generation to 30 firms in the 4MB and 16MB generations. Afterwards,

a shake out took place in the industry and the number of firms declined to 20 firms in the

128MB generation and even further to 11 firms in the 256MB generation and 5 firms in the 1GB

generation. We observe that early generations and the 4MB generation attracted a lot of first

time entrants. After the 4MB generation the number of first time entrants slowed down. The

number of permanent exitors increased drastically in the 4 MB and 16 MB generations.

We are aware of the fact that the latter generations may suffer from a lack in the number

of observations.10 We thus compare the number of firms per product generation with the other

summary measures such as the number of firms in the beginning of the product cycle (first four

and first eight quarters), completeness of the product cycle and whether the output peek had

been reached. Table 2 also provides these figures. We observe that only half of the generations

had finished their product cycle (column 8). However, most of the product generations had

reached their output peek; only the last three had not (column 9). Therefore, we calculate the

10The maximum number of firms has already been passed for the 256MB, but not the 1GB generation.
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number of firms for the first four and eight quarters (columns 6 and 7). We observe that the

number of firms that had entered in first four quarters was highest in the 64MB generation.

Afterwards this number fell. We thus decided to exclude the last three generations from our

analysis, since their presence in the market might have been too short. We therefore include

only generations in our study whose number of firms passed the peak.11

3.4 Growth in market demand

Market demand is considered to be one important factor having an impact on market structure.

The increase in demand is explained by the growth of markets using DRAM chips as an input

in electronic devices. Figure 3 shows the total number of DRAM chips being sold summed over

all generations. In the late 1980’s and the early 1990’s, the PC market was the primary target

for DRAMs. Approximately 75% of DRAMs were sold to PC clients or servers. For most of

that period, memory upgrades were a critical way to improve PC performance and to enable the

use of new applications. By the end of the 1990’s, however, the sizes of operating systems and

applications were no longer growing as rapidly as before. Consequently, the demand for DRAMs

did slowed down. Figure 3 illustrates the era in which demand remained relatively stable. The

number of shipments in the mid 90’s remained about constant. From the mid 90’s onwards, the

popularity of mobile phones and playstations increased the demand for DRAMs again. Figures 1

and 3 show that demand eventually declined again for the 16MB and 64MB generations. Table 3

provides summary statistics on the growth of market size, firm average shipments and revenues

throughout the different generations. For example, the growth of market size declined from 54%

in the 16MB to only 2% in the 64MB generation. The market revenues increased by 27% in the

16MB generation and suffered from a 17% decline in the 64MB generation.

3.5 Production process and learning by doing

The production processes determine the cost to enter a new DRAM generation. Through-

out different DRAM generations the production processes became increasingly complex, which

increased the cost to enter new generations. In the following, we describe the details how pro-

duction processes became more advanced throughout generations. DRAM chips are produced in

11Our sample also includes observations from a period for which several firms in the industry pled guilty to
price fixing. The alleged cartel lasted from April 1, 1999 to June 15, 2002. In our empirical analysis we account
for this period using yearly dummy variables.
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batches on silicon wafers. The process of manufacturing an integrated circuit involves building

up a series of layers on a wafer of polycristalline silicon. The production process requires a

complex sequence of photolithographic transfer of circuit patterns from photo masks onto the

wafer and of etching processes. The wafer, once processed, is cut and the single chips are then

assembled. Lithography processes are permanently improved to achieve better printing proce-

dures, to increase the density per transistor and to reduce the size of the chips. For instance,

traditional dry lithography uses air as the medium to image through masks. Immersion lithog-

raphy uses water as the medium between the light source and wafer. The wavelength of light

shrinks through water so it is able to project more precise and smaller images on the wafer. In

general, lithography processes determine costs, size, performance and yield.

In the late 90’s further reduction in cell size became much harder to achieve because of the

increased number and complexity of variables affecting cell structures. Major advancement in

cell innovation is shown in Figure 4. It is interesting to note that the introduction of 64MB

capacitors represented a milestone for different types of cell architectures. Further improvements

required the introduction of new cell structures in conjunction with lithography scaling and

advances in doping, etching, planarization, and multilevel metalization. While the development

of chips with faster speeds was important in order to meet increasing capacity requirements for

storing memory, the reduction of power consumption became equally important. Table 4 shows

the evolution of different parameters throughout different generations. For example, the cell size

decreases by a factor of 40 from the 4MB to the 1GB chip.

Every DRAM generation begins by scaling lithography by a factor of 0.7 to further reduce the

die area, see also Table 4. A continuous effort is required to shrink the die size throughout gen-

erations. While the die size shrank only three to four times for the 4MB and 16MB generations,

it shrank between seven to nine times in the 64MB, 256MB and 512MB generations.

The DRAM industry is characterized by learning-by-doing effects, resulting from the fine-

tuning of the above explained production processes. Despite the rapid reduction in defect

densities, only a small fraction of manufactured DRAM chips will have entirely perfect cells

and peripheral circuits. If all dice with one or more defective cells were to be discarded, the

resulting yield would be too low and the cost per chip prohibitively high. The effective yield will

increase substantially by repairing memories with a limited number of defective cells, mostly

using laser blown fuses. Memory repair increases yield from <1% to >50% throughout the life
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cycle. Learning-by-doing is considered to be an important phenomenon that explains the rapid

price decline for DRAMs (see Figure 5).

Learning-by-doing is usually modeled as firms moving down a cost curve, common to the

industry, which illustrates efficiency effects achieved through learning-by-doing. Depending on

firms’ timing to enter a generation they achieve different yield learning since they are at different

locations on the learning curve.12 Thus, higher requirements for later DRAM chip generations

require higher investments and increase the cost to enter subsequent generations.

Finally, it should be noted that firms introduce several plants for producing memory chips.

Once they plan on investing a new plant, firms already have accurate predictions on how much

they are planning on producing in each plant. One example mentions: “On April 21, 2011, Intel

officials mentioned that Intel and Micron Technology opened a 3 billion US dollar factory to

make NAND flash memory in Singapore. The factory is planned to produce 25,000 wafers per

week.” This example emphasizes the fact that the production rate in the memory industry is

highly predictable. This fact stands in contrast to other industries, i.e., the cement industry, in

which future production is more difficult to predict. One reason for the difficulty in predicting

future production is that the industry is characterized by strong seasonal effects throughout the

year. Consequently, marginal cost in those industries are significantly high once the production

rate is getting close to the capacity limit. The concern of facing increasing marginal costs is

not much of a concern in the memory chip industry, as the semiconductor industry is rather

characterized by significantly decreasing marginal costs due to learning effects.

4 Dynamic oligopoly model

This section outlines a model of dynamic oligopolistic competition between firms in the DRAM

industry. The model is formulated as a state space game. A firm’s action in a given period

determines not only its own and rival firms’ current profits, but also its own and rival firms’

future states. Firms are rational and forward-looking, i.e. they derive their discounted profit

streams given the evolution of the state vector and their actions.

We use a discrete-time infinite horizon model with time indexed by t = 0, 1, . . . ,∞. There are

12Note that knowledge may depreciate over time (sometimes also termed forgetting) especially in labor-intensive
industries, such as the aircraft industry, see e.g. Benkard (2000). The semiconductor industry, however, is
a capital-intensive industry that is characterized by cumulative innovation and short life cycles. Forgetting is
therefore not a common phenomenon in this industry. Further contributions in estimating learning effects for the
semiconductor industry are Gruber (1996a), Irwin and Klenow (1994), Siebert (2010), and Zulehner (2003).
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I firms denoted by i = 1, . . . , I. The set of firms includes potential entrants and incumbent firms.

In each period, each firm i earns profits equal to πit = π(qit, q−it, sit, vit), which are a function

of own actions, i.e., output qit, other firms’ actions or output q−it, a vector of state variables sit

and a private shock vit. The private shock may derive from variability in productivity shifting

marginal costs cit.
13

The state variables are market demand dt, input prices mt, the set of producing firms nt,

and a firm i’s production experience exit, i.e. sit = (dt,mt, nt, exit). The number of firms in the

market nt is determined by the exit decision of incumbents and the entry decision of potential

entrants. Incumbent firms decide whether to stay in the market and produce qit or to exit and

receive a fixed scrap value κ. Each potential entrant observes an entry cost ui drawn from a

distribution F (.|s). The entry cost is an iid shock which is private information. The potential

entrants decide whether to enter the market and to immediately produce output qit or to stay

out of the market and to produce no output. We assume that potential entrants are short-lived

and may disappear once they decided not to enter.

Firm i’s experience exit has four components. The first two components represent a firm’s own

production experience gained in the current and the previous generation xcit and xpit, respectively.

The third and the forth components xc−it and xp−it indicate the experience in the current and

previous generation that firm i gains from its rivals’ past production through spillovers in the

current and in the previous generation.14 Potential entrants have no own experience in the

current generation, but may benefit from spillovers in the current generation, and own experience

and spillovers in the previous generation. The vector st = (sit, s−it) denotes the state of the

commonly observed state variables in the industry at period t.

Before firms simultaneously choose their output qit, each firm i observes a private shock vit,

independently drawn from a distribution G(.|st). The shocks vit and ui are private information

and firms solve for a Markov perfect equilibrium, where each firm i maximizes its future dis-

counted payoffs conditional on the initial state s0, the vector of the initial value of the private

shocks v0 and the entry cost ui:

Ev,u

∞∑
t=0

βt[πit(qit, q−it, st, vit)|s0, vi0, ui] (1)

13All variables are referring to a single generation. In order to simplify the notation we will abstract from using
subscripts for different production generations.

14If a firm did not produced the previous generation, own experience xp
it and spillovers xp

−it are set equal to
zero.
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where β ∈ (0, 1) is the discount factor, which is set equal to 0.95.

4.1 Profits in the product market

Firm i’s per period profits in the product market are revenues minus cost plus a scrap value,

which a firm receives once it leaves the market,

πit(qit, q−it, st, vit) = pt(qt, zt, dt) qit − cit(qit, x
c
it, x

c
−it, x

p
it, x

p
−it, wt, vit) qit + κ exitit, (2)

where p(qt, zt, dt) is the industry price as a function of the industry output qt =
∑nt

i=1 qit,

observable demand shifters zt and a demand shock dt. Firm i’s marginal costs cit is a function of

its output qit, proprietary experience xcit and spillovers xc−it in the current generation, proprietary

experience xpit and spillovers xp−it from the previous generation, observable cost shifters wt and

productivity vit. We assume that firm i’s fixed costs of production are equal to zero. The scrap

value κ depends on firm i’s exit decision exitit, which is one if firm i leaves the market and zero

otherwise. The scrap value is realized in the first period after production of qit has ended.

4.2 Transition of states

For a complete description of the state game, the transition between states has to be defined.

Our state variable market demand is determined by a common period-specific shock dt and

therefore does not require any further assumptions on state transitions over time. However, our

state variable experience exit is influenced by past actions. The law of motion of the experience

variables is deterministic and described as

xmit+1 = xmit + qmit , m = c, p (3)

with xmi0 = 0, m = c, p, assuming that there is no experience from own production in the

beginning of each product cycle, and

xm−it+1 = xm−it +
∑
j �=i

qmjt−1, m = c, p (4)

with xm−i0 = 0, m = c, p, assuming that there is no experience from others via spillovers in the

beginning of each product generation. We define the transition of the number of firms in the

market nt from time t to time t+1 also to be deterministic. The number of firms in the market
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nt+1 is

nt+1 = nt + net − nxt, (5)

where net is the number of entering firms and nxt is the number of exiting firms.

4.3 Firms’ strategies

Firms use Markov strategies qit = σi(st, vit, ui), i.e., a firm’s production qit is a function of

the state variables st, and a Markov-perfect Nash equilibrium is generated by the private

shocks ui and vit. Rivals’ production is determined by their strategies denoted by q−it =

σ−i(st, v−it, u−i).
15 If behavior is given by a Markov strategy profile σ = (σi(st), σ−i(st)),

firm i’s expected profits, given the state variables st, can be written recursively:

Vi(st;σ) = Ev,u[πi(σi(st), σ−i(st), st) + β

∫
Vi(st+1;σ)dP (st+1|σi(st), σ−i(st), st)|st], (6)

where Vi(st;σ) is firm i’s ex-ante value function and P is the transition probability for non-

deterministic states. Firms maximize (6) with respect to their output qit = σi(st).

A firm i will decide to enter the market, if

ui ≤ Ev,u[πi(σi(st), σ−i(st), st) + β

∫
Vi(st+1;σ)dP (st+1|σi(st), σ−i(st), st)|st]. (7)

Hence, the draw on entry cost has to be sufficiently low, such that entry becomes profitable.

A firm i will decide to produce qit ≥ 0, if

pt(qt, zt, dt)qit − cit(qit, x
c
it, x

c
−it, x

p
it, x

p
−it, wt, vit) qit + κ exitit (8)

+β

∫
Vi(st+1;σ)dP (st+1|σi(st), σ−i(st), st) ≥ β

∫
Vi(st+1;σ)dP (st+1|σi(st), σ−i(st), st).

The draw on firms’ productivity has to be sufficiently high to provide sufficient incentives to

produce.

A strategy profile σ is a Markov perfect equilibrium if, given the strategy profile of rival firms

σ−i(st), firm i has no incentive to deviate from its strategy profile σi(st), i.e.

Vi(st;σ) ≥ Vi(st;σi′, σ−i), (9)

15For simplicity, we abbreviate qit = σi(st, vit, ui) to qit = σi(st) and q−it = σ−i(st, v−it, u−i) to q−it = σ−i(st)
from now on.
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where σi′ is an alternative strategy for firm i.

5 Econometric model

In this section we present the econometric model, which builds on a fully dynamic game ac-

counting for continuous (production) as well as discrete (entry and exit) choices.

The structural parameters of interest are the discount parameter β, the profit functions

π1, . . . , πI , the distribution of entry costs (drawn from a standard normal distribution F ) and

firms’ productivity which is drawn from a normal distribution G. To obtain estimates for these

parameters, we build on the two-stage estimation method developed by Bajari, Benkard and

Levin (2007) which allows us to explain a mix of continuous (production) as well as discrete

(entry and exit) choices. The estimator relies on the fact that firms are rational and forward-

looking, i.e., firms calculate their discounted profit stream given the evolution of the state

vector and their policy functions. The first stage includes the estimation of the policy functions

σi (entry, exit, production), which describe what actions firms take at different states. Based

on the policy functions, the value functions Vi are simulated. The second stage estimates the

profit function πi and the distributions F and G. The second stage assumes that the policy

functions are parameterized by a finite vector that can be consistently estimated at the first

stage. This assumption permits a non-parametric first stage with discrete action and state

variables or a parametric first stage with continuous action and state variables. As described

above, our model allows for continuous action and state variables, hence, we therefore specify

parametric functional forms for the first stages.

5.1 Estimation of the first stage

In the first stage, we estimate the production and exit decisions of incumbents, and the entry

decision of potential entrants. For estimating the incumbents’ output function, it is necessary

to first obtain estimates for the demand, in order to be able to retrieve the demand shock which

enters firms’ production policy. To parameterize the first stage, we assume that the functional

form of the production policy is known, or can be sufficiently approximated by polynomials. For

the exposition of the estimation algorithm, we assume it is a log-linear function. The estimation

algorithm is, however, equally applicable to more complicated functions of whichever known
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form. In fact, we also applied and tested for different functional forms, such as linear and

polynomials of higher orders.

Demand We specify the demand function log-linearly as

ln(qt) = δ0 + δ1 ln(pt) + δ2 ln(p
S
t ) + δ3 ln(GGDPt) + δ4timet +

15∑
g=5

δgDg + dt, (10)

where qt is industry output and pt the average selling price. The average selling price of the

closest substitute at time t is pSt , which is established as a price index. For each DRAM gen-

eration, we identify corresponding substitute DRAM generations and use the average weighted

prices per kilobyte of these generations as the price of the closest substitute. GGDPt represents

the growth rate of the GDP, which we use as an exogenous demand shifter. T ime is a time trend

that captures the effect of the time length that a particular generation has been in the market,

Dg presents dummy variables for each generation using the 4K generation as the base category,

and dt is an independently distributed normal variable with a mean of zero and a constant

variance σ2
d. In addition, we estimate a second specification in which we explicitly allow the

own-price elasticity of demand to be generation-specific by interacting the average selling price

pt with dummy variables for each product generation.

Incumbents’ output policy Firm i’s output policy σi is a function of the state variables st

and the private shock vit entering marginal costs, i.e. qit = σi(st, vit). If we assume that the

policy function is log-linear in the state variables and the private shock, the policy function of

incumbent firms is given by16

ln(qit) = γ0 + γ1d̂t + γ2 ln(mt) + γ3 ln(nt) + γ4 ln(x
c
it) + γ5 ln(x

c
−it) + γ6 ln(x

p
it) (11)

+ γ7 ln(x
p
−it) + γ8timet +

19∑
g=9

γgDg + ζi + vit,

where we denote the vector of coefficients as γ, and d̂t is the contemporary demand shock

obtained as the residual from (10). The variable mt and nt represent the price of silicon and

the lagged number of firms (both in period t-1), respectively. In addition to the variables

exit = (xcit, x
c
−it, x

p
it, x

p
−it) that measure the direct cost reducing effect of experience, we include

16We tested for robustness with regard to the chosen functional form, and estimated various specifications. We
applied higher order polynomials to approximate an arbitrary non-linear production policy and finally used the
specification with the highest fit.
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a time trend in our regressions to account for the dynamic strategic interaction introduced by

experience.17 Dg are again dummy variables for each product generation.

We also account for time-invariant unobserved firm heterogeneity denoted by ζi. In the

production policy equation, we have to account for the potential contemporaneous correlation

between productivity and output which enters learning-by-doing. We need to account for this

feedback structure, as firms characterized by a higher productivity will further increase output

which will enter next period’s experience through learning-by-doing and lower costs.18

We apply different estimation procedures. First, we apply an ordinary least squares estimator

with fixed effects in order to control for unobserved heterogeneity.19 In addition, we use instru-

ments for learning-by-doing, because of its potential correlation with firm-specific productivity.

As instruments we use the two and three period lagged learning-by-doing variables. Finally,

we also control for potential remaining serial correlation in the productivity term and apply a

lagged dependent variable model, using a fixed effects instrumental variable estimator.20

Entry and exit To obtain estimates for the distribution of ui and predicted values for exitit,

we estimate probit models with generation-specific fixed effects Dg. Potential entrants make

their entry decision dependent on the state variables dt, nt, x
c
−it, x

p
it and xp−it, but not on xcit as

17Not all firms have produced previous generations. If this is the case, we replace a zero cumulative output
with a value of 0.01 to be able to take the logarithm.

18Estimating industry learning curves, we find significant learning effects which magnitudes are similar across
generations. This allows us to pool the data across generations when estimating the production policy function.
In addition, since some of the generations are not long enough in the market to generate a sufficiently long time
series, pooling the data allows us to use more observations and returns more efficient estimates. We use dummy
variables to account for generation-specific effects. The results of the industry learning curves are described and
depicted in Appendix C.

19There are many models for which it is reasonable to assume that the contemporaneous error is uncorrelated
with current and past values of the regressors, but will be correlated with future values of the regressor (se-
quential exogeneity). Accounting for time invariant unobserved heterogeneity causes feedback effects occurring
from contemporary production to future experience in production. Since the unobserved heterogeneity, or any
contemporaneous error, determines the contemporaneous production, it will enter production experience in the
next period. The contemporaneous error and experience in the future are correlated, which violates the strict
exogeneity assumption (past experience is sequentially exogenous) and causes inconsistent estimates when we
estimate fixed effects.

20We also applied the Arellano-Bond (1991) estimator for dynamic panel data and the results are not signifi-
cantly different. The estimator uses the generalized method of moments (Hansen, 1982) and especially holds for
small T and large N . If N is small, the Arellano-Bond autocorrelation test may become unreliable. As differ-
entiating removes much of the variation in the explanatory variables, the Arellano-Bond (1991) estimator may
exacerbate measurement errors in the regressors. In addition, the differentiated regressors need not be highly
correlated with the instruments. One could therefore apply the Blundell-Bond (1998) estimator, which uses the
levels and differences of the lagged dependent variable in the set of instruments. If, however, T and N are large
as is in our case, the dynamic panel bias becomes insignificant, and a fixed effects estimator is applicable (Alvarez
and Arellano, 2003).
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they have not accumulated propriety experience in the current generation:

P (entryit) = Φ(α0 + α1d̂t + α2 ln(mt) + α3 ln(nt) + α4 ln(x
c
−it) + α5 ln(x

p
it) (12)

+ α6 ln(x
p
−it) + α7timet +

18∑
g=8

αgDg),

where we denote the vector of coefficients by α.

Incumbent firms face the decision whether to stay in the market or to exit. Their decision to

exit the market depends on all state variables and is specified as follows,

P (exitit) = Φ(λ0 + λ1d̂t + λ2v̂it + λ3 ln(mt) + λ4 ln(nt) + λ5 ln(x
c
it) + λ6 ln(x

c
−it) (13)

+ λ7 ln(x
p
it) + λ8 ln(x

p
−it) + λ9timet +

20∑
g=10

λgDg),

where we denote the vector of coefficients with λ and vit is the productivity shock obtained as

the estimated residual of the output policy function.

Marginal cost function We back out (static) marginal costs using the Lerner index and

specify firm i’s marginal costs cit such that

ln cit = θ0 + θ1qit + θ2q
2
it + θ3x

c
it + θ4x

c
−it + θ5x

p
it + θ6x

p
−it + θ7mt +

18∑
g=8

θgDg + vit, (14)

where we denote the vector of coefficients with θ. We define firm i’s marginal cost cit as an

exponential function of its output qit, proprietary experience xcit and spillovers xc−it in the current

generation, proprietary experience xpit and spillovers xp−it from the previous generation, material

prices mt, and dummy variables Dg for each generation, where the 4K generation is used as the

reference category and productivity vit.
21

Value function Estimation of the value functions is based on the estimated policy functions

and the transition between states. From estimating equation (11), we get qit = q̂it + vit, which

we use to simulate a sample of optimal output policies

qitl = q̂it + vitl, (15)

21Backing out static marginal cost from the Lerner index does not imply that the dynamic effects of quantity
choices are ignored. These are incorporated in the firms’ profit maximization by defining the output policy
function depending on a time trend.
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where at each point in time t = 0, 1, . . ., we draw a random sample of vitl with l = 1, . . . , L

from the distribution G(.|st) and calculate simulated profits πilt(qitl, q−itl, stl, vitl). We use (5)

to move from one state to the other with regard to the number of firms. We then use (3) and

(4) to move from one state to the other regarding experience and spillovers and obtain for each

simulation l, xmit+1l = xmitl+ qmitl for m = c, p and xm−it+1l = xm−itl+
∑

j �=i q
m
jt−1l for m = c, p. Next,

we back out marginal costs from our policy and demand estimation using the Lerner index. We

regress the retrieved marginal costs onto the marginal cost function (14) to obtain estimates for

the static marginal costs. Finally, we calculate simulated profits as

πitl = p̂tlqitl − exp(θ0 + θ1qitl + θ2q
2
itl + θ3x

c
itl + θ4x

c
−itl + θ5x

p
itl + θ6x

p
−itl + θ7mt

+θ8timet +

19∑
g=9

θgDg + vitl) qitl + κ exititl, (16)

where p̂tl are the simulated prices obtained from (10). The scrap value κ is obtained by regressing

the (backed out) static profits on a dummy variable that is equal to one when a firm exits a

product generation and zero, otherwise. This gives us L × πitl’s, i.e. L times profits based on

optimal strategies. To obtain an estimate for the value function, we add up profits πitl over t

and take the mean of the simulated profits πil over l such that

Ṽi(st;σi, σ−i, δ, γ, α, λ, θ, κ) =
1

L

L∑
l=1

∞∑
t=0

βtπitl, (17)

where we simulate over the actual observation horizon.

5.2 Estimation of the structural parameters

In the second step, we estimate the generation-specific cost of developing technologies. We

exploit the equilibrium condition (9) and construct alternative policies k = 1, . . . ,K given by

qitk′ = qit + εk, (18)

where εk is a random draw from some arbitrary distribution function H. We calculate alternative

profits using alternative strategies,

πitk′ = pt qitk′ − exp(θ0 + θ1qitk′+ θ2q
2
itk′+ θ3x

c
ik′+ θ4x

c
−ik′+ θ5x

p
itk′+ θ6x

p
−itk′+ θ7mt
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+θ8timet +

19∑
g=9

θgDg + vitk′)qitk′+ κ exititk′. (19)

An estimate for the value function given the alternative strategy is

Ṽi(st;σi′, σ−i, δ, γ, α, λ, θ, κ) =
∞∑
t=0

βtπitk′.

This gives us K × Ṽi(s;σi′, σ−i, δ, γ, α, λ, θ, κ)’s, i.e. K times profits from alternative strategies.

When we rewrite the equilibrium condition (9) as

Vi(st;σi, σ−i, δ, γ, α, λ, θ, κ) ≥ Ṽi(st;σi′, σ−i, δ, γ, α, λ, θ, κ),

and exploiting the linearity of θ and κ in firm i’s profit, we can define the function f as follows

f(y; δ, γ, α, λ, θ, κ) := [Wi(st;σi, σ−i, δ, γ, α, λ) − W̃i(st;σi′, σ−i, δ, γ, α, λ)] × (θ, κ) ≥ 0,

where Wi(·) = Vi(·)× (θ, κ) and W̃i(·) = Ṽi(·)× (θ, κ) and the inequality defined by y is satisfied

at (δ, γ, α, λ, θ, κ), if f(y; δ, γ, α, λ, θ, κ) ≥ 0. We then define the function

Q(δ, γ, α, λ, θ, κ) :=

∫
(min{f(y; δ, γ, α, λ, θ, κ), 0})2dF (y),

where we replace the function f(y; δ, γ, α, λ, θ, κ) by its empirical counterpart f̃(y; δ̂, γ̂, α̂, λ̂, θ, κ)

computed by replacing the Wi terms with simulated estimates W̃i. This results in

Qk(δ, γ, α, λ, θ, κ) :=
K∑
k=1

{min [f̃(y; δ̂, γ̂, α̂, λ̂, θ, κ), 0]}2.

Using the simulated expected discounted values we retrieve the distribution of entry costs at

different states and compare those to the entry probabilities at the corresponding states.

Hence, firm i will enter the market, if the draw of the entry cost is sufficiently small, such

that

P (Entry; s) = P (ui ≤ EV (s)) = φ(Ev,u[πi(σi(st), σ−i(st), st)

+β

∫
Vi(st+1;σ)dP (st+1|σi(st), σ−i(st), st)];μu, σu), (20)

where μu and σu are the mean and standard deviation of the cumulative density function F .

The probability of entry and the expected discounted values are calculated at different states

using our forward simulation estimator from above. Averaging over those simulations gives the

theoretically expected profits of entering at different states.
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Identification The identification of the parameters entering the marginal costs and static

profit function follows from the optimization of profits and functional form assumptions. To

calculate entry cost, we compare the expected profits to firms’ entry decisions at different states.

If entry occurred, it indicates that entry costs are lower than the generated discounted profits at

this state and vice versa. Using this rationale, we are able to recover and identify the entry cost

distribution for every product generation. The identification of the entry cost therefore follows

directly from the functional form assumptions and profits generated at different states.

6 Estimation results

This section presents our estimation results. First, we discuss the estimation results of the

demand function, incumbents’ output policy, and firms’ entry and exit policies. We then proceed

with the results of the marginal cost function, the scrap value and firms’ static profits. Finally,

we describe firms’ actual and counterfactual cumulated profits and the estimates for the entry

cost.

6.1 First stage estimates

Demand Equation To obtain estimates for the coefficient vector δ, we estimate industry

demand (10) using ordinary least squares as well as two stage least squares methods. In the

latter case, we instrument the prices of the current product generation using summary measures

from the supply side such as the number of firms in the current and substitute generations,

cumulated industry output of the current and substitute generations, and the price of silicon –

all variables are specified in logarithms and with product-specific dummy variables.

The estimation results of the demand equation are shown in Table 5. The results from using

the ordinary least squares estimator are shown in columns 1 and 2, and the results for the two

stage least squares estimator are shown in columns 3 and 4. For each method we estimate two

specifications. While the first specification applies the same demand elasticities for different

generations, the second specification allows for product-specific demand elasticities. Since the

results of the two estimators are very similar, we concentrate on describing the two stage least

squares results.

A test for the joint significance of the instruments indicates that the instruments are highly

correlated with the average selling price. A value of 389.48 for the F-statistics of the first
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specification and a range of values between 68.31 and 800.13 for the F-statistics of the second

specification, allow us to reject the null hypothesis that the estimated coefficients of the instru-

ments are equal to zero. The first-stage estimation results support a good fit with adjusted

R-squares of about 0.95 for the first specification and between 0.96 and 0.99 for the second spec-

ification. In all specifications, the instruments in the first stage regressions are also individually

significantly different from zero. We observe a negative sign on the cumulated industry output

which is meaningful as higher cumulated industry output lowers marginal costs in the presence of

learning-by-doing, which shifts the supply curve downwards resulting in lower equilibrium prices.

Cumulative industry output of the substitute generations has a positive effect, indicating that

higher cumulated industry output reduces marginal costs through spillovers. The positive sign

on the price of silicon indicates that higher factor prices shift the marginal cost curve upwards

resulting in higher equilibrium prices.

To test for potential endogeneity of our instruments, we calculate the Sargan statistic and

test for overidentification of all instruments. For the first specification, we get a value of 2.179

with a p-value of 0.337. Assuming that at least one instrument is exogenous, this result allows

us to reject the endogeneity of the other instruments. For the second specification, we obtain

a value of 187.313 with a p-value of 0.0000. In contrast to the first specification, we cannot

reject the endogeneity of our instruments. Furthermore, we calculated the Hausman test. This

test indicates the necessity to using instruments for the prices of the current generation in the

first specification, but not in the second one. The value of the χ2 distributed test statistic is

equal to 178.59 for the first specification, which is larger than 18.31 – the 95% critical value

with 11 degrees of freedom. For the second specification, the test statistic is equal to 16.13 with

a p-value of 0.933. We conclude from these results that the two-stage least squares results are

the preferred ones for at least the first specification.

We now turn to the second stages of the instrumental variable estimation (columns 3 and

4). We find all variables to be significantly different from zero at least at the 95% significance

level. The estimate of the average selling price of a chip is negative and significantly different

from zero, indicating a negative own price elasticity of demand. The magnitude of −3.062

represents the fact that the DRAM market is characterized by a highly elastic demand curve.

If we interact the average selling price with the product-specific dummy variables, we again

obtain highly elastic values. However, the 4K, 512MB and 1GB generation are even more
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elastic with values ranging from −4.431 to −5.605. The estimate of substitute DRAM chips is

significant and positive. The positive cross-price elasticity confirms the conjecture that different

DRAM generations are substitutes. Moreover, the estimate of 1.543 shows that the price of a

substitute DRAM generation has a lower impact on the DRAM demand than the own price of

that specific DRAM generation under consideration. The demand shifter GGDPt is positive

and significantly different from zero, providing evidence that a higher growth in GDP shifts

the demand outwards. The negative time trend is consistent with previous findings that buyers

substitute away from one generation to the next as time elapses. The dummy variables for

the different generations are all highly significant and positive indicating a persistent growth

in market demand throughout different generations. The magnitude of the dummy variable

estimates is increasing throughout generations, which emphasizes an increase in market size

and the increasing relevance of using DRAM chips in application specific electronic products.

Moreover, we observe that the increase in market size is quite steep until the 16 MB generation;

market demand increased more drastically for early generations. Thereafter, growth in market

demand slowed down.

From the demand estimations, we retrieve the residuals and allow them to enter the output

policy as well as the entry and exit policy.22

Policy function We estimate incumbents’ output policy (11) using different estimation meth-

ods to obtain estimates for the coefficient vector γ. The results are shown in Table 6. All

specifications are estimated in logarithms and with product-specific and firm-specific dummy

variables. Columns (1) and (2) show the ordinary least squares results, columns (3) and (4)

show the two stage least squares results. We instrument cumulative past output in the current

generation with its twice and tree times lagged values. In columns (1) and (3) we use the residual

from specification (2) in Table 5 as demand shock, and in columns (2) and (4) the residual from

specification (4) in Table 5.

Our pooled regression allows us to use approximately 5,500 observations. All regression

estimations illustrate a remarkably good fit, with an R-square of 0.67 and higher. The estimates

for the least square regressions (columns 1 and 2) as well as the two-stage least square regressions

(columns 3 and 4) are highly significant and carry the expected signs. The demand shock has

22To reduce the number of specifications we have to estimate for the policy functions, we use the residuals from
the second specification. Our robustness checks using the residuals from the first specification show no substantial
differences to the ones we used.
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a positive effect on firm level output. The negative sign on the price of material confirms that

higher factor prices increase marginal cost and lower firm level output. The negative sign of the

number of firms in the market indicates that more firms in the period before decreases firm-

specific output today. Cumulated past output is positive and significant. This result emphasizes

the importance of learning-by-doing in this industry. More experience in production increases

efficiency and increases output. The positive sign of the cumulative past output by other firms

indicates that spillovers within a generation are important. Learning effects between generations,

however, are significant only between firms. The negative estimate on the time trend illustrates

that subsequent generations replace the output for earlier generations. The results for the

dummy variables for the different generations turn out to be highly significant and increase

throughout different generations. This results indicate that production increases throughout

generations, reconfirming the fact that market demand grows over time. Again, it is interesting

to see that the magnitude of the estimated market growth is higher for early generations and

begins slowing down for the 16MB generation. We also used the lagged dependent variable as

an additional regressor. The estimations returned a significantly positive estimate for this term,

which shows that a first-order autocorrelation process is present in the data.

Entry and exit distribution We estimate the entry (12) and exit (13) decisions using probit

models to obtain estimates for the coefficient vectors α and λ. The results are shown in Table

7. We estimate two entry models, both including product-specific dummy variables. The first

model, column (1), includes the residual from specification (2) in Table 5 as the demand shock;

the second model, column (2), the residual from specification (4) in Table 5 as the demand

shock. Regarding the exit policy function, the first (second) model includes the residuals from

specification (2) ((4)) in Table 5 as the demand shock and the residuals from specification (2)

((4)) in Table 6 as the productivity shock. Both models are estimated with firm-specific and

product-specific dummy variables. The results are shown in columns (3) and (4).

In both entry models, we find that the cumulative past output in the previous generation is

positively significant. This result confirms that firms subsequently enter different generations. If

a firm was present in the previous generation, it is more likely to enter the next generation. Once

a firm exits the market, it is less likely to reenter in subsequent generations. The coefficient

of the time trend shows that the number of entering firms increases over the life cycle of a
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generation. The generation-specific fixed effects are negative and become even more negative

throughout different generations. This result indicates that entry became less likely over different

generations and reflects increasing entry costs throughout different generations. We discuss this

fact in more detail in the next section when we present the estimation results for the entry costs.

Turning to the results for the exit equation, columns (3) and (4), we observe that negative

productivity shocks drive firms’ exit. The positive coefficient on the number of firms shows that

firms are more likely to exit if more firms are present in the market. The positive estimate on

the time trend reconfirms that firms exit at later periods of the life cycle. The estimates for the

dummy variables are negative and become more negative throughout subsequent generations.

Marginal cost Table 8 shows the estimation results for the parameters entering the marginal

cost function (equation (14)). The dependent variable is the logarithm of marginal cost. All

specifications are estimated with product-specific fixed effects, and the specifications in columns

(3) and (4) also include firm-specific fixed effects. We report the results of two specifications. One

specification includes own intergenerational learning and intergenerational learning via spillovers.

Another specification excludes those learning effects. All estimations return highly significant

learning estimates. Own learning effects and learning via spillovers carry a negative sign, indi-

cating that an increase in own and other firms’ cumulated past output decreases marginal costs.

All specifications confirm decreasing returns to scale, i.e., a 1% increase in output increases

marginal costs by 1.6%, see column (4). The positive estimate of the price of silicon indicates

that higher factor prices result in higher marginal costs.

Actual and predicted outcomes In the following, we are interested to see how well our

policy functions and our model specification predict our data. This comparison is especially

important as our structural estimates (entry costs) are based on our policy functions estimated

in the first-stage. Hence, we compare the average prices, outputs, revenues, market shares,

marginal costs, static profits and profit margins for every generation from the data, with those

predicted by our model. The averages based on the observed data are shown in Panel A of Table

9. We observe that the average industry price sharply declines after the 16MB generation. This

decline in demand growth after the 16MB generation explains the lower industry equilibrium

price. Firm revenues are increasing until the 16MB generation and remain at about the same

level for the next two successive generations. We also observe that market shares are increasing
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after the 16MB generation. This is due to the fact that many firms dropped out after the 16MB

generation which increased the market shares of the surviving firms. Static profits increased

up to the 64MB generation and only slightly decreased in the 128MB generation. It seems to

be surprising that static profits increased even after a shake out process occurred in the 16MB

generation. This is explained by the fact that price competition diminished due to massive exit.

Moreover, firms’ output steadily increased, even after the 16MB generation, which contributes

to increasing profits. An increase in profits also supports the fact that entry cost increased

throughout generations. Higher profits are required to cover the increase in entry costs.

In addition to the actual outcomes, we calculate the outcomes predicted by our model, see

Panel B. Overall, we observe that actual and predicted outcomes are qualitatively in line, i.e.,

firm specific output, revenues, profits and market shares are well predicted. Table 10 presents

the estimated actual and counterfactual scrap value averaged over product generations. It is

derived from regressing the per period profits on the exit dummy variable (and no constant).23

6.2 Structural estimates and counterfactual results

Based on our first-stage results, we recover the entry costs for the different product generations.

To evaluate the plausibility of the estimated entry cost, we compare them with predicted average

cumulated firm profits, which are obtained by summing up the predicted static profits over the

product cycle for each firm and each product generation. We would expect that on average

the estimated entry cost do not exceed cumulated profits. Finally, we perform a counterfactual

analysis to assess the impact of demand growth and entry costs on exit and the evolution of

market structure.

Entry costs To obtain estimates for the entry costs, we exploit the equilibrium condition

(9) as described above. For the simulated policies (15), we construct the alternative policies

(18). Using 300,000 simulations and 1,000 alternative strategies, we compare the simulated

value functions based on optimal strategies with the simulated values based on alternative non-

optimal strategies. Column (1) in Table 11 shows the estimated entry cost for the specific

product generations. Entry costs are increasing for early generations and even more drastically

increasing after the 4MB generation. They reach its maximum of around 118 million USD for

23We also tested whether the scrap value is different across product generations, but the estimation results
rejected the inequality of the coefficients.
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the 64MB generation.24

Column (2) in Table 11 presents the predicted average cumulated firm profits. Comparing

these to the estimated entry cost reveals that on average entry cost are covered by cumulated

profits. Moreover, we observe that the ratio of entry cost over firm profits is increasing over

product generations (column (4)). For the 4K generation, the entry cost amount for 17% of

cumulated profits. This ratio sharply increases for the 16MB generation and reaches its max-

imum of 58% for the 64MB generation. It slightly declines to 44% for the 128MB generation.

Firms pay an increasing share of their profits to enter new technology generations, especially

after the 4MB generation. Hence, it became more difficult to recover the entry costs from their

profit streams. This fact may explain why the number of firms started declining after the 4MB

generation.

Separating the effect of entry cost and demand growth on market structure To

assess the effect of increasing entry cost and diminishing market growth on the evolution of

the number of firms in more detail, we perform a counterfactual experiment. In particular, we

are interested to disentangle the impact on market structure originated by the increasing entry

costs and diminishing market growth on exiting the market. Our counterfactual builds on the

assumption that market growth did not decline after the 4MB generation, but continued growing

at the same rate as before (see also Figure 1). Hence, for the 64MB and 128MB generations, we

expose our industry to positive demand shocks and increase the firm specific output in product

generations by 10%. This change induces a change in industry output, industry prices, firm prof-

its, entry and exit, and thus a change in the entire evolution of the market structure. Column

(3) in Table 11 reports the cumulated firm profits for every generation based on the counterfac-

tual. We observe that, while the cumulated profits in the early generations are similar to the

predicted profits, see column (2), the cumulated profits for the 64MB and 128MB generations

increase by 6% and 7%. As a consequence, firms share of entry costs related to their profits,

see column (5), declines. Firms have to attribute a lower share of their profits for entering new

generations. However, the share of entry costs only marginally declines from 58% to 54% for the

64MB generation. Even though the share for the 64MB generation slightly decreased, it is still

24The 128MB shows considerably lower entry costs of about 28 million USD. A reason for this number could
be that the 128MB generation is a side product. It is only the double value of 64MB and not the quadruple as
any other generation is. In addition, the estimated entry costs for this generations may suffer from a truncation
problem in the time series data. Although the output peak has been reached, the data on shipments are still at
earlier stages of the life cycle and did not yet exceed their maturity stage.
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significantly higher than the share of the earlier generations, which are between 15 and 37%.

Similar results apply to the 128MB generation, indicating that diminishing growth in demand

has a minor impact on the shake out process. The main impact on the decline in the number

of firms is explained by the drastically increasing entry costs. A similar results applies to the

128MB generation.

This result therefore confirms that the significant increase in entry costs from the 16MB

(65 mio.) to the 64MB (118 mio.) significantly contributes to the shake out in the DRAM

industry. In fact, as mentioned in our industry description, the 64MB generation faced many

innovative challenges such as improving lithography processes, reducing cell sizes and lowering

energy consumption. This is interesting to note, since the share of the entry cost went down to

33% in the 128MB generation. Hence, the increase in entry costs had the highest impact on the

64MB generation.

Finally, we report the predicted exit probabilities for our model and our counterfactual, as

shown in columns (6) and (7), respectively. The exit probabilities of our model range from

2.25-6.54% depending on the particular product generation, see column (6). Remarkable is the

increase to 5.9% for the 64MB generation and 6.54% for the 128MB generation. Those exit

probabilities reconfirm the fact that our model is able to capture the increase in exit due to the

increase in the entry costs. The exit probabilities based on our counterfactual experiment for

the 64MB and the 128MB generations, see column (7), are still above the exit probabilities of

the early generations, which confirms the fact that growth in demand did not have a significant

impact on firm exit for the later generations.

We summarize that the increase in entry costs in combination with diminishing growth in

demand explains the inverse U-shaped pattern in the number of firms across generations. For

early generations, the growth in demand dominated the accelerated entry costs such that more

firms were attracted to enter the market. A slowdown in growth of demand in conjunction with

substantial R&D costs in the late 90’s caused a main shake out for the 16MB generation and

thereafter. Most interestingly, however, our study provides evidence that the main reason for

the shake out is driven by increasing entry costs after the 4MB generation. The increase in entry

costs was especially detrimental for the 64MB generation, according to the entry cost to profit

share, shown in column (5).
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7 Summary and concluding remarks

This paper contributes to empirical regularities on market structure. Our study concentrates

on the evolution of market structure in the DRAM industry which is described as follows:

the number of firms steadily increased throughout generations until the mid 1990’s, when it

experienced a sudden shake out and the number of firms drastically declined. We are interested in

explaining why the number of firms in the DRAM industry follows an inverse U-shape throughout

generations. We put special attention to demand side and technology related arguments that

might explain the shake out process. More specifically, the main interest of our study is to

disentangle to what extent a decline in demand growth and an increase in entry cost throughout

different generations might have caused the shake out in the mid 1990’s.

Based on a fully dynamic oligopoly model, in which firms make entry, production and exit

decisions, we estimate the evolution of entry cost throughout different generations. Our results

show that entry cost continuously increased throughout generations and experienced a sharp

increase in the 64MB generations due to improving lithography processes and reducing cell sizes.

This result is consistent with our observation that the shake out process took place after the

16MB generation. Our results also show that a higher share of entry costs on profits increased

firms’ burden to recover the entry costs from the generated discounted profit streams after the

16MB generation.

In a next step, we apply a counterfactual experiment which eliminates the decline in the

demand growth for the last two generations. This counterfactual allows us to test to what extent

the shake out process was caused by increasing entry cost and the decline in market growth.

Using the counterfactual, we predict the profits, the share of entry costs and the predicted exit

probability. The results show that the increase in entry costs explains most of the shake out

process.

To summarize, in the early generations the increase in entry costs was dominated by an

increase in market growth which attracted more firms to enter the markets. From the mid 90s,

a significant increase in entry costs dominated the market growth. Consequently, firms exited

the market.
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A Appendix: Tables

Table 1: Firms’ entry and exit patterns in different DRAM generations

Firm (HQ∗) 4K 16K 64K 256K 1MB 4MB 16MB 64MB 128MB

AMD (US) x x x . . . . . .
Alliance (US) . . . . . x x . .
AMS (US) x . . . . . . . .
AT&T (US) . . . x x . . . .
Fairchild (US) x x x . . . . . .
Fujitsu (JAP) x x x x x x x x x
Hitachi (JAP) x x x x x x x x x
Hyundai (SK) . . x x x x x x x
IBM (US) . . . . x x x x .
Intel (US) x x x x x . . . .
Intersil (US) x x . . . . . . .
LG (SK) . . . x x x x x .
Matsushita (JAP) . x x x x x x x .
Micron (US) . . x x x x x x x
Mitsubishi (JAP) . x x x x x x x x
Mosel Vitelic (US) . . x x x x x x x
Mostek (US) x x . x . . . . .
Motorola (US) x x . x x x x x .
Ntl. Semic. (US) x x x x . . . . .
NEC (JAP) x x x x x x x x x
Nippon (JAP) . . . x x x x x .
OKI (JAP) . . x x x x x x .
Ramtron Int. (US) . . . . . x . . .
Samsung (SK) . . x x x x x x x
Seiko Epson (JAP) . . . . . x x . .
Siemens (GER) . x x x x x x x x
Signetics (US) x x . . . . . . .
Texas Instr. (US) x x x x x x x x .
Toshiba (JAP) . x x x x x x x x
Vanguard (US) . . . . . x x x x
Winbond (CH) . . . . . . x x x
Zilog (US) . x . . . . . . .

# of Firms 15 20 22 23 22 30 30 28 21

Table 1 shows firms’ presence in different DRAM generations. ∗ HQ abbreviates headquarter with CH=China,
GER=Germany, JAP=Japan, SK=South Korea, TA=Taiwan, and US=United States. Note that we only reported
those firms that were among the first three firms to enter or exit at least one of the generations. Source: Gartner
Inc.
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Table 2: Summary statistics for different product generations

Number of firms Product cycle Output peek
First quarters finished reached

Max Total Δ in % New Δ in % four eight Yes/No Yes/No
Product generation (1) (2) (3) (4) (5) (6) (7) (8) (9)

4K 14 15 . 15 . 3 10 Yes Yes
16K 17 20 33 6 -60 4 14 Yes Yes
64K 18 20 0 7 17 2 7 Yes Yes
256K 19 23 15 5 -29 7 9 Yes Yes
1MB 19 22 -4 1 -80 5 8 Yes Yes
4MB 23 30 36 10 900 6 11 Yes Yes
16MB 20 30 0 3 -70 9 12 No Yes
64MB 15 28 -7 0 -300 10 12 No Yes
128MB 16 21 -25 0 0 6 10 No Yes
256MB 11 14 -33 0 0 4 8 No No
512MB 7 7 -50 0 0 3 6 No No
1GB 5 5 -29 0 0 4 5 No No

Table 2 presents descriptive statistics on the number of firms in the market across product generations.

Table 3: Summary statistics for different product generations

Market size Per firm
Shipments Revenues Shipments Revenues

Product generation Average Δ in % Average Δ in % Average Δ in % Average Δ in %

4K 6,133 . 38,609 . 757 . 4,764 .
16K 34,565 464 154,973 301 2,555 238 11,457 140
64K 33,744 -2 155,899 1 3,667 43 16,721 46
256K 76,913 128 309,437 98 5,533 51 22,259 33
1MB 87,378 14 639,563 107 5,839 6 42,736 92
4MB 120,035 37 1147,902 79 8,812 51 84,273 97
16MB 184,811 54 1454,847 27 12,867 46 101,287 20
64MB 189,241 2 1205,404 -17 15,734 22 100,218 -1
128MB 219,177 16 1030,970 -14 21,441 36 100,856 1
256MB 336,018 53 1677,750 63 42,002 96 209,719 108
512MB 29,253 -91 368,180 -78 6,338 -85 79,772 -62
256MB 1,533 -95 60,998 -83 447 -93 17,791 -78

Table 3 presents industry-specific averages. Prices are in constant US-$ as of 2000. Shipments are shown in 1,000
units and revenues are shown in 1,000 US Dollar.
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Table 4: Progress of DRAM technologies from 4MB to 1GB

4MB 16MB 64MB 256MB 1GB Scaling factor

Year of introduction 1988 1991 1995 1999 2003
Design rules (μm) 0.80 0.50 0.35 0.25 0.18 ˜0.7
Chip size (mm2) 87 130 200 300 450 ˜1.5
Cell size (mm2) 11 4.0 1.6 0.6 0.25 ˜0.4
Internal power supply (V ) 3.3-5.0 3.3 2.5 2.0 1.5 ˜0.8

Table 4 presents the evolution of DRAM technology from the 4MB until the 1GB DRAM chip. Source: El-Kareh
and Bronner (1997).
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Table 5: Estimation results for the demand function

Dependent variable: Log(Industry output) Ordinary least squares Two-stage least squares

Variable (1) (2) (3) (4)

Constant 16.082 17.540 18.016 20.206
(42.60)∗∗ (17.58)∗∗ (41.22)∗∗ (14.27)∗∗

Log(Average selling price) -3.015 -3.787
(-28.95)∗∗ (-34.05)∗∗

Log(Average selling price) × 4K -3.911 -5.430
(-5.68)∗∗ (-5.80)∗∗

Log(Average selling price) × 16K -3.345 -3.652
(-24.68)∗∗ (-24.57)∗∗

Log(Average selling price) × 64K -2.923 -3.323
(-20.22)∗∗ (-20.40)∗∗

Log(Average selling price) × 256K -3.132 -3.606
(-24.95)∗∗ (-23.71)∗∗

Log(Average selling price) × 1MB -3.326 -3.694
(-19.55)∗∗ (-18.34)∗∗

Log(Average selling price) × 4MB -3.196 -3.617
(-25.60)∗∗ (-23.37)∗∗

Log(Average selling price) × 16MB -3.012 -3.417
(-20.86)∗∗ (-21.83)∗∗

Log(Average selling price) × 64MB -2.670 -2.919
(-11.90)∗∗ (-13.35)∗∗

Log(Average selling price) × 128MB -3.414 -3.769
(-9.99)∗∗ (-10.48)∗∗

Log(Price index of substitute DRAM generations) 1.462 1.518 2.091 1.920
(9.98)∗∗ (9.69)∗∗ (12.59)∗∗ (10.89)∗∗

Time trend -0.077 -0.079 -0.087 -0.079
(-6.61)∗∗ (-6.45)∗∗ (-7.20)∗∗ (-6.50)∗∗

First difference of Log(GDP) 24.717 31.625 30.773 36.983
(2.17)∗∗ (2.59)∗∗ (2.30)∗∗ (2.88)∗∗

Dummy variable for 16K 2.846 2.099 3.305 0.423
(12.42)∗∗ (2.23)∗∗ (9.35)∗∗ (0.34)

Dummy variable for 64K 5.781 4.421 7.509 3.624
(17.50)∗∗ (4.89)∗∗ (16.97)∗∗ (3.21)∗∗

Dummy variable for 256K 9.923 8.959 12.494 8.739
(24.39)∗∗ (9.65)∗∗ (22.93)∗∗ (7.83)∗∗

Dummy variable for 1MB 14.023 13.570 17.716 13.803
(27.11)∗∗ (14.05)∗∗ (26.47)∗∗ (12.12)∗∗

Dummy variable for 4MB 17.252 16.668 21.874 17.511
(26.31)∗∗ (17.16)∗∗ (26.51)∗∗ (15.48)∗∗

Dummy variable for 16MB 20.170 19.262 25.674 20.594
(26.62)∗∗ (19.05)∗∗ (26.97)∗∗ (17.54)∗∗

Dummy variable for 64MB 22.247 20.771 28.486 22.310
(25.41)∗∗ (19.71)∗∗ (26.57)∗∗ (18.12)∗∗

Dummy variable for 128MB 24.213 24.195 31.138 26.306
(25.40)∗∗ (20.85)∗∗ (27.13)∗∗ (19.40)∗∗

First-stage F-Test (joint significance of instruments) ∗∗ ∗∗
Number of observations 433 433 426 426
R-squared adjusted 0.82 0.83 0.76 0.81

Table 5 presents ordinary least squares and two-stage least squares estimation results for the demand equation(10).
The dependent variable is industry output. The specification in columns (1) and (2) are estimated with ordinary
least squares, and columns (3) and (4) with two stage least squares. We instrument industry prices with price of
silicon, past cumulative output and number of firms. An F-test shows that these instruments are jointly significant
at the 95% level. All specifications are estimated in logarithms and with product-specific dummy variables. Values
of robust t-statistics are shown in parentheses below the parameter estimates. ∗∗ (∗) denotes a 95% (90%) level
of significance.
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Table 6: Estimation results for incumbents’ output policy function

Dependent variable: Log(Firm output) Ordinary least squares Two-stage least squares

Variable (1) (2) (3) (4)

Constant 2.692 2.453 2.697 2.471
(4.45)∗∗ (4.14)∗∗ (4.39)∗∗ (4.10)∗∗

Lagged demand shock (OLS) 0.027 0.047
(2.15)∗∗ (3.63)∗∗

Lagged demand shock (2SLS) -0.007 0.021
(-0.59) (1.77)∗

Log(Lagged price of silicon) -0.394 -0.371 -0.430 -0.408
(-6.00)∗∗ (-5.76)∗∗ (-6.44)∗∗ (-6.24)∗∗

Log(Lagged number of firms) -0.129 -0.124 -0.235 -0.226
(-2.45)∗∗ (-2.34)∗∗ (-4.25)∗∗ (-4.10)∗∗

Current generation
Log(Cumulative past output) 0.496 0.495 0.533 0.531

(27.91)∗∗ (27.89)∗∗ (30.24)∗∗ (30.14)∗∗

Log(Cumulative past output of other firms) 0.347 0.350 0.404 0.409
(19.68)∗∗ (19.78)∗∗ (21.14)∗∗ (21.29)∗∗

Previous generation
Log(Cumulative past output) 0.005 0.005 0.003 0.003

(1.69)∗ (1.65)∗ (0.90) (0.88)
Log(Cumulative past output of other firms) 0.014 0.015 0.011 0.011

(4.32)∗∗ (4.54)∗∗ (3.20)∗∗ (3.38)∗∗
Time trend -0.127 -0.127 -0.140 -0.141

(-57.46)∗∗ (-56.33)∗∗ (-61.48)∗∗ (-60.22)∗∗
Dummy variable for 16K 1.446 1.454 1.630 1.630

(22.78)∗∗ (22.93)∗∗ (24.83)∗∗ (24.88)∗∗
Dummy variable for 64K 2.620 2.653 2.908 2.935

(36.56)∗∗ (37.25)∗∗ (39.74)∗∗ (40.35)∗∗
Dummy variable for 256K 4.263 4.281 4.757 4.772

(40.16)∗∗ (40.24)∗∗ (43.35)∗∗ (43.36)∗∗
Dummy variable for 1MB 6.148 6.172 6.803 6.824

(48.58)∗∗ (48.50)∗∗ (51.66)∗∗ (51.50)∗∗
Dummy variable for 4MB 7.684 7.715 8.494 8.525

(53.03)∗∗ (53.08)∗∗ (56.19)∗∗ (56.15)∗∗
Dummy variable for 16MB 8.989 9.027 9.942 9.983

(54.42)∗∗ (54.37)∗∗ (57.84)∗∗ (57.72)∗∗
Dummy variable for 64MB 10.231 10.279 11.222 11.276

(56.62)∗∗ (56.80)∗∗ (59.48)∗∗ (59.63)∗∗
Dummy variable for 128MB 10.773 10.824 11.840 11.896

(56.83)∗∗ (56.78)∗∗ (60.19)∗∗ (60.07)∗∗

AR(1) 0.698 0.699 0.669 0.671
(33.06)∗∗ (33.14)∗∗ (31.51)∗∗ (31.59)∗∗

Number of observations 5,211 5,211 5,211 5,211
R-squared adjusted 0.90 0.90 0.90 0.90

Table 6 presents the estimation results for the incumbents’ policy function, see equation (11). The dependent
variable is firm-specific output. All specifications are estimated in logarithms, accounting for an autoregressive
term of order one, and with product-specific and firm-specific dummy variables. Columns (1) and (2) are estimated
with ordinary least squares, columns (3) and (4) with two stage least squares. We instrument cumulative past
output in the current generation with its twice and tree times lagged values. In columns (1) and (3) we use
the residual from specification (2) in Table 5 as demand shock, and in columns (2) and (4) the residual from
specification (4) in Table 5. Values of robust t-statistics are shown in parentheses below the parameter estimates.
∗∗ (∗) denotes a 95% (90%) level of significance.
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Table 7: Estimation results for entry and exit distribution

Dependent variable: Firm entry and exit Entry Entry Exit Exit

Variable (1) (2) (3) (4)

Constant -4.378 -3.642 -5.030 -4.938
(-2.28)∗∗ (-1.89)∗ (-2.46)∗∗ (-2.43)∗∗

Lagged demand shock (OLS) 0.004
(0.06)

Lagged demand shock (TSLS) -0.060 0.023
(-1.33) (0.45)

Log(Lagged price of silicon) 0.399 0.337 0.115 0.101
(1.74)∗ (1.44) (0.52) (0.46)

Log(Lagged number of firms) -0.073 -0.119 0.828 0.842
(-0.54) (-0.90) (3.46)∗∗ (3.52)∗∗

Current generation
Log(Cumulative past output) -0.235 -0.236

(-5.15)∗∗ (-5.18)∗∗

Log(Cumulative past output of other firms) 0.058 0.054 0.032 0.032
(2.13)∗∗ (1.97)∗∗ (0.42) (0.42)

Previous generation
Log(Cumulative past output) 0.087 0.087 -0.015 -0.015

(11.75)∗∗ (11.74)∗∗ (-1.18) (-1.19)
Log(Cumulative past output of other firms) -0.026 -0.028 -0.003 -0.003

(-1.29) (-1.41) (-0.20) (-0.25)
Productivity shock (OLS) -0.211

(-3.65)∗∗

Productivity shock (TSLS) -0.209
(-3.70)∗∗

Time trend 0.025 0.025 0.119 0.119
(2.84)∗∗ (2.75)∗∗ (9.90)∗∗ (10.03)∗∗

Dummy variable for 16K -0.506 -0.572 -1.067 -1.075
(-0.88) (-0.99) (-3.29)∗∗ (-3.30)∗∗

Dummy variable for 64K -1.156 -1.292 -3.024 -3.041
(-1.89)∗ (-2.13)∗∗ (-7.89)∗∗ (-8.00)∗∗

Dummy variable for 256K -1.307 -1.387 -5.289 -5.314
(-1.93)∗ (-2.05)∗∗ (-8.33)∗∗ (-8.43)∗∗

Dummy variable for 1MB -1.877 -1.926 -6.669 -6.705
(-2.54)∗∗ (-2.58)∗∗ (-8.41)∗∗ (-8.53)∗∗

Dummy variable for 4MB -2.274 -2.346 -7.267 -7.301
(-2.75)∗∗ (-2.82)∗∗ (-8.24)∗∗ (-8.36)∗∗

Dummy variable for 16MB -2.515 -2.613 -7.847 -7.881
(-2.78)∗∗ (-2.88)∗∗ (-7.98)∗∗ (-8.10)∗∗

Dummy variable for 64MB -2.507 -2.678 -7.925 -7.966
(-2.54)∗∗ (-2.72)∗∗ (-7.68)∗∗ (-7.81)∗∗

Dummy variable for 128MB -2.658 -2.798 -8.542 -8.588
(-2.63)∗∗ (-2.77)∗∗ (-7.79)∗∗ (-7.94)∗∗

Number of observations 2,399 2,399 4,983 4,983
Pseudo R-squared 0.23 0.28 0.28 0.27

Table 7 presents the estimation results from the probit models of the entry and exit policy functions, see equations
(12) and (13), respectively. In the entry model (columns (1) and (2)), the dependent variable is an indicator
variable, which is equal to one when a firm enters the market and zero before. In the exit models (columns (3)
and (4)), the dependent variable is an indicator variable, which is equal to one when a firm exits the market and
zero before. The entry equations are estimated with product-specific dummy variables. The exit equations are
estimated with firm-specific and product-specific dummy variables. Values of t-statistics are shown in parentheses
below the parameter estimates. In columns (1) and (3) we use the residual from specification (2) in Table 5 as
demand shock, and in columns (2) and (4) the residual from specification (4) in Table 5. In columns (3) and (4)
we use the residuals from specifications (2) and (4) in Table 6 as productivity shock. ∗∗ (∗) denotes a 95% (90%)
level of significance.

39



Table 8: Estimation results for the marginal cost function

Dependent variable: Log(Marginal cost) Ordinary least squares Fixed effects

Variable (1) (2) (3) (4)

Constant -0.647 -0.856 -0.054 -0.259
(-9.17)∗∗ (-12.31)∗∗ (-0.27) (-1.34)

Output -2.724 -2.011 -2.934 -2.188
(-22.56)∗∗ (-15.63)∗∗ (-24.17)∗∗ (-16.54)∗∗

Output squared 0.017 0.012 0.018 0.013
(13.98)∗∗ (9.66)∗∗ (15.27)∗∗ (11.05)∗∗

Current generation
Cumulative past output 0.005 -0.007 -0.039 -0.031

(0.97) (-1.18) (-6.50)∗∗ (-4.85)∗∗
Cumulative past output of other firms -0.036 -0.030 -0.032 -0.028

(-77.13)∗∗ (-52.00)∗∗ (-51.52)∗∗ (-41.43)∗∗
Previous generation
Cumulative past output 0.007 -0.011

(1.08) (-1.47)
Cumulative past output of other firms -0.011 -0.009

(-17.92)∗∗ (-14.02)∗∗
Price of silicon 0.001 0.001 0.001 0.001

(39.57)∗∗ (43.19)∗∗ (39.19)∗∗ (42.09)∗∗
Dummy variable for 16K 0.306 0.327 0.300 0.323

(7.66)∗∗ (8.42)∗∗ (7.35)∗∗ (8.05)∗∗
Dummy variable for 64K 0.626 0.647 0.661 0.694

(15.51)∗∗ (16.47)∗∗ (14.57)∗∗ (15.58)∗∗
Dummy variable for 256K 1.320 1.409 1.335 1.431

(33.09)∗∗ (35.94)∗∗ (29.23)∗∗ (31.58)∗∗
Dummy variable for 1MB 1.924 2.175 1.947 2.192

(46.01)∗∗ (49.86)∗∗ (40.79)∗∗ (43.94)∗∗
Dummy variable for 4MB 2.764 2.918 2.797 2.957

(61.51)∗∗ (64.94)∗∗ (55.40)∗∗ (58.00)∗∗
Dummy variable for 16MB 3.304 3.683 3.344 3.691

(68.45)∗∗ (70.90)∗∗ (62.47)∗∗ (64.15)∗∗
Dummy variable for 64MB 2.852 3.431 2.952 3.464

(51.05)∗∗ (53.71)∗∗ (47.57)∗∗ (49.31)∗∗
Dummy variable for 128MB 2.651 3.056 2.818 3.164

(43.31)∗∗ (47.59)∗∗ (41.07)∗∗ (43.78)∗∗

Number of observations 5,651 5,651 5,651 5,651
R-squared adjusted 0.78 0.79 0.79 0.80

Table 8 presents ordinary least squares estimation results for marginal costs, equation (14), for the DRAM
industry. The dependent variable is logarithm of marginal cost (backed out of the Lerner index). All specifications
are estimated with product-specific fixed effects, specifications in columns (3) and (4) also include firm-specific
fixed effects. Values of t-statistics are shown in parentheses below the parameter estimates. ∗∗ (∗) denotes a 95%
(90%) level of significance.
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Table 9: Industry description by product generation

Industry Firm Firm Market Demand Marginal Static Profit
Price output revenue share elasticity cost Profits Margin

Product generation (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Actual

4K 13.46 756 4,764 12.34 3.911 8.23 153 2.24
16K 21.62 2,555 11,457 7.39 3.345 9.97 370 2.02
64K 28.30 3,666 16,721 10.87 2.923 12.37 735 3.27
256K 17.33 5,532 22,259 7.19 3.132 6.68 694 2.00
1MB 17.38 5,838 42,735 6.68 3.326 9.57 1,255 1.81
4MB 46.72 8,812 84,273 7.34 3.196 22.97 1,996 2.02
16MB 48.32 12,866 101,286 6.96 3.012 32.78 3,348 2.03
64MB 24.13 15,733 100,218 8.31 2.670 16.20 5,949 2.84
128MB 11.82 21,441 100,855 9.78 3.414 6.94 5,612 2.58

Panel B. Predicted

4K 4.91 762 4,522 11.70 3.911 5.30 121 2.16
16K 12.37 2,484 11,219 7.29 3.345 7.73 386 2.00
64K 24.12 3,514 12,068 10.77 2.923 9.85 514 3.24
256K 12.52 5,222 20,951 7.16 3.132 5.51 668 1.98
1MB 12.80 5,871 40,183 6.57 3.326 8.10 1,179 1.78
4MB 36.66 9,878 76,434 6.51 3.196 19.42 2,462 1.80
16MB 38.73 15,916 92,228 6.96 3.012 26.47 7,039 2.04
64MB 13.17 30,114 102,361 8.33 2.670 9.90 14,291 2.85
128MB 8.18 23,030 88,058 9.32 3.414 4.12 5,783 2.47

Table 9 presents actual and predicted average prices, average firm output, average firm revenues, average market
shares, marginal cost, the Lerner index, static profits and profit margins per product generation. Shipments are
shown in 1,000 units and revenues and profits are shown in 1,000 US Dollar.

Table 10: Estimated scrap value

Actual Predicted

Estimated scrap value averaged over product generations 1,133.225 (2.33)∗∗ 656.707 (2.95)∗∗

Table 10 presents the estimated scrap value averaged over product generations in the DRAM industry. It is
derived from regressing the actual and predicted per period profits on the exit dummy variable (and no constant).
The value of the t-statistic is shown in parentheses besides the parameter estimate. ∗∗ (∗) denotes a 95% (90%)
level of significance.
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Table 11: Entry cost, cumulated profits and exit probabilities by product generation

Average cumulated Ratio: entry costs Average
Entry costs firm profits to profits in % exit probability

Counter- Counter-
Predicted factual (1)/(2) (1)/(3) Predicted factual

Product generation (1) (2) (3) (4) (5) (6) (7)

4K 521 3,119 3,148 17 17 4.43 4.43
16K 2,629 10,152 10,181 26 26 3.35 3.35
64K 4,867 16,321 16,350 30 30 2.97 2.97
256K 5,497 24,447 24,475 22 22 2.75 2.75
1MB 6,933 45,741 45,770 15 15 2.25 2.25
4MB 18,828 63,034 63,063 30 30 2.42 2.42
16MB 64,795 175,710 175,739 37 37 3.52 3.52
64MB 118,454 204,820 218,052 58 54 5.99 4.00
128MB 28,249 64,553 69,216 44 33 6.54 4.66

Table 11 presents average cumulated firm profits, average cumulated exit probabilities, average entry costs in
1,000 US Dollars, and entry costs in percent of average cumulated profits per product generations. Entry costs
are estimated based on 300,000 simulations and 1,000 alternative strategies.
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B Appendix: Figures

Figure 1: Industry units shipped, 1974-2004
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Figure 3: Total industry units shipped, 1974-2004
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Figure 4: Cell architecture

Source: Sunami (2008)
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Figure 5: Average DRAM selling prices in USD, 1974-2004
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C Appendix: Industry learning

We apply a test to confirm the presence of learning effects in production. With regard to learning

effects, firms follow a dynamic production strategy, as firm’s production rate enters costs through

experience and becomes a state variable. Firms’ current production has an instant impact on

prices and profits, and will increase future experience resulting in future cost savings (see e.g.

Dick (1991), Fudenberg and Tirole (1983 and 1986), Majd and Pindyck (1989), Spence (1981)

and Wright (1936)). This implies that firms’ contemporaneous production has an impact on

current prices and profits as well as an intertemporal impact on their profits through future

costs.

We test if learning effects and economies of scale are prevalent in our data. We proxy learning

using using past accumulated output and economies of scale using current production. We

regress the average prices on a constant, past accumulated industry output, current industry

output, and a set of dummy variables for different product generations. Table 12 shows the

results when we specify learning effects to be identical across generations. We apply ordinary

least squares (columns 1 and 2) and two stage least squares regressions (columns 3 and 4),

as learning describes a predetermined variable. For the latter, we instrument for the current

industry output using supply shifters, i.e., the price for material, which is the world market price

of silicon compiled by Metal Bulletin. We also use summary statistics from the supply side as

instruments such as the number of firms in the market. We are able to use 488 observations and

get R-squares higher than 80%. A negative sign for the cumulated industry output is consistent

with learning-by-doing. The calculated learning elasticities range from 24%-30%, meaning that

if past cumulative production doubles cost declines to about 70%-76% of its previous level.25 We

also estimate the learning effects separately for every generation. Our results confirm significant

learning effects, which are comparable in magnitude to earlier findings. We can also confirm

that the magnitude of learning effects are similar across generations, which allows us to pool the

data across generations when estimating the production policy function.

25Learning elasticities or learning rates are calculated by 1 - 2(learning coefficient). For a detailed discussion
see for example, Berndt (1991, pp. 66).
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Table 12: Learning effects in the DRAM industry

Dependent variable: Log(Industry price) Ordinary least squares Two-stage least squares
First stage Second stage

Variable (1) (2) (3) (4)

Constant 6.390 5.970 7.095 5.816
(66.14)∗∗ (53.84)∗∗ (21.86)∗∗ (48.31)∗∗

Log(Cumulative industry output) -0.404 -0.475 -0.501
(-51.41)∗∗ (-49.23)∗∗ (-42.75)∗∗

Log(Industry output) 0.154 0.210
(10.31)∗∗ (10.62)∗∗

First difference of Log(GDP) -10.587
(-0.51)

Time trend 0.162
(20.12)∗∗

Dummy variable for 16K 0.098 -0.168 -0.546 -0.266
(1.33) (-1.96)∗ (-1.48) (-2.75)∗∗

Dummy variable for 64K 0.167 0.160 -3.349 0.157
(3.00)∗∗ (2.15)∗∗ (-7.05)∗∗ (1.77)∗

Dummy variable for 256K 0.554 0.370 -4.293 0.303
(8.25)∗∗ (4.39)∗∗ (-8.64)∗∗ (3.11)∗∗

Dummy variable for 1MB 0.928 0.653 -6.017 0.552
(10.68)∗∗ (7.22)∗∗ (-11.20)∗∗ (5.63)∗∗

Dummy variable for 4MB 0.931 0.677 -8.328 0.583
(9.46)∗∗ (7.17)∗∗ (-12.35)∗∗ (5.72)∗∗

Dummy variable for 16MB 1.151 0.806 -9.649 0.680
(10.18)∗∗ (6.90)∗∗ (-13.44)∗∗ (5.38)∗∗

Dummy variable for 64MB 0.875 0.477 -10.987 0.331
(8.51)∗∗ (4.48)∗∗ (-13.70)∗∗ (2.92)∗∗

Dummy variable for 128MB 0.741 0.293 -12.054 0.129
(6.77)∗∗ (2.47)∗∗ (-14.38)∗∗ (1.01)

Number of observations 449 449 449 449
R-squared adjusted 0.86 0.89 0.65 0.88

Table 12 presents ordinary least squares and two-stage least squares results of learning effects for the DRAM
industry. In columns (1), (2), and (4), the dependent variable is average selling price. In the reduced form
equation (column (3)), the dependent variable is the average industry output. All specifications are estimated in
logarithms and with product-specific dummy variables. Values of t-statistics are shown in parentheses below the
parameter estimates. ∗∗ (∗) denotes a 95% (90%) level of significance.
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