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We consider testing for multiple structural changes in cointegrated systems and derive the limiting dis-
tribution of the sup-Wald test under mild conditions on the errors and regressors for a variety of testing
problems. We show that even if the coefficients of the integrated regressors are held fixed but the intercept
is allowed to change, the limit distributions are not the same as would prevail in a stationary framework.
We also propose a sequential procedure that permits consistent estimation of the number of breaks present.
We show via simulations that our tests maintain the correct size in finite samples and are much more pow-
erful than the commonly used LM tests, which suffer from important problems of nonmonotonic power
in the presence of serial correlation in the errors.
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1. INTRODUCTION

Issues related to structural change have received considerable
attention in the statistics and econometrics literature. Andrews
(1993) and Andrews and Ploberger (1994) provided a compre-
hensive treatment of the problem of testing for structural change
assuming that the change point is unknown. Bai (1997) studied
the least squares estimation of a single change point in regres-
sions involving stationary and/or trending regressors, and de-
rived the consistency, rate of convergence, and limiting distri-
bution of the change point estimator under general conditions
on the regressors and the errors. Perron and Zhu (2005) ana-
lyzed the properties of parameter estimates in models in which
the trend function exhibits a slope change at an unknown date
and the errors can either be stationary, I(0), or have a unit root,
I(1), where here and throughout the article we refer to an I(0)
process as one whose partial sums satisfies a functional cen-
tral limit theorem with a Brownian motion as the limit random
variable, and I(1) is the partial sum of an I(0) series.
With integrated variables, the case of interest is when the

variables are cointegrated. Accounting for parameter shifts is
crucial in cointegration analysis, which normally involves long
spans of data, which are more likely to be affected by structural
breaks. Bai, Lumsdaine, and Stock (1998) considered a single
break in a multiequation system. They showed consistency of
the maximum likelihood estimates and obtained a limit distri-
bution of the break date estimate under a shrinking shifts sce-
nario. Kejriwal and Perron (2008b) studied the properties of the
estimates of the break dates and parameters in a linear regres-
sion with multiple structural changes involving I(1), I(0), and
trending regressors.
With respect to testing, Hansen (1992b) developed tests of

the null hypothesis of no change in cointegrated models in
which all coefficients are allowed to change. An extension
to partial changes was analyzed by Kuo (1998), who consid-
ered the Sup and Mean LM tests directed against an alter-
native of a one-time change in parameters. Hao (1996) also

suggested using the exponential LM test. Seo (1998) consid-
ered the sup, mean, and exp versions of the LM test within
a cointegrated VAR setup; however, these test procedures are
based on the fully modified estimation method (Phillips and
Hansen 1990), which has been shown to lead to tests with very
poor finite-sample properties (Carrion-i-Silvestre and Sansó-i-
Rosselló 2006). The results of Quintos and Phillips (1993) also
suggest that the LM tests are likely to suffer from the problem
of low power in finite samples. Moreover, simulation experi-
ments of Hansen (2000) have shown that the LM test behaves
quite poorly in the presence of structural changes in the mar-
ginal distribution of the regressors, whereas the sup-Wald test
is reasonably robust to such shifts. Hansen (2003) considered
multiple structural changes in a cointegrated system, although
his analysis was restricted to the case of known break dates. Fi-
nally, Qu (2007) proposed a procedure to detect whether coin-
tegration is present when the cointegrating vector changes at
some unknown date, possibly multiple dates.
The literature on testing for multiple structural changes is rel-

atively sparse but is practically important, because single-break
tests can suffer from nonmonotonic power when the alternative
involves more than one break. As stressed by Perron (2006),
most tests may exhibit nonmonotonic power functions if the
number of breaks present is greater than the number explic-
itly accounted for in the construction of the tests. The aim of
the present work is to provide a comprehensive treatment of is-
sues related to testing for multiple structural changes occurring
on unknown dates in cointegrated regression models. Our work
builds on that of Bai and Perron (1998), who studied a similar
treatment in a stationary context. Our framework is sufficiently
general to allow both I(0) and I(1) variables in the regression.
The assumptions about the distribution of the error processes
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are sufficiently mild to allow for general forms of serial cor-
relation. Moreover, we analyze both pure and partial structural
change models. A partial change model is useful in allowing po-
tential savings in degrees of freedom, a particularly relevant is-
sue for multiple changes. It is also important in empirical work,
because it helps isolate the variables responsible for the fail-
ure of the null hypothesis. We derive the limiting distribution
of the sup-Wald test under the null hypothesis of no structural
change against the alternative hypothesis of a given number of
cointegrating regimes. We also consider the double-maximum
tests proposed by Bai and Perron (1998). We provide critical
values for a wide variety of models that are relevant in prac-
tice. Finally, our simulation experiments show that with seri-
ally correlated errors, the commonly used sup, mean, and exp-
LM tests suffer from nonmonotonic power problems. This is
true for cases with a single break as well as those with multi-
ple breaks. We propose a modified sup Wald test that exhibits
a power function that is monotonic with respect to the magni-
tude of the break(s) while maintaining reasonable size proper-
ties.
The article is organized as follows. Section 2 presents the

model and assumptions. Section 3 describes the testing prob-
lems and the test statistics used. Section 4 presents our theo-
retical results regarding the limit distributions of the tests for
a wide variety of cases. This is first done for models involv-
ing nontrending regressors, no serial correlation in the errors,
and exogenous regressors. These restrictions are relaxed in Sec-
tions 4.2, 5.1, and 5.2, respectively. Asymptotic critical values
are presented in Section 4.3. Section 6 presents simulation ex-
periments that address issues related to the size and power of
the tests, including a comparison with the often used LM tests.
Section 7 provides some concluding remarks. The Appendix
presents technical derivations.

2. THE MODEL AND ASSUMPTIONS

Consider the following linear regression model with m
breaks (m + 1 regimes):

yt = cj + z′
ftδf + z′

btδbj + x′
ftβ f + x′

btβbj + ut

(t = Tj−1 + 1, . . . ,Tj) (1)

for j = 1, . . . ,m+1, where T0 = 0, Tm+1 = T , and T is the sam-
ple size. In this model, yt is a scalar-dependent I(1) variable, xft

(pf × 1) and xbt (pb × 1) are vectors of I(0) variables, whereas
zft (qf × 1) and zbt (qb × 1) are vectors of I(1) variables de-

fined by zft = zf ,t−1 +uf
zt, zbt = zb,t−1 +ub

zt, xft = μf +uf
xt, and

xbt = μb + ub
xt, where for simplicity, zf0 and zb0 are assumed to

be either Op(1) random variables or fixed finite constants. For
ease of reference, the subscript b on the error term represents
“break” and the subscript f represents “fixed” (across regimes).
The break points (T1, . . . ,Tm) are treated as unknown. This is
a partial structural change model in which the coefficients of
only a subset of the regressors are subject to change. When
pf = qf = 0, we have a pure structural change model with all
coefficients allowed to change across regimes. It will be useful
to express (1) in matrix form as

Y = Gα + W̄γ + U,

where Y = (y1, . . . , yT)′, G = (Zf ,Xf ), Zf = (zf1, . . . , zfT)′,
Xf = (xf1, . . . ,xfT)′, U = (u1, . . . ,uT)′, W = (w1, . . . ,wT)′,
wt = (1, z′

bt,x′
bt)

′, γ = (δ′
b1,β

′
b1, . . . , δ

′
b,m+1,β

′
b,m+1)

′, α =
(δ′

f ,β
′
f )

′ and W̄ is the matrix which diagonally partitions W at

the m-partition (T1, . . . ,Tm), that is, W̄ = diag(W1, . . . ,Wm+1)

with Wi = (wTi−1+1, . . . ,wTi)
′ for i = 1, . . . ,m + 1. Kejriwal

and Perron (2008b) analyzed the properties of the estimates of
the break dates and the other parameters of the model under
general conditions on the regressors and the errors. In this arti-
cle, our interest lies in testing the null hypothesis of no struc-
tural change versus the alternative hypothesis of m changes as
specified by the model (1). Thus the data-generating process is
assumed to be given by (1) with pb = qb = 0.

As a matter of notation, “
p→” denotes convergence in prob-

ability, “
d→” denotes convergence in distribution, and “⇒” de-

notes weak convergence in the space D[0,1] under the Skoro-
hod metric. In addition, xt = (x′

ft,x′
bt)

′, uxt = (uf ′
xt,ub′

xt)
′, zt =

(z′
ft, z′

bt)
′, μ = (μ′

f ,μ
′
b)

′, and λ = {λ1, . . . , λm} is the vector of
break fractions defined by λi = Ti/T for i = 1, . . . ,m. We make
the following assumptions on ξ t = (ut, uf ′

zt , ub′
zt , uf ′

xt, ub′
xt)

′, a vec-
tor of dimension n = qf + pf + qb + pb + 1.

Assumption A1. The vector ξ t satisfies the following mul-
tivariate functional central limit theorem (FCLT): T−1/2 ×∑[Tr]

t=1 ξ t ⇒ B(r), with B(r) = (B1(r),Bf
z(r)′,Bb

z (r)
′,Bf

x(r)′,
Bb

x(r)
′)′ is a n vector Brownian motion with symmetric covari-

ance matrix

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ 2 �
f
1z �b

1z �
f
1x �b

1x

�
f
z1 �

ff
zz �

fb
zz �

fb
zx �

ff
zx

�b
z1 �

bf
zz �bb

zz �
bf
zx �bb

zx

�
f
x1 �

ff
xz �

fb
xz �

ff
xx �

fb
xx

�b
x1 �

bf
xz �bb

xz �
bf
xx �bb

xx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

qf

qb

pf

pb

= lim
T→∞ T−1E(STS′

T) = 	 + 
 + 
′,

where ST = ∑T
t=1 ξ t,	 = limT→∞ T−1 ∑T

t=1 E(ξ tξ
′
t), and


 = limT→∞ T−1 ∑T−1
j=1

∑T−j
t=1 E(ξ tξ

′
t+j). We also assume σ 2 >

0 and p limT→∞ T−1 ∑T
t=1 u2t = limT→∞ T−1 ∑T

t=1 E[u2t ] ≡
σ 2

u .

Assumption A2. The vector {xtut} satisfies assumption A4
of Qu and Perron (2007), so that T−1/2 ∑[Tr]

t=1(u
f
xt,ub

xt)ut ⇒
σQ∗1/2W∗

x(r), where W∗
x(r) = (W∗

xf (r)
′,W∗

xb(r)
′)′ is a (pf +

pb) vector of independent Wiener processes, and

Q∗ =
[

Qff∗
x Qfb∗

x

Qbf∗
x Qbb∗

x

]
.

Assumption A3. For all t and s, (a) E(uxtutz′
s) = 0,

(b) E(uxtutus) = 0, and (c) E(uxtutu′
xs) = 0.

Assumption A4. The matrix(
�

ff
zz �

fb
zz

�
bf
zz �bb

zz

)

is positive definite.
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Assumption A5. T−1 ∑[Ts]
t=1 xtx′

t
p→ sQ and T−1 ∑[Ts]

t=1 uxt ×
u′

xt
p→ sQ∗, uniformly in s ∈ [0,1], for some positive definite

matrices Q and Q∗.

Assumption A1 requires that the errors satisfy a multivariate
FCLT. The conditions required for this to hold are very gen-
eral (see, e.g., Davidson 1994). It can be shown to apply to a
large class of linear processes, including those generated by all
stationary and invertible ARMA models. Assumption A2 guar-
antees that an FCLT also holds for the sequence {uxtut}. As-
sumption A3 restricts somewhat the class of models applicable
but is quite mild. Sufficient conditions for it to hold are for (a),
that the I(0) regressors are uncorrelated with the errors contem-
poraneously even conditional on the I(1) variables; for (b), that
the autocovariance structure of the I(0) regressors be indepen-
dent of the errors; and similarly for (c), that the autocovariance
structure of the errors be independent of the I(0) regressors.
This assumption is needed to guarantee that W∗

x(·) and B(·) are
uncorrelated and, being Gaussian, are thus independent. With-
out this condition, the analysis would be much more complex.
Assumption A4 rules out cointegration among the I(1) regres-
sors. Assumption A5 is standard for I(0) regressors but rules
out trending regressors, which we relax in Section 4.2.
Under the alternative hypothesis, the estimates of the para-

meters are obtained by minimizing the global sum of squared
residuals. For each m-partition (T1, . . . ,Tm), denoted by {Tj},
the associated least squares estimates of α and γ are obtained
by minimizing

SSRT(T1, . . . ,Tm) =
m+1∑
i=1

Ti∑
t=Ti−1+1

[
yt − ci − z′

ftδf

− x′
ftβ f − z′

btδbi − x′
btβbi

]2
. (2)

Let α̂({Tj}) and γ̂ ({Tj}) be the resulting estimates. Substitut-
ing these into the objective function and denoting the resulting
sum of squared residuals as ST(T1, . . . ,Tm), the estimate of the
break points are (T̂1, . . . , T̂m) = argminT1,...,Tm ST(T1, . . . ,Tm),
where the minimization is taken over all partitions (T1, . . . ,Tm)

such that Ti − Ti−1 ≥ εT for some ε > 0. The estimates
of the regression coefficients are then α̂ = α̂({T̂j}) and γ̂ =
γ̂ ({T̂j}). Such estimates can be obtained using the algorithm
of Bai and Perron (2003). Finally, consistent estimates of
the matrixes 	 and 
 (and thus �) are 	̂ = T−1 ∑T

t=1 ξ̂ t ξ̂ t
′

and 
̂ = T−1 ∑T−1
j=1 w(j/l)

∑T−j
t=1 ξ̂ t ξ̂ t+j, where ξ̂ t = (ût,�z′

ft,

�z′
bt, (xft − x̄f )

′, (xbt − x̄b)
′)′, with ût the ordinary least squares

(OLS) residuals from regression (1), x̄i = T−1 ∑T
t=1 xit (i =

f ,b) and w(j/l) is a kernel function that is continuous and even
with w(0) = 1 and

∫ ∞
−∞ w2(x)dx < ∞. In addition, l → ∞ as

T → ∞ and l = o(T1/2). Hansen (1992c) has demonstrated the
consistency of these covariance matrix estimates.

3. THE TESTING PROBLEM AND
THE TEST STATISTICS

The data-generating process (1) is the most general, and re-
stricted versions may be used in practice. This gives rise to a va-
riety of possible cases for the testing problems considered. We

classify these into two categories: (a) models with only I(1) re-
gressors and (b) models with both I(1) and I(0) regressors. This
classification into two categories is useful, because researchers
often are faced with only I(1) variables. For category (a), we
consider the following testing problems (for ease of reference,
we list the relevant regression under the alternative hypothe-
sis):

Testing problems, category (a): models with I(1) variables
only (pf = pb = 0, for all cases). Let Ha

0 denotes the restrictions{cj = c, δbj = δb for all j = 1, . . . ,m + 1}.
1. Ha

0(1) = {Ha
0 , qf = 0} versus Ha

1(1) = {qf = 0} (yt = cj +
z′

btδbj + ut);
2. Ha

0(2) = {Ha
0 , qb = 0} versus Ha

1(2) = {qb = 0} (yt = cj +
z′

ftδf + ut);
3. Ha

0(3) = {Ha
0 , qf = 0} versus Ha

1(3) = {cj = c for all j =
1, . . . ,m + 1, qf = 0} (yt = c + z′

btδbj + ut);
4. Ha

0(4) = {Ha
0} versus Ha

1(4) = {no restriction} (yt = cj +
z′

ftδf + z′
btδbj + ut);

5. Ha
0(5) = {Ha

0} versus Ha
1(5) = {cj = c for all j = 1, . . . ,

m + 1} (yt = c + z′
ftδf + z′

btδbj + ut).

Testing problems, category (b): models with both I(1) and
I(0) variables. Let Hb

0 denotes the restrictions {cj = c, δbj = δb,
βbj = βb for all j = 1, . . . ,m + 1}.

1. Hb
0(1) = {Hb

0 , pf = qb = 0} versus Hb
1(1) = {cj = c for

all j = 1, . . . ,m + 1, pf = qb = 0} (yt = c + z′
ftδf +

x′
btβbj + ut);

2. Hb
0(2) = {Hb

0 , pb = qf = 0} versus Hb
1(2) = {cj = c for

all j = 1, . . . ,m + 1, pb = qf = 0} (yt = c + z′
btδbj +

x′
ftβ f + ut);

3. Hb
0(3) = {Hb

0 , pf = qf = 0} versus Hb
1(3) = {cj = c for

all j = 1, . . . ,m + 1, pf = qf = 0} (yt = c + z′
btδbj +

x′
btβbj + ut);

4. Hb
0(4) = {Hb

0 , pf = qf = 0} versus Hb
1(4) = {pf = qf =

0} (yt = cj + z′
btδbj + x′

btβbj + ut);

5. Hb
0(5) = {Hb

0 , pb = qb = 0} versus Hb
1(5) = {pb = qb =

0} (yt = cj + z′
ftδf + x′

ftβ f + ut);

6. Hb
0(6) = {Hb

0 , pb = qf = 0} versus Hb
1(6) = {pb = qf =

0} (yt = cj + z′
btδbj + x′

ftβ f + ut);

7. Hb
0(7) = {Hb

0 , pf = qb = 0} versus Hb
1(7) = {pf = qb =

0} (yt = cj + z′
ftδf + x′

btβbj + ut);

8. Hb
0(8) = {Hb

0 , qf = 0} versus Hb
1(8) = {qf = 0} (yt =

cj + z′
btδbj + x′

ftβ f + x′
btβbj + ut);

9. Hb
0(9) = {Hb

0 , qb = 0} versus Hb
1(9) = {qb = 0} (yt =

cj + z′
ftδf + x′

ftβ f + x′
btβbj + ut);

10. Hb
0(10) = {Hb

0} versus Hb
1(10) = {no restriction} (yt =

cj + z′
ftδf + z′

btδbj + x′
ftβ f + x′

btβbj + ut);

11. Hb
0(11) = {Hb

0} versus Hb
1(10) = {cj = c for all j = 1,

. . . ,m+1} (yt = c+ z′
ftδf + z′

btδbj +x′
ftβ f +x′

btβbj +ut).

We now give a brief description of each of the models in
the two categories. In category (a), case 1 is a pure structural
change model that allows for a change in the intercept as well.
Case 2 is a partial change model in which only the intercept is
allowed to change. Case 3 also is a partial change model but in
which the intercept is not allowed to change. Cases 4 and 5 are
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block partial models in which a subset of the I(1) coefficients is
allowed to change. In category (b), cases 1–3 are partial change
models in which the intercept is not allowed to change across
regimes. Case 4 is a pure change model in which all I(1) and
I(0) coefficients, as well as the intercept, are allowed to change.
Case 5 is a partial change model that involves only an intercept
shift. Case 6 is a partial change model in which the I(0) coef-
ficients are not allowed to change. Similarly, case 7 is a partial
change model in which the I(1) coefficients are not allowed to
change. Cases 8–11 are block partial models in which a subset
of coefficients of at least one type of regressor is not allowed to
change.
We consider three types of tests. The first type of test applies

when the alternative hypothesis involves a fixed value m = k
of changes. We consider the Wald test, scaled by the number
of regressors whose coefficient are allowed to change, defined
by

FT(λ, k) =
(

T − (k + 1)(qb + pb) − (pf + qf )

k

)

× γ̂ ′R′(R(W̄′MGW̄)−1R′)−1Rγ̂

SSRk
, (3)

where R is the conventional matrix such that (Rγ )′ = (γ ′
1 −

γ ′
2, . . . ,γ

′
k − γ ′

k+1) and MG = I − G(G′G)−1G′. Here SSRk

is the sum of squared residuals under the alternative hypoth-
esis. Following Bai and Perron (1998), we define the follow-
ing set for some arbitrary small positive number ε, �k

ε =
{λ : |λi+1 − λi| ≥ ε,λ1 ≥ ε,λk ≤ 1 − ε}. The sup-Wald test is
then defined as sup-FT(k) = supλ∈�k

ε
FT(λ, k). Because in the

current cases the estimates λ̂ = {λ̂1, . . . , λ̂k} with λ̂i = T̂i/T (for
i = 1, . . . , k) obtained by minimizing the global sum of squared
residuals correspond to those that maximize the test FT(λ, k),
we have sup-FT(k) = FT(λ̂, k).
The second type of test applies when the alternative hy-

pothesis involves an unknown number of changes between 1
and some upper bound M. Again following Bai and Perron
(1998), we consider a double-maximum test based on the max-
imum of the individual tests for the null of no break ver-
sus m breaks (m = 1, . . . ,M), defined by UDmaxFT(M) =
max1≤m≤M supλ∈�m

ε
FT(λ,m). This test is arguably the most

useful for determining the presence of structural changes. Sim-
ulations of Bai and Perron (2006) showed that with multiple
changes, the power of tests for a single break can be quite low in
finite samples, especially for certain types of multiple changes
(e.g., two breaks with identical first and third regimes). In ad-
dition, tests for a particular number of changes may have non-
monotonic power when the number of changes is greater than
specified. Finally, their simulations demonstrated that the power
of UDmax was nearly as high as that of the sup-FT test based
on the true number of changes.
The third testing procedure is a sequential one based on the

estimates of the break dates obtained from a global minimiza-
tion of sum of squared residuals, as described by Bai and Perron
(1998). Consider a model with k breaks, with estimates denoted
by (T̂1, . . . , T̂k), which are obtained through global minimiza-
tion of the sum of squared residuals. Testing the null hypothe-
sis of k breaks versus the alternative hypothesis of k + 1 breaks
involves performing a one-break test for each of the (k + 1)

segments defined by the partition (T̂1, . . . , T̂k), then assessing
whether the maximum of the tests is significant. More precisely,
the test is defined by

SEQT(k + 1|k)
= max

1≤j≤k+1
sup

τ∈�j,ε

T
{
SSRT(T̂1, . . . , T̂k)

− SSRT(T̂1, . . . , T̂j−1, τ, T̂j, . . . , T̂k)
}
/SSRk+1,

where �j,ε = {τ ; T̂j−1 + (T̂j − T̂j−1)ε ≤ τ ≤ T̂j − (T̂j − T̂j−1)ε}.
Note that this differs from a purely sequential procedure, be-
cause for each value of k, the break dates are reestimated to
obtain those corresponding to the global minimizers of the sum
of squared residuals.

4. ASYMPTOTIC DISTRIBUTIONS OF THE TESTS

An important issue that arises with integrated regressors is
the correlation between the regressors and the errors. We first
consider the case in which all I(1) regressors are strictly exoge-
nous. We then examine the case of endogenous regressors and
show that if the regression is augmented with leads and lags of
the the first differences of the I(1) regressors, then the limit-
ing distribution of the tests is the same as that obtained when
all I(1) regressors are strictly exogenous. Thus, for now we as-
sume �

f
1z = �b

1z = 0, which we later relax in Section 5.2. We
also start with the following assumption, which imposes seri-
ally uncorrelated errors in the cointegrating regression, which
we relax in Section 5.1:

Assumption A6. Let ξ∗
t = (uf ′

zt,ub′
zt ,uf ′

xt,ub′
xt)

′, the errors {ut}
form an array of martingale differences relative to {Ft} = σ -
field{ξ∗

t−s,ut−1−s; s > 0}.

4.1 Main Theoretical Results

As a matter of notation, we define the following functionals,
where W1 = σ−1B1:

h(G,a,b) =
(∫ b

a
G dW1

)′(∫ b

a
GG′

)−1(∫ b

a
G dW1

)
,

f (G) =
(

k+1∑
i=1

∫ λi

λi−1

G dW1

)′(k+1∑
i=1

∫ λi

λi−1

GG′
)−1

×
(

k+1∑
i=1

∫ λi

λi−1

G dW1

)
,

g(G,a,b) = (aG(b)−bG(a))′(aG(b)−bG(a))/ba(b−a), and
G(a,b)(r) = G(r) − (λb − λa−1)

−1
∫ λb
λa−1

G. In addition, by con-
vention, λ0 = 0 and λk+1 = 1. The limit distributions of the
tests when only I(1) variables are involved are stated in the fol-
lowing theorem.

Theorem 1. Assume that Assumptions A1–A6 hold and that
�

f
1z = �b

1z = 0. For the testing problems in category (a), the
limit distribution of supλ∈�k

ε
FT(λ, k) is supλ∈�k

ε
F(λ, k)/k with
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F(λ, k) defined as follows for the various cases: For case 1,

F(λ, k) =
k∑

i=1

[
h
(
Wb(1,i)

z ,0, λi
) − h

(
Wb(1,i+1)

z ,0, λi+1
)

+ h
(
Wb(i+1,i+1)

z , λi, λi+1
) + g

(
W1, λi, λi+1

)]
.

For case 2, F(λ, k) = f (Wf (i,i)
z ) − h(Wf (1,k+1)

z ,0,1) +∑k
i=1 g(W1, λi, λi+1), where Wf

z(r) = (�
ff
zz)

−1/2Bf
z(r). For

case 3,

F(λ, k) = f (Pb
zi) − h

(
Wb(1,k+1)

z ,0,1
)

− W1(1)
2 +

k+1∑
i=1

h(Wb
z , λi−1, λi),

where Pb
zi(r) = 1 − (

∫ λi
λi−1

Wb′
z )(

∫ λi
λi−1

Wb
z Wb′

z )−1Wb
z (r), for r ∈

[λi−1, λi]. For case 4,
F(λ, k) = f

(
WM(i,i)

z

) − h
(
Wfb(1,k+1)

z ,0,1
)

+
k+1∑
i=1

h
(
Wb(i,i)

z , λi−1, λi
) +

k∑
i=1

g(W1, λi, λi+1),

with Wfb
z (r) = (Wf

z(r),Wb
z (r)), and where

WM(i,i)
z (r) = Wf (i,i)

z (r) −
∫ λi

λi−1

Wf (i,i)
z Wb(i,i)′

z

×
(∫ λi

λi−1

Wb(i,i)
z Wb(i,i)′

z

)−1

Wb(i,i)
z (r).

For case 5, F(λ, k) = f (Pzi) − h(Wfb(1,k+1)
z ,0,1) − W1(1)2 +∑k+1

i=1 h(Wb
z , λi−1, λi), where Pzi(r)′ = (Pb

zi(r)
′,Pfb

zi (r)
′) with

Pfb
zi (r) = Wf

z(r) − (
∫ λi
λi−1

Wf
zWb′

z )(
∫ λi
λi−1

Wb
z Wb′

z )−1Wb
z (r).

Theorem 1 shows that it is possible to make inference in
models involving I(1) variables using the sup-Wald test. More-
over, the limiting distributions differ depending on whether the
intercept and/or the I(1) coefficients are allowed to change.
Note that for cases 2, 4, and 5, the limit distributions de-
pend on the number of I(1) coefficients that are not allowed
to change. This is different from a stationary framework, in
which the limit distribution is independent of the number of
regressors whose coefficients are not allowed to change. We
now consider the limit distributions of the test for the various
cases in category (b) in which both I(1) and I(0) regressors are
present.

Theorem 2. Assume that Assumptions A1–A6 hold and that
�

f
1z = �b

1z = 0 and let W∗
xb(1) = (W∗′

xb,W1)
′. For the cases in

category (b), the limiting distributions of supλ∈�k
ε

FT(λ, k) un-
der the null hypothesis are given by supλ∈�k

ε
F(λ, k)/k with

F(λ, k) defined as follows: For case 1, F(λ, k) = ∑k
i=1 g(W∗

xb,

λi, λi+1). For case 2, the limit distribution is the same as for
case 3 in category (a). For case 3,

F(λ, k) = f (Pb
zi) − h

(
Wb(1,k+1)

z ,0,1
) − W1(1)

2

+
k+1∑
i=1

h(Wb
z , λi−1, λi) +

k∑
i=1

g(W∗
xb, λi, λi+1).

For cases 4 and 8,

F(λ, k) =
k∑

i=1

[
h
(
Wb(1,i)

z ,0, λi
) − h

(
Wb(1,i+1)

z ,0, λi+1
)

+ h
(
Wb(i+1,i+1)

z , λi, λi+1
) + g

(
W∗

xb(1), λi, λi+1
)]

.

For cases 5 and 6, the limit distributions are the same as for
cases 1 and 2, respectively, in category (a). For cases 7 and 9,

F(λ, k) = f
(
Wf (i,i)

z

) − h
(
Wf (1,k+1)

z ,0,1
)

+
k∑

i=1

g
(
W∗

xb(1), λi, λi+1
)
.

For case 10,

F(λ, k) = f
(
WM(i,i)

z

) − h
(
Wfb(1,k+1)

z ,0,1
)

+
k+1∑
i=1

h
(
Wb(i,i)

z , λi−1, λi
) +

k∑
i=1

g
(
W∗

xb(1), λi, λi+1
)
.

For case 11,

F(λ, k) = f (Pzi) − h
(
Wfb(1,k+1)

z ,0,1
) − W1(1)

2

+
k+1∑
i=1

h(Wb
z , λi−1, λi) +

k∑
i=1

g(W∗
xb, λi, λi+1).

The practical implications of Theorem 2 are as follows. As
shown in case 1, if the intercept and the I(1) variables are held
fixed and only the coefficients on the I(0) variables are allowed
to change, then the same limit distribution as given by Bai and
Perron (1998) applies. But this equivalence with the case of
stationary regressors holds only if the constant is not allowed
to change. As shown in case 7, the limit distribution differs
when the intercept is allowed to change and depends on the
number of I(1) variables present. The effect of allowing or not
allowing the intercept to change can also be seen by comparing
cases 3 and 4. The limit distributions are different, and, as ex-
pected, both depend on the number of I(1) and I(0) variables
whose coefficients are allowed to change. A similar feature
also applies when the regression involves I(1) and I(0) vari-
ables whose coefficients are not allowed to change, as shown
in cases 10 and 11. Comparing these with cases 3 and 4 again
shows that having I(1) variables whose coefficients are not al-
lowed to change alters the limit distributions. Finally, compar-
ing cases a1 and b6, a2 and b5, a3 and b2, b4 and b8, and b7
and b9 shows that including I(0) regressors whose coefficients
are not allowed to change does not alter the limit distribution.

Remark 1. For case 4 in category (b), the limit distribution
of supλ∈�k

ε
FT(λ, k) is:

sup
(λ1,...,λk)∈�k

ε

{
k∑

i=1

(S∗(λi, λi+1)
′V(λi, λi+1)

−1S∗(λi, λi+1))

+
k∑

i=1

(
(λiW∗

xb(λi+1) − λi+1W∗
xb(λi))

′

× (λiW∗
xb(λi+1) − λi+1W∗

xb(λi))
)
/(λi+1λi(λi+1 − λi))

}
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with S∗(λi, λi+1) = S(λi) − M(λi)M(λi+1)
−1S(λi+1),

V(λi, λi+1) = M(λi) − M(λi)M(λi+1)
−1M(λi), S(λi) =∫ λi

0 Z∗ dW1, M(λi) = ∫ λi
0 Z∗Z∗′, and Z∗ = (1,Wb′

z )′. The first
summation corresponds to the distribution in case 1 of cate-
gory (a), whereas the second summation corresponds to the pb
I(0) regressors whose coefficients are allowed to change.

With these theoretical results for the sup-FT(λ, k), we can
obtain the limit distribution of the UDmax and SEQT(k + 1|k)
tests. These are stated in the following corollary.

Corollary 1. Under Assumptions A1–A6 and �
f
1z =

�b
1z = 0, for a particular testing problem denote the limit dis-

tribution of the test supλ∈�k
ε

FT(λ, k) by supλ∈�k
ε

F(λ, k)/k,
then: (a) UDmaxFT(M) = max1≤m≤M supλ∈�m

ε
FT(λ,m) ⇒

max1≤m≤M supλ∈�m
ε

F(λ,m)/m, (b) limT→∞ P(SEQT(k +
1|k) ≤ x) = Gε(x)k+1, with Gε(x) the distribution function of
supλ∈�1

ε
F(λ,1).

4.2 Trends in Regressors

Suppose now that the I(1) regressors have a trending non-
stochastic component, that is, are generated by z∗

ft = ρf t + zft

and z∗
bt = ρbt + zbt, with qb > 1 and ρb �= 0. The limiting dis-

tributions of the tests then differ from those in the nontrending
case. The derivation of the required modifications follows the
treatment of Hansen (1992a). Consider a qb × (qb − 1) matrix
ρ∗

b that spans the null space of ρb and let C2 = [C12,C22] =
(ρb(ρ

′
bρb)

−1, ρ∗
b(ρ

∗′
b �bb

zz ρ∗
b)

−1/2). Note that C′
2z∗

bt = (C′
12zbt +

t, C′
22zbt)

′. With W̄2T = diag(T, Iqb−1T1/2), we have

W̄−1
2T C′

2zb[Tr] =
(

T−1C′
12zb[Tr] + T−1[Tr]

T−1/2C′
22zb[Tr]

)

⇒
(

r

Wb
z(−1)(r)

)
≡ Jb

z (r), (4)

where Wb
z(−1)(r) is a (qb − 1)-dimensional vector of indepen-

dent Wiener processes [a linear combination of Wb
z (r)]. Note

that when qb = 1, Wb
z(−1)(r) = r. It then follows that

T−1W̄−1
2T C′

2

[Tr]∑
t=1

z∗
btz

∗′
btC2W̄−1

2T ⇒
∫ r

0
Jb

z Jb′
z , (5)

T−1/2W̄−1
2T C′

2

[Tr]∑
t=1

z∗
btut ⇒ σ

∫ r

0
Jb

z dW1. (6)

Note that (4) through (6) also hold for z∗
ftwith Wb

z(−1)(r) re-

placed by Wf
z(−1)(r), a (qf − 1) dimensional vector of indepen-

dent Wiener processes [a linear combination of Wf
z(r)]. Here

also, when qf = 1, Wf
z(−1)(r) = r. Therefore, with trending re-

gressors, the limiting distributions of the tests are not the same
as those without trends; however, we can obtain them by simply
replacing Wf

z and Wb
x by Jf

z and Jb
z .

4.3 Asymptotic Critical Values

Because the asymptotic distributions are nonstandard, we
obtain critical values through simulations for models with
and without trends in regressors. We approximate the Wiener

processes by partial sums of iid normal random variables
with N = 500 steps. The number of replications is 2,000.
For each replication, the supremum of F(λ, k) with respect to
(λ1, . . . , λk) over the set �k

ε is obtained via a dynamic pro-
gramming algorithm (see Bai and Perron 2003). The I(0) re-
gressors are simulated as independent sequences of iid N(0,1)
variables, and the I(1) regressors as independent random walks
with iid N(0,1) errors [also independent of the I(0) regressors].
The trimming values used are ε = 0.05,0.10,0.15,0.20, and
0.25. Critical values are presented for up to nine breaks and
four regressors. The maximum number of breaks allowed is
eight when ε = 0.10, five when ε = 0.15, three when ε = 0.20
and two when ε = 0.25. For the UDmax test, M is set to 5 or
the maximum number of breaks possible. For models involv-
ing both I(1) and I(0) variables, critical values are provided
for all possible permutations up to two regressors of each type.
For the limit distributions of the tests with trending regressors
and for the sequential tests, we tabulated the critical values for
ε = 0.15,0.20, and 0.25. Because of the large number of re-
sults, we present critical values only for cases that allow the
intercept to change and for ε = 0.15 in Tables 1–4. For other
cases and trimming values, tables of critical values are avail-
able on our website.

5. EXTENSIONS

We now extend the analysis of the previous section to the
cases in which we can have either serially correlated errors
in the cointegrating regression or endogenous regressors. We
show that simple modifications yield tests with the same limit
distributions described earlier.

5.1 Serially Correlated Errors: A Modified
sup-Wald Test

With serially correlated errors, we use the following robust
version of the scaled F test:

F∗
T(λ, k) = (T − (k + 1)(qb + pb) − (qf + pf ))

k

× γ̂ ′R′(RTV̂ (γ̂ )R′)−1Rγ̂ , (7)

where V̂(γ̂ ) is an estimate of the covariance matrix of γ̂ that is
robust to serial correlation and heteroscedasticity (see Bai and
Perron 1998 for details). Note that when testing for the stabil-
ity of coefficients associated with I(1) variables, whether or not
I(0) variables are included, we can simply apply the following
transformation to the test in (3): F∗

T(λ; k) = (σ̂ 2
u /σ̂ 2)FT(λ, k),

where σ̂ 2
u = T−1 ∑T

t=1 û2t and σ̂ 2 is a consistent estimate of σ 2.
Because the break fractions are consistent even with serially
correlated errors, we can first take the supremum of the original
F test to obtain the break points, then obtain the robust version
of the test by evaluating F∗

T(λ; k) at these estimated break dates.
That is, the test considered is supλ∈�k

ε
F∗

T(λ, k) = F∗
T(λ̂, k),

where λ̂ = (λ̂1, . . . , λ̂k) are the estimates of the break frac-
tions obtained by minimizing the global sum of squared resid-
uals (2).
A problem with the sup-Wald test is that with persistent

errors, the size distortions can be substantial, due to the es-
timation of the long-run variance using residuals under the
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Table 1. Asymptotic critical values [the entries are quantiles x such that P(supF(λ, k)/k ≤ x) = α]

Non trending case Trending case

Number of breaks, k Number of breaks, k

qb α 1 2 3 4 5 UDmax 1 2 3 4 5 UDmax

Category (a) case 1, ε = 0.15
1 0.90 10.34 8.85 7.66 6.66 5.30 10.53 11.18 9.25 8.09 6.95 5.53 11.33

0.95 12.11 9.96 8.60 7.36 5.90 12.25 13.03 10.39 8.94 7.60 6.12 13.07
0.975 13.85 11.41 9.40 7.99 6.42 13.91 15.08 11.49 9.66 8.28 6.67 15.13
0.99 17.03 12.41 10.40 8.71 7.08 17.40 16.86 12.73 10.82 8.95 7.32 16.86

2 0.90 12.36 11.01 9.60 8.45 6.96 12.64 11.88 10.31 9.00 7.98 6.62 12.13
0.95 14.30 12.11 10.41 9.19 7.64 14.47 13.63 11.34 9.94 8.68 7.31 13.99
0.975 15.72 13.37 11.26 9.75 8.15 15.90 15.51 12.57 10.86 9.37 7.92 15.53
0.99 17.67 14.73 12.21 10.77 8.82 17.67 17.31 14.63 12.10 10.51 8.73 17.31

3 0.90 14.88 12.84 11.49 10.19 8.53 15.09 14.39 12.14 10.79 9.61 8.22 14.65
0.95 16.66 14.11 12.38 10.94 9.12 16.71 16.50 13.22 11.66 10.33 8.92 16.61
0.975 18.32 15.24 13.01 11.52 9.61 18.35 18.08 14.45 12.54 11.04 9.44 18.24
0.99 20.78 16.29 14.36 12.37 10.23 20.78 20.28 15.55 13.80 12.02 10.10 20.28

4 0.90 16.87 14.72 13.20 11.75 9.90 17.05 16.27 13.80 12.41 11.17 9.62 16.46
0.95 19.08 15.90 14.15 12.68 10.72 19.16 18.36 15.08 13.38 12.07 10.28 18.46
0.975 20.81 17.15 15.21 13.38 11.43 20.89 20.52 17.01 14.33 12.98 10.93 20.52
0.99 22.59 18.85 16.44 14.25 11.98 22.59 23.12 18.71 15.77 13.87 11.72 23.12

qf

Category (a) case 2, ε = 0.15
1 0.90 7.52 6.38 5.37 4.54 3.49 7.79 8.67 6.84 6.07 5.31 4.01 8.90

0.95 9.26 7.30 6.21 5.19 3.98 9.38 10.29 7.89 6.85 5.97 4.49 10.44
0.975 10.63 8.25 6.98 5.67 4.40 10.87 12.18 8.99 7.57 6.66 5.02 12.18
0.99 12.57 10.01 7.77 6.42 4.88 12.60 14.21 10.19 8.45 7.10 5.62 14.27

2 0.90 8.48 6.70 5.66 4.77 3.63 8.66 8.32 6.49 5.65 4.98 3.84 8.60
0.95 10.13 7.66 6.43 5.36 4.10 10.25 10.06 7.45 6.42 5.67 4.36 10.11
0.975 11.69 8.85 7.34 5.99 4.62 11.82 11.47 8.59 7.21 6.29 5.02 11.52
0.99 13.66 10.20 8.09 6.91 5.35 13.66 13.21 9.86 8.29 7.01 5.49 13.30

3 0.90 8.47 6.51 5.59 4.77 3.58 8.74 8.40 6.53 5.64 5.03 3.91 8.66
0.95 10.08 7.61 6.26 5.49 4.07 10.26 10.08 7.48 6.35 5.65 4.35 10.10
0.975 11.27 8.51 7.21 6.12 4.49 11.43 11.68 8.55 6.90 6.15 4.83 11.68
0.99 12.88 9.95 7.88 6.70 5.13 12.93 13.72 9.53 7.51 6.72 5.34 13.72

4 0.90 8.56 6.59 5.71 4.87 3.81 8.85 8.57 6.49 5.69 4.94 3.85 8.69
0.95 10.07 7.66 6.52 5.55 4.30 10.17 10.22 7.34 6.51 5.59 4.46 10.36
0.975 11.69 8.61 7.10 6.09 4.70 11.69 11.90 8.33 7.22 6.26 4.88 11.95
0.99 13.88 9.64 7.83 6.58 5.33 13.88 14.53 9.68 8.33 6.97 5.53 14.53

qf ,qb

Category (a) case 4, ε = 0.15
1, 1 0.90 10.19 8.77 7.74 6.60 5.26 10.53 10.81 9.18 7.99 6.89 5.48 10.98

0.95 12.03 9.78 8.53 7.18 5.81 12.30 12.27 10.30 8.87 7.61 6.09 12.34
0.975 14.05 11.03 9.28 7.92 6.30 14.07 14.43 11.39 9.54 8.28 6.72 14.45
0.99 16.02 12.33 10.33 8.67 6.99 16.09 16.65 12.56 10.45 9.02 7.14 16.65

1, 2 0.90 12.89 11.03 9.70 8.60 7.02 13.16 12.57 10.62 9.17 8.17 6.80 12.76
0.95 14.88 12.27 10.76 9.38 7.68 14.97 14.19 11.69 10.12 8.93 7.43 14.27
0.975 16.72 13.67 11.63 10.03 8.48 16.75 15.86 12.73 10.78 9.51 7.85 15.89
0.99 18.48 14.72 12.48 10.89 9.06 18.48 17.89 13.79 11.76 10.18 8.39 18.16
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Table 1. (Continued)

Non trending case Trending case

Number of breaks, k Number of breaks, k

qf ,qb α 1 2 3 4 5 UDmax 1 2 3 4 5 UDmax

2, 1 0.90 10.99 9.08 7.91 6.82 5.46 11.15 11.33 9.36 8.07 7.04 5.66 11.45
0.95 13.04 10.09 8.71 7.43 6.02 13.06 13.18 10.46 9.09 7.73 6.21 13.26
0.975 14.80 10.84 9.46 8.01 6.60 14.80 15.22 11.55 9.80 8.33 6.71 15.22
0.99 16.46 12.08 10.43 8.87 7.04 16.46 17.85 12.48 10.49 9.08 7.32 17.85

2, 2 0.90 12.87 11.04 9.71 8.58 7.12 13.07 12.58 10.41 9.15 8.15 6.78 12.78
0.95 14.81 12.25 10.75 9.44 7.74 15.01 14.65 11.78 10.04 8.85 7.48 14.72
0.975 16.74 13.48 11.57 10.15 8.34 16.74 15.95 12.92 10.94 9.57 8.04 16.12
0.99 19.36 14.78 12.29 10.83 8.78 19.36 17.94 13.91 11.83 10.32 8.91 18.08

Table 2. Asymptotic critical values [the entries are quantiles x such that P(supF(λ, k)/k ≤ x) = α]

Non trending case Trending case

Number of breaks, k Number of breaks, k

qb,pb α 1 2 3 4 5 UDmax 1 2 3 4 5 UDmax

Category (b) cases 4 and 8, ε = 0.15
1, 1 0.90 11.69 9.88 8.63 7.52 6.27 11.99 11.98 10.29 8.96 7.83 6.63 12.27

0.95 13.24 10.96 9.62 8.29 6.87 13.43 13.74 11.64 9.92 8.66 7.28 14.06
0.975 14.78 12.10 10.54 8.99 7.56 14.87 15.86 12.85 10.87 9.30 7.87 15.91
0.99 17.28 13.40 11.53 9.75 8.11 17.39 17.99 14.27 11.87 10.20 8.44 17.99

1, 2 0.90 12.88 11.06 9.55 8.53 7.52 13.26 13.24 11.17 9.79 8.85 7.69 13.51
0.95 15.10 12.13 10.53 9.42 8.16 15.25 15.16 12.19 10.85 9.61 8.29 15.20
0.975 17.51 13.04 11.30 9.98 8.71 17.60 16.89 13.33 11.59 10.48 8.87 16.89
0.99 19.10 14.68 12.35 11.07 9.51 19.10 18.95 14.43 12.79 11.23 9.90 18.95

2, 1 0.90 13.85 12.05 10.48 9.35 7.99 14.23 13.42 11.33 10.06 9.00 7.73 13.64
0.95 15.91 13.45 11.50 10.23 8.64 16.07 15.42 12.76 11.03 9.86 8.44 15.47
0.975 17.68 14.60 12.44 11.06 9.30 18.06 17.50 13.95 12.05 10.58 8.97 17.50
0.99 19.89 16.02 13.80 11.88 10.14 20.03 19.61 15.23 13.05 11.38 9.59 19.61

2, 2 0.90 14.82 13.09 11.64 10.40 9.04 15.24 14.91 12.50 11.14 10.06 8.83 15.28
0.95 17.02 14.49 12.51 11.19 9.73 17.33 17.17 14.02 12.23 10.91 9.59 17.22
0.975 19.59 15.57 13.39 11.85 10.29 19.59 19.48 15.41 13.18 11.57 10.23 19.48
0.99 21.66 17.07 14.35 12.81 10.85 21.66 21.46 16.50 14.18 12.60 10.82 21.46

qf ,qb

Category (b) cases 7 and 9, ε = 0.15
1, 1 0.90 8.72 7.48 6.23 5.41 4.52 9.12 8.38 6.72 5.82 5.15 4.29 8.64

0.95 10.65 8.59 6.97 6.13 5.06 10.87 10.16 7.93 6.82 5.76 4.73 10.34
0.975 12.13 9.61 7.92 6.68 5.50 12.39 11.95 9.18 7.52 6.32 5.34 11.99
0.99 14.37 10.75 9.10 7.76 6.32 14.95 13.88 10.40 8.26 6.99 6.09 13.88

1, 2 0.90 9.95 8.17 7.17 6.50 5.63 10.31 9.35 7.38 6.58 5.93 5.31 9.62
0.95 11.58 9.54 8.25 7.23 6.25 11.93 10.98 8.60 7.32 6.61 5.92 11.07
0.975 12.99 10.74 9.23 7.83 6.85 13.68 12.76 9.59 8.24 7.35 6.48 12.83
0.99 15.66 12.19 10.30 8.65 7.71 15.68 15.22 10.92 9.55 8.20 7.16 15.22

2, 1 0.90 9.03 7.51 6.45 5.70 4.66 9.49 8.96 6.80 5.94 5.19 4.41 9.08
0.95 10.70 8.77 7.34 6.32 5.22 10.85 10.56 7.90 6.84 5.85 5.00 10.73
0.975 11.98 9.77 7.98 6.98 5.70 12.30 12.50 8.99 7.48 6.53 5.46 12.55
0.99 15.29 10.80 8.95 7.71 6.32 15.29 14.98 9.87 8.53 7.08 6.03 14.98

2, 2 0.90 10.58 8.52 7.36 6.64 5.78 10.88 9.82 7.95 7.00 6.31 5.50 10.33
0.95 12.32 9.72 8.23 7.45 6.39 12.53 11.82 9.26 7.88 7.09 6.20 12.09
0.975 14.09 11.05 9.36 8.23 6.95 14.22 13.76 10.64 8.79 7.87 6.85 13.99
0.99 16.23 12.04 10.43 9.13 7.67 16.23 15.75 12.06 10.23 8.68 7.70 16.09
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Table 2. (Continued)

Non trending case Trending case

Number of breaks, k Number of breaks, k

qf ,qb,pb α 1 2 3 4 5 UDmax 1 2 3 4 5 UDmax

Category (b) case 10, ε = 0.15
1, 1, 1 0.90 11.83 10.06 8.74 7.79 6.47 12.04 12.30 10.39 9.18 8.10 6.61 12.68

0.95 13.95 11.26 9.76 8.47 7.15 14.02 14.55 11.71 10.14 8.97 7.32 14.66
0.975 15.76 12.31 10.61 9.30 7.76 15.79 16.70 12.97 11.17 9.73 7.97 16.70
0.99 17.98 13.55 11.36 9.85 8.56 17.98 18.68 14.61 12.38 10.45 8.61 18.68

1, 1, 2 0.90 12.87 10.93 9.59 8.68 7.52 13.22 13.45 11.50 10.17 8.88 7.75 13.83
0.95 15.07 12.24 10.78 9.46 8.28 15.20 15.70 12.78 11.14 9.78 8.38 15.72
0.975 16.68 13.17 11.62 10.23 8.94 17.10 18.41 14.04 11.86 10.55 8.97 18.41
0.99 19.17 14.71 12.61 11.03 9.64 19.26 20.75 15.09 12.98 11.23 9.71 20.75

1, 2, 1 0.90 14.06 12.05 10.51 9.48 8.05 14.30 13.80 11.59 10.44 9.08 7.83 14.05
0.95 15.99 13.20 11.61 10.23 8.77 15.99 15.79 12.99 11.44 9.83 8.56 15.95
0.975 17.72 14.58 12.38 11.02 9.36 17.78 17.60 14.03 12.25 10.51 9.05 17.67
0.99 19.77 16.16 13.80 12.00 10.09 19.77 20.69 15.52 13.13 11.66 9.77 20.69

1, 2, 2 0.90 15.06 12.97 11.51 10.40 9.05 15.47 14.61 12.22 11.07 10.17 8.95 15.10
0.95 17.60 14.32 12.47 11.19 9.62 17.79 16.75 13.64 12.17 10.96 9.63 16.98
0.975 19.42 15.75 13.55 12.09 10.37 19.57 18.67 15.03 13.34 12.00 10.37 18.88
0.99 22.29 17.48 14.77 13.10 11.18 22.29 20.94 16.52 14.94 13.02 11.27 20.96

2, 1, 1 0.90 12.06 10.02 8.85 7.81 6.55 12.29 12.39 10.56 9.10 8.06 6.66 12.71
0.95 13.80 11.36 9.70 8.57 7.21 13.92 14.37 11.87 10.17 8.75 7.31 14.76
0.975 16.14 12.50 10.57 9.28 7.77 16.16 16.04 13.33 11.18 9.65 7.82 16.36
0.99 18.68 14.40 11.75 10.21 8.50 18.76 19.23 14.56 12.18 10.48 8.67 19.23

2, 1, 2 0.90 13.13 10.91 9.72 8.72 7.50 13.49 13.56 11.44 10.16 9.06 7.85 13.78
0.95 15.23 12.41 10.68 9.53 8.24 15.46 15.74 12.62 11.05 9.71 8.43 15.79
0.975 17.23 13.51 11.56 10.13 8.92 17.36 17.56 13.76 11.97 10.47 8.85 17.62
0.99 19.37 15.19 12.63 11.23 9.49 19.37 20.26 15.23 12.82 11.26 9.56 20.26

2, 2, 1 0.90 14.50 12.16 10.69 9.58 8.06 14.72 13.78 11.55 10.22 9.25 7.99 14.05
0.95 16.78 13.46 11.88 10.35 8.74 16.80 15.64 12.81 11.18 9.98 8.62 15.81
0.975 18.50 14.64 12.76 11.11 9.37 18.50 17.22 14.22 12.07 10.67 9.21 17.24
0.99 20.83 16.28 13.77 11.82 9.92 20.83 19.20 15.48 13.49 11.61 10.04 19.20

2, 2, 2 0.90 15.29 13.03 11.64 10.49 9.09 15.70 14.82 12.52 11.15 10.17 8.92 15.23
0.95 17.00 14.47 12.88 11.42 9.75 17.22 16.86 13.94 12.33 11.07 9.70 17.06
0.975 18.87 15.49 13.72 12.12 10.43 19.08 18.99 15.48 13.30 11.79 10.27 19.24
0.99 22.03 16.89 14.50 12.96 11.20 22.03 21.22 16.91 14.75 12.67 11.18 21.22

Table 3. Asymptotic critical values of the sequential test SEQT (k + 1|k)
Non trending case Trending case

k k

qb α 1 2 3 4 5 1 2 3 4 5

Category (a) case 1, ε = 0.15
1 0.90 12.00 12.94 13.74 14.53 15.23 12.94 13.99 14.93 15.50 15.73

0.95 13.78 15.25 16.38 17.02 17.70 15.01 15.85 16.53 16.86 17.04
0.975 16.38 17.70 18.24 18.53 19.18 16.53 17.04 17.17 17.43 18.04
0.99 18.53 19.33 19.92 20.50 21.34 17.43 18.58 19.11 19.22 19.54

2 0.90 14.26 15.02 15.64 16.02 16.51 13.57 14.78 15.40 15.87 16.12
0.95 15.65 16.61 17.12 17.66 17.85 15.51 16.18 17.08 17.31 17.50
0.975 17.12 17.85 18.22 19.04 19.27 17.08 17.50 19.27 19.62 19.70
0.99 19.04 19.35 19.90 19.99 20.01 19.62 19.79 21.52 22.58 22.75

3 0.90 16.64 17.57 18.28 18.86 19.53 16.38 17.30 17.92 18.40 18.62
0.95 18.30 19.58 20.21 20.77 21.45 17.99 18.74 19.77 20.28 20.89
0.975 20.21 21.45 22.67 23.36 23.48 19.77 20.89 21.56 22.11 22.28
0.99 23.36 23.52 24.13 24.43 25.16 22.11 22.37 22.83 23.98 24.54
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Table 3. (Continued)

Non trending case Trending case

k k

qb α 1 2 3 4 5 1 2 3 4 5

4 0.90 18.96 19.91 20.68 21.13 21.51 18.29 19.54 20.43 20.97 21.32
0.95 20.80 21.59 22.36 22.58 23.12 20.51 21.81 22.40 23.12 23.78
0.975 22.36 23.12 24.10 25.73 26.11 22.40 23.78 25.10 25.75 25.84
0.99 25.73 27.01 27.43 27.47 27.75 25.75 26.36 26.66 26.86 27.71

qf

Category (a) case 2, ε = 0.15
1 0.90 9.14 10.09 10.61 11.04 11.45 10.22 11.21 12.02 12.33 12.75

0.95 10.63 11.54 12.09 12.57 12.86 12.15 12.77 13.48 14.21 14.32
0.975 12.09 12.86 13.25 14.01 14.19 13.48 14.32 14.66 15.41 15.72
0.99 14.01 14.33 14.80 15.33 16.43 15.41 15.96 16.23 16.48 16.62

2 0.90 10.06 11.18 11.68 12.21 12.52 9.92 10.73 11.41 11.79 12.18
0.95 11.69 12.62 13.33 13.66 14.07 11.41 12.18 12.80 13.21 13.69
0.975 13.33 14.07 14.61 15.22 15.31 12.80 13.69 14.19 14.68 14.94
0.99 15.22 15.40 16.51 17.02 18.13 14.68 15.00 15.96 16.37 17.09

3 0.90 9.97 10.74 11.25 11.73 12.17 9.95 11.05 11.64 11.92 12.76
0.95 11.27 12.18 12.60 12.88 12.94 11.66 12.77 13.26 13.72 14.15
0.975 12.60 12.94 13.24 14.33 14.49 13.26 14.15 14.70 14.83 15.71
0.99 14.33 15.14 15.32 15.56 16.12 14.83 15.86 16.59 16.66 16.91

4 0.90 10.01 10.81 11.55 12.09 12.37 10.19 11.19 11.79 12.67 13.05
0.95 11.59 12.40 12.80 13.88 14.23 11.90 13.08 13.68 14.53 15.03
0.975 12.80 14.23 15.59 15.74 16.03 13.68 15.03 15.62 16.08 16.70
0.99 15.74 16.10 16.61 16.93 17.05 16.08 16.80 17.48 17.48 17.80

qf ,qb

Category (a) case 4, ε = 0.15
1, 1 0.90 11.98 13.02 14.03 14.73 14.94 12.20 13.51 14.26 14.63 15.21

0.95 14.05 14.94 15.48 16.02 16.50 14.30 15.25 16.28 16.65 17.05
0.975 15.48 16.50 17.10 17.57 17.92 16.28 17.05 17.85 18.17 18.46
0.99 17.57 18.68 20.20 20.26 20.63 18.17 18.54 20.88 22.23 22.35

1, 2 0.90 14.77 15.85 16.63 17.17 17.35 14.09 15.20 15.77 16.04 16.38
0.95 16.64 17.36 18.10 18.48 18.70 15.82 16.44 17.19 17.89 18.19
0.975 18.10 18.70 19.48 20.38 20.61 17.19 18.19 18.76 19.21 19.61
0.99 20.38 21.05 21.57 22.36 22.54 19.21 19.69 20.34 20.48 20.66

2, 1 0.90 12.87 13.78 14.72 15.06 15.47 13.11 14.03 15.14 15.73 16.22
0.95 14.77 15.55 16.14 16.46 16.70 15.22 16.45 17.21 17.85 18.15
0.975 16.14 16.70 16.99 17.19 18.20 17.21 18.15 18.79 18.96 19.01
0.99 17.19 18.36 18.55 18.58 18.91 18.96 19.48 20.33 20.49 20.86

2, 2 0.90 14.70 15.67 16.70 17.04 17.56 14.48 15.40 15.93 16.37 16.70
0.95 16.71 17.65 18.63 19.36 19.49 15.93 16.72 17.56 17.94 18.10
0.975 18.63 19.49 20.02 20.55 21.07 17.56 18.10 18.78 19.01 19.64
0.99 20.55 21.38 22.89 23.16 24.18 19.01 20.34 21.05 21.28 21.30

alternative hypothesis. On the other hand, Vogelsang (1999)
showed through simulation experiments that estimation of the
long-run variance under the null hypothesis leads to the prob-
lem of nonmonotonic power in finite samples. In related work,
Crainiceanu and Vogelsang (2007) showed that commonly used
data-dependent bandwidths for estimation of the long-run vari-
ance (based on the misspecified null model) are too large un-
der the alternative hypothesis. This in turn leads to a decrease
in power as the magnitude of the change increases. As a so-
lution to this size–power trade-off, we use a new estimator of
the long-run variance constructed using a hybrid method that
involves residuals computed under both the null and alterna-

tive hypotheses. In particular, the data-dependent bandwidth is
selected based on the residuals obtained under the alternative
hypothesis. With this particular value of the bandwidth, the es-
timate is computed using residuals obtained under the null hy-
pothesis of no structural change. Specifically, the proposed es-
timator is

σ̂ 2 = T−1
T∑

t=1

ũ2t + 2T−1
T−1∑
j=1

w(j/ĥ)

T∑
t=j+1

ũtũt−j, (8)

where ũt are the residuals obtained imposing the null hypoth-
esis. The kernel function w(·) is the quadratic spectral, and,
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Table 4. Asymptotic critical values of the sequential test SEQT (k + 1|k)
Non trending case Trending case

k k

qb,pb α 1 2 3 4 5 1 2 3 4 5

Category (b) cases 4 and 8, ε = 0.15
1, 1 0.90 13.18 13.92 14.70 15.08 15.79 13.72 15.14 15.72 16.44 16.75

0.95 14.72 15.82 16.60 17.28 17.61 15.73 16.83 17.54 17.99 18.17
0.975 16.60 17.61 19.20 19.43 19.85 17.54 18.17 19.27 19.97 20.53
0.99 19.43 20.02 21.38 21.43 22.10 19.97 21.13 22.77 23.42 23.98

1, 2 0.90 15.06 16.32 17.39 17.83 18.22 15.09 16.21 16.85 17.33 17.85
0.95 17.44 18.25 18.65 19.10 19.96 16.86 17.87 18.81 18.95 19.28
0.975 18.65 19.96 20.06 20.37 20.69 18.81 19.28 19.66 21.10 21.43
0.99 20.37 20.73 21.96 23.13 23.22 21.10 21.61 22.74 23.70 24.12

2, 1 0.90 15.82 16.69 17.59 18.15 18.39 15.21 16.54 17.44 17.98 18.46
0.95 17.68 18.63 19.37 19.89 20.39 17.49 18.49 19.26 19.61 20.27
0.975 19.37 20.39 21.48 22.63 22.84 19.26 20.27 20.76 21.69 22.03
0.99 22.63 23.82 24.73 25.40 25.62 21.69 22.37 22.94 24.08 24.08

2, 2 0.90 16.95 18.69 19.46 20.06 20.44 17.12 18.56 19.40 19.92 20.75
0.95 19.48 20.44 21.33 21.66 21.97 19.45 20.42 21.16 21.46 22.33
0.975 21.33 21.97 22.39 23.52 24.03 21.16 21.86 22.89 23.41 23.85
0.99 23.52 24.11 24.75 25.05 25.12 23.41 23.85 25.06 25.94 26.32

qf ,pb

Category (b) cases 7 and 9, ε = 0.15
1, 1 0.90 10.56 11.68 12.06 12.70 13.25 10.14 11.07 11.81 12.31 12.90

0.95 12.08 13.26 14.04 14.37 14.95 11.85 13.01 13.57 13.88 13.99
0.975 14.04 14.95 15.11 15.68 16.31 13.57 13.99 14.63 15.19 15.95
0.99 15.68 17.70 18.33 19.01 20.20 15.19 16.15 16.24 16.25 16.34

1, 2 0.90 11.52 12.51 12.96 13.57 14.28 10.95 11.83 12.70 12.92 13.89
0.95 12.98 14.45 15.30 15.66 15.93 12.70 13.89 14.90 15.22 16.00
0.975 15.30 15.93 16.30 16.85 16.95 14.90 16.00 16.68 17.33 17.48
0.99 16.85 17.36 17.77 18.54 19.60 17.33 17.91 18.29 18.71 19.21

2, 1 0.90 10.65 11.45 11.95 12.68 13.14 10.49 11.45 12.34 12.86 13.34
0.95 11.97 13.47 14.57 15.29 15.85 12.36 13.69 14.55 14.98 15.07
0.975 14.57 15.85 16.64 17.43 17.92 14.55 15.07 15.29 15.72 15.86
0.99 17.43 18.13 18.71 19.52 19.64 15.72 15.96 16.44 16.48 17.43

2, 2 0.90 12.22 13.22 14.03 14.56 14.93 11.76 12.88 13.46 14.31 14.75
0.95 14.03 15.05 15.56 16.23 16.54 13.51 14.97 15.19 15.75 16.10
0.975 15.56 16.54 17.38 17.82 18.18 15.19 16.10 16.45 17.06 17.27
0.99 17.82 18.46 19.61 19.65 20.18 17.06 17.40 18.55 19.65 20.08

qf ,qb,pb

Category (b) case 10, ε = 0.15
1, 1, 1 0.90 13.72 15.13 16.24 16.68 17.11 14.32 15.97 16.59 17.08 17.31

0.95 15.75 16.74 17.98 18.34 18.44 16.60 17.35 18.07 18.68 18.99
0.975 17.42 18.34 19.12 19.85 20.15 18.07 18.99 19.73 20.26 20.71
0.99 19.12 20.15 21.12 21.21 21.21 20.26 21.24 22.52 22.55 22.81

1, 1, 2 0.90 14.85 15.95 17.30 17.86 18.46 15.58 16.90 18.31 18.92 19.14
0.95 16.64 18.01 19.17 19.55 19.72 18.39 19.14 19.98 20.75 21.50
0.975 18.69 19.55 21.44 21.63 22.04 19.98 21.50 21.94 22.54 22.86
0.99 21.44 22.04 23.51 24.20 24.20 22.54 23.07 23.18 23.35 23.85

1, 2, 1 0.90 15.94 16.98 17.99 18.30 18.46 15.72 17.04 17.59 17.75 18.16
0.95 17.69 18.31 19.77 20.07 20.32 17.59 18.47 19.63 20.69 21.06
0.975 19.01 20.07 20.93 21.42 21.81 19.63 21.06 21.76 22.59 22.70
0.99 20.93 21.81 22.83 22.88 22.88 22.59 22.83 23.91 24.31 24.81
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Table 4. (Continued)

Non trending case Trending case

k k

qf ,qb,pb α 1 2 3 4 5 1 2 3 4 5

1, 2, 2 0.90 17.43 18.53 19.99 20.17 20.75 16.70 17.70 18.60 19.20 19.82
0.95 19.42 20.21 22.29 22.49 22.57 18.63 19.83 20.60 20.94 21.27
0.975 21.40 22.49 23.20 24.51 24.63 20.60 21.27 21.71 23.06 23.19
0.99 23.20 24.63 25.82 26.26 26.26 23.06 23.23 23.52 23.54 25.67

2, 1, 1 0.90 13.75 14.86 16.55 17.03 18.10 14.31 15.26 15.96 16.71 17.40
0.95 16.09 17.16 18.68 18.90 20.00 16.00 17.60 18.26 19.23 19.96
0.975 18.12 18.90 20.85 21.25 22.27 18.26 19.96 21.00 22.20 22.30
0.99 20.85 22.09 22.93 23.14 23.14 22.20 22.61 24.61 24.76 25.10

2, 1, 2 0.90 15.22 16.26 17.60 18.14 18.99 15.68 16.62 17.43 17.99 18.50
0.95 17.14 18.23 19.37 20.03 20.79 17.52 18.50 19.57 20.26 20.44
0.975 19.03 20.03 21.76 22.33 23.09 19.57 20.44 21.28 21.79 22.42
0.99 21.76 22.83 23.18 23.46 23.46 21.79 22.50 22.82 23.61 23.91

2, 2, 1 0.90 16.70 17.48 18.82 19.34 20.49 15.54 16.36 17.08 17.44 17.96
0.95 18.34 19.38 20.83 21.46 21.70 17.11 18.01 18.62 19.20 19.60
0.975 20.52 21.46 22.00 23.35 23.69 18.62 19.60 20.74 21.16 22.04
0.99 22.00 23.59 24.22 25.41 25.41 21.16 22.35 22.92 23.90 24.39

2, 2, 2 0.90 16.93 18.15 19.27 19.87 20.73 16.76 17.94 18.93 19.82 20.09
0.95 18.87 19.92 22.03 22.30 22.85 18.97 20.11 20.59 21.22 21.83
0.975 21.29 22.30 23.24 23.62 23.70 20.59 21.83 22.31 22.75 23.49
0.99 23.24 23.64 24.24 24.36 24.36 22.75 23.58 25.33 25.76 26.04

following Andrews (1991), the estimate of the bandwidth is
given by ĥ = 1.3221(â(2)T)1/5, where â(2) = [4ρ̂2/(1 − ρ̂)4]
and ρ̂ = ∑T

t=2 ûtût−1/
∑T

t=2 û2t−1, with ût the residuals from the
model estimated under the alternative hypotheses. As we show
later, the sup-Wald test based on this estimator is able to by-
pass the problem of nonmonotonic power while maintaining an
exact size close to the nominal size. (For more details on the
merits of this approach, see Kejriwal 2009.)

5.2 Endogenous I(1) Regressors

In general, the assumption of strict exogeneity is too restric-
tive, and the test statistics described in the previous section are
not robust to the problem of endogenous regressors. In this sec-
tion we use the linear leads and lags estimator (dynamic OLS)
as proposed by Saikkonen (1991) and Stock and Watson (1993)
and prove that the limiting distributions of the tests based on
this estimator are the same as those obtained with the static
regression under strict exogeneity. The modified regression is
given by

yt = ĉi + z′
ftδ̂f + x′

ftβ̂ f + z′
btδ̂bi + x′

btβ̂bi

+
�T∑

j=−�T

�z′
t−j�̂j + v̂∗

t , (9)

where zt = (z′
ft, z′

bt)
′. Note that the numbers of leads and lags of

�zt need not be the same, but here we specify the same values
for simplicity. Alternatively, �T could be interpreted as the max-
imum of the number of leads and lags. To prove our results, we
need a few additional assumptions, which are the same as those
required to show the consistency of the estimate of the cointe-
grating vector in the case of a model with no structural change.

Assumption A7. Let ζ t = (ut,uf ′
zt,ub′

zt )
′ and ζ zt = (uf ′

zt,ub′
zt )

′.
The spectral density matrix fζ ζ (w) is bounded away from
0 so that fζ ζ (w) ≥ αIn (n = qf + qb + 1) for w ∈ [0,π]
where α > 0. In addition, the covariance function of ζ t is ab-
solutely summable; that is, denoting E(ζ tζ

′
t+k) = �(k), we re-

quire that
∑∞

k=−∞ ‖�(k)‖ < ∞, where ‖ · ‖ is the standard
Euclidean norm. Denoting the fourth-order cumulants of ζ t by
κijkl(m1,m2,m3), we assume that

∑
m1

∑
m2

∑
m3

|κijkl(m1,m2,

m3)| < ∞, where the summations run from −∞ to +∞.

Assumption A7 states the same conditions used by Saikko-
nen (1991) and allows us to represent the error ut as ut =∑∞

j=−∞ ζ ′
zt−j�j + vt, with

∑∞
k=−∞ ‖�j‖ < ∞ and where vt

is a stationary process such that E(ζ ztvt+k) = 0, for all k, and
fvv(w) = fuu(w) − fuζz(w)fζzζz(w)−1fζzu(w). The DGP under the
null hypothesis is then

yt = c + z′
ftδf + x′

ftβ f +
�T∑

j=−�T

�z′
t−j�j + v∗

t ,

where v∗
t = vt + ∑

|j|>�T
ζ ′

z,t−j�j ≡ vt + et. The last require-
ments pertain to the possible rate of increase of �T as T in-
creases. Following Kejriwal and Perron (2008a), these are given
by the following:

Assumption A8. As T → ∞, �T → ∞, �2T/T → 0, and
�T

∑
|j|>�T

‖�j‖ → 0.

Note that Assumption A8 allows the use of information cri-
teria, such as the Akaike information criterion and the Bayes
information criterion. Because there can be serial correlation in
the errors vt, we need to apply a correction for its presence.
Thus we consider the statistic supλ∈�k

ε
FD

T (λ, k) = FD
T (λ̂, k),
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where λ̂ = (λ̂1, . . . , λ̂k) are the estimates of the break fractions
obtained by minimizing the global sum of squared residuals
(2) and FD

T (λ, k) = T−1(SSRk/σ̂
2
v )FT(λ, k) with FT(λ, k) as de-

fined in (3). We consider an estimate σ̂ 2
v based on a weighted

sum of the sample autocovariances of ṽ∗
t , the residuals obtained

imposing the null, as defined by (8) with ṽ∗
t instead of ũt (and

using the unrestricted residuals to obtain the bandwidth as dis-
cussed in the previous section). The relevant result is stated in
the following proposition.

Theorem 3. Under Assumptions A1–A5, A7, and A8, for all
testing problems, the limit distributions of the test
supλ∈�k

ε
FD

T (λ, k), based on regression (9), are the same as those
that apply to the test supλ∈�k

ε
FT(λ, k) under the added assump-

tion A6 and strict exogeneity with �
f
1z = �b

1z = 0.

6. SIMULATION EXPERIMENTS

We now present the results of simulation experiments that
pertain to the size and power of the tests, including a compari-
son with the frequently used LM tests. Hansen’s (2000) method
based on a “fixed regressors bootstrap” is also a possible avenue
for providing valid large-sample inference in some of the mod-
els considered. In theory, an advantage of Hansen’s method is
that it remains valid in the presence of changes in the marginal
distributions of the regressors. We conducted extensive simu-
lations and found that the Wald tests considered here are very
robust to changes in the drift of the I(1) regressors and changes
in the variance of the innovations driving them (as in the station-
ary case, as reported in Hansen 2000). Our asymptotic results
provide tests with exact sizes close to nominal size.

6.1 Size of the Tests

We start with the case in which the DGP exhibits no struc-
tural change, and analyze the size of the tests. The sample sizes

considered are T = 120 and T = 240. The value of the trimming
ε is set to 0.20. The maximum number of breaks (M) consid-
ered is three. Depending on whether or not we correct for ser-
ial correlation and/or endogeneity, we have the following four
specifications: (a) S_Corr = 0, C_Corr = 0: no correction for
serial correlation or endogeneity; (b) S_Corr = 1, C_Corr =
0: correction for serial correlation but not for endogeneity;
(c) S_Corr = 0, C_Corr = 1: correction for endogeneity but not
for serial correlation; and (d) S_Corr = 1, C_Corr = 1: correc-
tion for both endogeneity and serial correlation. To correct for
serial correlation, we use the method discussed in Section 5.1.
To correct for endogeneity, we use the dynamic OLS estimator,
discussed in Section 5.2, with �T = 2. The various DGPs con-
sidered include the following basic components: yt = zt + ut

with zt = zt−1 + ηt, where ηt ∼ iid N(0,1). The DGPs consid-
ered are, where et ∼ iid N(0,1) and Cov(ηt, et) = 0: DGP-1
(iid errors, exogenous regressor): ut = et; DGP-2 [AR(1) er-
rors, exogenous regressor]: ut = ρut−1 + et; DGP-3 [MA(1) er-
rors, exogenous regressor]: ut = et − θet−1; DGP-4 [iid errors,
endogenous regressor]: ut = 0.8ηt + et; DGP-5 [MA(1) errors,
endogenous regressor]: ut = 0.5vt + ηt, vt = et − 0.5et−1.
For each DGP, we consider the case in which the regressors

are {1, zt} and both the intercept and the cointegrating coeffi-
cient are allowed to change across regimes. In all experiments,
1,000 replications are used. All rejection frequencies are cal-
culated at the nominal 5% level. Table 5 reports the empirical
size, with T = 120 and 240 and ρ = θ = 0.5. Consider first the
base case represented by DGP-1, where the regressor is strictly
exogenous and the errors are iid. With S_Corr = 0, C_Corr = 0,
the size is adequate for all the tests regardless of the specifica-
tion used. For DGP-2 with AR(1) errors, all tests show substan-
tial distortions when we do not correct for serial correlation;
however, when using our proposed long-run variance estimator,
the size distortions are no longer present, and the tests become

Table 5. Empirical size

T = 120 T = 240

Specification Test\DGP 1 2 3 4 5 1 2 3 4 5

S_Corr = 0, C_Corr = 0 sup-F∗
T (1) 0.04 0.55 0.00 0.15 0.20 0.04 0.63 0.00 0.14 0.19

sup-F∗
T (2) 0.05 0.73 0.00 0.19 0.27 0.04 0.82 0.00 0.20 0.31

sup-F∗
T (3) 0.04 0.75 0.00 0.20 0.27 0.04 0.85 0.00 0.22 0.33

UDmax 0.04 0.65 0.00 0.16 0.21 0.05 0.72 0.00 0.16 0.21

S_Corr = 1, C_Corr = 0 sup-F∗
T (1) 0.04 0.03 0.02 0.14 0.25 0.03 0.03 0.02 0.12 0.28

sup-F∗
T (2) 0.03 0.02 0.05 0.13 0.29 0.03 0.02 0.02 0.17 0.43

sup-F∗
T (3) 0.02 0.01 0.05 0.12 0.29 0.02 0.00 0.02 0.18 0.45

UDmax 0.04 0.03 0.03 0.14 0.26 0.03 0.02 0.02 0.14 0.32

S_Corr = 0, C_Corr = 1 sup-F∗
T (1) 0.06 0.58 0.00 0.05 0.00 0.05 0.64 0.00 0.05 0.00

sup-F∗
T (2) 0.07 0.76 0.00 0.07 0.00 0.05 0.82 0.00 0.05 0.00

sup-F∗
T (3) 0.06 0.77 0.00 0.06 0.00 0.05 0.86 0.00 0.05 0.00

UDmax 0.06 0.67 0.00 0.05 0.00 0.05 0.73 0.00 0.05 0.00

S_Corr = 1, C_Corr = 1 sup-F∗
T (1) 0.05 0.04 0.03 0.04 0.04 0.04 0.04 0.01 0.04 0.01

sup-F∗
T (2) 0.03 0.02 0.06 0.03 0.07 0.03 0.02 0.02 0.04 0.03

sup-F∗
T (3) 0.03 0.02 0.07 0.02 0.07 0.02 0.01 0.02 0.04 0.03

UDmax 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.01 0.05 0.02

D
ow

nl
oa

de
d 

by
 [P

ur
du

e 
U

ni
ve

rs
ity

] a
t 0

9:
23

 2
4 

A
ug

us
t 2

01
2 



516 Journal of Business & Economic Statistics, October 2010

somewhat conservative. With MA(1) errors (DGP-3), the tests
have size 0 when no correction for serial correlation is made.
Again, the size is accurate once we use S_Corr = 1. With endo-
geneity but no serial correlation (DGP-4), we see that all of the
tests have good size for S_Corr = 0, C_Corr = 1. Otherwise,
size distortions up to 20% may occur. This shows that the cor-
rection for endogeneity based on the dynamic OLS estimator
is quite effective. When both serial correlation and endogene-
ity are present (DGP-5), the tests have adequate size when we
use S_Corr = 1, C_Corr = 1, although some mild distortions
persist when testing for multiple breaks. When T = 240, for the
DGP-5 and S_Corr = 1, C_Corr = 1, the rejection frequencies
are decreased, and even the multiple break tests become con-
servative.
We also considered the case in which the regressors are

{1, zt, xt}, with xt ∼ iid N(1,1), Cov(xt,ut) = Cov(xt, ηt) = 0,
and the model allows the intercept and the cointegrating coef-
ficient to change across regimes but with the coefficient of xt

held fixed. The results were similar to those given in Table 5,
indicating that including an irrelevant I(0) regressor does not
lead to any size inaccuracies over and above those in the case
in which they are not included.

6.2 Power Comparison With the LM Type Tests

In this section we analyze the power of the sup-Wald test
and compare it with the sup, mean, and exp-LM tests pro-
posed by Hansen (1992b) and Hao (1996). Vogelsang (1999)
and Crainiceanu and Vogelsang (2007) showed that the power
function of a wide variety of tests for a shift in the mean of a

dynamic time series is nonmonotonic with respect to the mag-
nitude of the break. One reason for this is the behavior of the
estimate of the error variance in the presence of a shift in mean.
In particular, if the error variance is estimated under the null hy-
pothesis, then nonmonotonic power can result. We show that the
LM-type tests have the same problem in the cointegration setup
and that in certain cases, the power can go to zero as the magni-
tude of the break increases. Because the primary issue pertains
to the presence of serial correlation in the errors, we consider
the case in which the regressor is strictly exogenous and the
trimming is set at ε = 0.15. (We also simulated the power of our
tests with a DGP involving endogenous regressors and found
that the power actually was enhanced relative to that in the ex-
ogenous regressor case.) For the case with one break, the DGP
is yt = zt + ut, if t ≤ [T/2] and yt = (1+ δ)zt + ut, if t > [T/2],
where ηt ∼ iid N(0,1), Cov(ut, ηt) = 0. The sample size is
T = 240. We consider DGP 2 [AR(1) errors] and 3 [MA(1)
errors] and use the specification S_Corr = 1, C_Corr = 0.
We analyze the pure structural change model in which both
the intercept and the cointegrating coefficient are allowed to
change. The power functions are plotted in Figure 1. Consider
first the case with AR(1) errors. The nonmonotonicity of the
power function of the LM tests is evident even at moderate val-
ues of δ. For very small values of δ, the power of the mean
LM test is slightly higher than that of the modified Wald test,
because the mean LM test is particularly well suited for detect-
ing small changes (see Andrews and Ploberger 1994). Surpris-
ingly, however, the mean LM test performs better than the exp-
LM test even for large changes. The sup-LM test is dominated
by all tests regardless of the sample size and degree of persis-
tence. With MA(1) errors, the picture is quite different. All tests

Figure 1. Power functions: the case with one break. The online version of this figure is in color.
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Figure 2. Power functions: the case with two breaks. The online version of this figure is in color.

have higher power than the autoregressive case, although non-
monotonicity is still evident for the LM tests. The performance
of the LM tests is quite similar, and no clear ranking emerges
between them.
We next consider the case in which the DGP involves two

breaks and three regimes, specified by yt = zt + ut, if t ≤ [T/3],
yt = (1 + δ)zt + ut if [T/3] < t ≤ [2T/3] and yt = zt + ut if
[2T/3] < t ≤ T , where zt = zt−1 + ηt, zt = zt−1 + ηt, ηt ∼
iid N(0,1) and Cov(ut, ηt) = 0. The power functions are plot-
ted in Figure 2. Consider first the case with AR(1) errors. Given
that single break tests have difficulty detecting such parameter
changes, it is not surprising that all tests exhibit nonmonotonic
power. The modified sup-Wald test dominates all of the LM
tests regardless of the sample size and the degree of persistence.
With MA(1) errors, again all tests exhibit nonmonotonicity, al-
though the power function of the modified Wald test is much
higher than that of the LM tests. What is quite remarkable is
the fact that in all cases, the UDmax test has a much higher
monotonic power function than any of the other tests. This pro-
vides clear evidence of its usefulness.
Finally, it is useful to comment on what happens when the

regression is spurious, that is, there is no cointegration. Hansen
(1992b) showed that the LM test designed to detect a martin-
gale specification in the intercept, in the spirit of the test of
Nyblom (1989), can be viewed as a test for the null of coin-
tegration against the alternative of no cointegration. Although
the sup-Wald test is not specifically targeted to the alternative
of random variation in the intercept, it still has power against
spurious regressions (i.e., no cointegration). This means that it
also will reject when no structural change is present and there
is no cointegration [the errors are I(1)]. However, we can use

the following approach to determine whether the data suggest
structural changes in a cointegrating relationship or a spurious
regression. Suppose that we are willing to put an upper bound
M (say 5) on the number of breaks. Then, if the system is coin-
tegrated with fewer than M breaks, the sequential testing proce-
dure can be used to consistently estimate the number of breaks.
In contrast, if the regression is spurious, then the number of
breaks selected will always (in large samples) be the maximum
number of breaks allowed. Thus selecting the maximum allow-
able number of breaks can be indicative of the presence of I(1)
errors. The same is true when information criteria are used to
select the number of breaks. We verified via simulations that
this is indeed the case.

7. CONCLUSION

We have presented a comprehensive treatment of issues re-
lated to testing in cointegrated regression models with multi-
ple structural changes. We analyzed models with I(1) variables
only, as well as models that incorporate both I(0) and I(1) re-
gressors. The breaks are allowed to occur in the intercept, the
cointegrating coefficients, the parameters of the I(0) regressors,
or any combination of these. Our simulation experiments have
shown that the commonly used LM tests are plagued with the
problem of nonmonotonic power in finite samples, but the sup-
Wald test can avoid such nonmonotonicity while maintaining
adequate size. Our asymptotic results have allowed us to de-
vise a sequential procedure for selecting the number of breaks.
Finally, we have provided the asymptotic critical values of our
tests for a wide range of models that we expect to be useful in
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practice. Our simulation experiments demonstrate the favorable
properties of our test and our proposed long-run variance esti-
mator. It is important to note that the idea of constructing the
estimate of the long-run variance using information under both
the null and alternative hypothesis is quite general and applies
even in regression models that do not involve structural change.

APPENDIX

We use ‖ · ‖ to denote the Euclidean norm, i.e., ‖x‖ =
(
∑p

i=1 x2i )
1/2 for x ∈ Rp. For a matrix A, we use the vector-

induced norm, i.e., ‖A‖ = supx�=0 ‖Ax‖/‖x‖. We have ‖A‖ ≤
[tr(A′A)]1/2. Also, for a projection matrix P, ‖PA‖ ≤ ‖A‖. We
use the notation Ãi,j = A(i,j) − Ā(i,j), where A(i,j) is the ma-
trix of observations from regime i to regime j (both inclusive),
i.e., A(i,j) = (aTi−1+1, . . . ,aTj)

′ while Ā(i,j) is the matrix (con-
formable to Ai,j) of means, i.e., Ā(i,j) = (āi,j, . . . , āi,j)

′ where
āi,j = (Tj − Ti−1)

−1 ∑Tj
t=Ti−1+1 at. Also, we use A∗

(i,j) = A(i,j) −
Ā(i,j), where Ā(i,j) is the matrix (conformable to A(i,j)) of sam-
ple averages, i.e., Ā(i,j) = (x̄, . . . , x̄)′, where x̄ = T−1 ∑T

t=1 xt.
Let 1(i,j) be a (Tj − Ti−1) × 1 vector of ones. To ease no-
tation, we will write Ã(i,i) as Ãi, A∗

(i,i) as A∗
i , Ā(i,i) as Āi,

Ā(i,i) as Āi and 1(i,j) as 1i, (W1,Wf
z,Wb

z ,Wf
x,Wb

x) are inde-
pendent Wiener processes with dimensions corresponding to
those of (B1,Bf

z,Bb
z ,Bf

x,Bb
x). We also use the notation Wz =

(Wf ′
z ,Wb′

z )′. We start with a lemma about the weak convergence
of various sample moments whose proof is standard given the
results in Qu and Perron (2007).

Lemma A.1. Under Assumption A1–A5, the following weak
convergence results hold (for i = 1, . . . ,m + 1): (a) T−3/2 ×∑[Tλi]

t=1 zft ⇒ ∫ λi
0 Bf

z , T−3/2 ∑[Tλi]
t=1 zbt ⇒ ∫ λi

0 Bb
z , T−1/2 ×∑[Tλi]

t=1 uf
xt ⇒ Bf

x(λi), T−1/2 ∑[Tλi]
t=1 ub

xt ⇒ Bb
x(λi), T−1/2 ×∑[Tλi]

t=1 ut ⇒ B1(λi); (b) T−2 ∑[Tλi]
t=1 zftz′

ft ⇒ ∫ λi
0 Bf

zBf ′
z ,

T−2 ∑[Tλi]
t=1 zbtz′

bt ⇒ ∫ λi
0 Bb

z Bb′
z ; (c) T−1 ∑[Tλi]

t=1 zftut ⇒∫ λi
0 Bf

z dB1 + λi(	
f
z1 + 


f
z1), T−1 ∑[Tλi]

t=1 zbtut ⇒ ∫ λi
0 Bb

z dB1 +
λi(	

b
z1 + 
b

z1); (d) T−1 ∑[Tλi]
t=1 zftu

f ′
xt ⇒ ∫ λi

0 Bf
z dBf ′

x + λi(	
ff
zx +



ff
zx), T−1 ∑[Tλi]

t=1 zftub′
xt ⇒ ∫ λi

0 Bf
z dBb′

x + λi(	
fb
zx + 


fb
zx), T−1 ×∑[Tλi]

t=1 zbtu
f ′
xt ⇒ ∫ λi

0 Bb
z dBf ′

x + λi(	
bf
zx + 


bf
zx ), T−1 ∑[Tλi]

t=1 zbt ×
ub′

xt ⇒ ∫ λi
0 Bb

z dBb′
x + λi(	

bb
zx + 
bb

zx ).

The next lemma will also be useful in subsequent develop-
ments.

Lemma A.2. Let X̄i((Ti−Ti−1)×p) = (x̄i, . . . , x̄i)
′, x̄i = (Ti −

Ti−1)
−1 ∑Ti

t=Ti−1+1 xt and μi
((Ti−Ti−1)×p) = (μ, . . . ,μ)′. Then

under Assumptions A1–A4, we have for i = 1, . . . ,m + 1:

(i) μi − X̄i
p→ 0; (ii) T−1/2(Xi − X̄i)

′Ui = T−1/2(Xi −μi)′Ui +
op(1); (iii) T−1(Xi − X̄i)

′(Xi − X̄i) = T−1(Xi −μi)′(Xi −μi)+
op(1); (iv) T−3/2Z′

i(Xi − X̄i) = T−3/2Z′
i(Xi − μi) + op(1).

Proof. Part (i) follows trivially. To prove (ii), note that
T−1/2(Xi − X̄i)

′Ui = T−1/2(Xi − μi)′Ui + T−1/2(μi − X̄i)
′Ui.

We have T−1/2(μi − X̄i)
′Ui = (μ − x̄i)T−1/2 ×∑Ti

t=Ti−1+1 ut = op(1), using part (i). For (iii), note that

T−1(Xi − X̄i)
′(Xi − X̄i)

= T−1(Xi − μi)′(Xi − μi) + T−1(Xi − μi)′(μi − X̄i)

+ T−1(μi − X̄i)
′(Xi − μi) + T−1(μi − X̄i)

′(μi − X̄i).

Now T−1(Xi − μi)′(μi − X̄i) = T−1 ∑Ti
t=Ti−1+1(xt − μ)(μ −

x̄i)
′ = −(λi − λi−1)(μ − x̄i)(μ − x̄i)

′ = op(1). Similarly,
T−1(μi − X̄i)

′(Xi − μi) = op(1). Finally, T−1(μi − X̄i)
′(μi −

X̄i) = (λi − λi−1)(μ − x̄i)(μ − x̄i)
′ = op(1). To prove (iv), note

that T−3/2Z′
i(μ

i − X̄i) = T−3/2(
∑Ti

t=Ti−1+1 zt)(μ − x̄i) = op(1)
and the result follows immediately.

Proof of Theorem 1

We only consider cases 1 and 4. The details for the other
cases can be found in the working paper version. We have

FT(λ, k) = SSR0 − SSRk

k(T − (k + 1)(qb + pb) − qf − pf )−1SSRk
,

where SSR0 and SSRk are the sum of squared residuals under
the null and alternative hypotheses, respectively. In all cases,

we have k(T − (k + 1)(qb + pb) − qf − pf )
−1SSRk

p→ kσ 2.
Case 1: The regression under H1 is yt = ci + z′

btδbi + ut and
for SSR0 we have

SSR0 = (
Y∗

(1,k+1) − Z∗
b(1,k+1)δ̃b

)′(Y∗
(1,k+1) − Z∗

b(1,k+1)δ̃b
)

= (
Z∗

b(1,k+1)(δb − δ̃b) + U∗
(1,k+1)

)′

× (
Z∗

b(1,k+1)(δb − δ̃b) + U∗
(1,k+1)

)
= U∗′

(1,k+1)U
∗
(1,k+1) − (

Z∗′
b(1,k+1)U

∗
(1,k+1)

)′
(A.1)

× (
Z∗′

b(1,k+1)Z
∗
b(1,k+1)

)−1(Z∗′
b(1,k+1)U

∗
(1,k+1)

)
,

SSRk =
k+1∑
i=1

(Ỹi − Z̃biδ̂bi)
′(Ỹi − Z̃biδ̂bi)

=
k+1∑
i=1

(Z̃bi(δb − δ̂bi) + Ũi)
′(Z̃bi(δb − δ̂bi) + Ũi)

=
k+1∑
i=1

{−(Z̃′
biŨi)

′(Z̃′
biZ̃bi)

−1(Z̃′
biŨi) + Ũ′

iŨi}.

Therefore,

SSR0 − SSRk

⇒ −σ 2
(∫ 1

0
Wb(1,k+1)

z dW1

)′

×
(∫ 1

0
Wb(1,k+1)

z Wb(1,k+1)′
z

)−1(∫ 1

0
Wb(1,k+1)

z dW1

)

+ σ 2
k+1∑
i=1

{(∫ λi

λi−1

Wb(i,i)
z dW1

)′
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×
(∫ λi

λi−1

Wb(i,i)
z Wb(i,i)′

z

)−1(∫ λi

λi−1

Wb(i,i)
z dW1

)}

+ σ 2
k∑

i=1

(λiW1(λi+1) − λi+1W1(λi))
2

λi+1λi(λi+1 − λi)

and the result stated follows.
Case 4: The regression under the alternative hypothesis is

yt = ci +z′
ftδf +z′

btδbi +ut. Let Z∗
(1,k+1) = (Z∗

f (1,k+1),Z∗
b(1,k+1))

and δ̃ = (δ̃f
′, δ̃b

′)′. We have

SSR0 = (
Y∗

(1,k+1) − Z∗
(1,k+1)δ̃

)′(Y∗
(1,k+1) − Z∗

(1,k+1)δ̃
)

= −(
Z∗′

(1,k+1)U
∗
(1,k+1)

)′(Z∗′
(1,k+1)Z

∗
(1,k+1)

)−1

× (
Z∗′

(1,k+1)U
∗
(1,k+1)

) + U∗′
(1,k+1)U

∗
(1,k+1),

SSRk =
k+1∑
i=1

(Ỹi − Z̃fiδ̂f − Z̃biδ̂bi)
′(Ỹi − Z̃fiδ̂f − Z̃biδ̂bi)

=
k+1∑
i=1

(Z̃fi(δf − δ̂f ) + Z̃bi(δb − δ̂bi) + Ũi)
′

× (Z̃fi(δf − δ̂f ) + Z̃bi(δb − δ̂bi) + Ũi).

After considerable algebra, we can show that

SSRk = −
(

k+1∑
i=1

Z̃′
1iMbiŨi

)′(k+1∑
i=1

Z̃′
1iMbiZ̃1i

)−1

×
(

k+1∑
i=1

Z̃′
1iMbiŨi

)

−
k+1∑
i=1

(Z̃′
biŨi)

′(Z̃′
biZ̃bi)

−1(Z̃′
biŨi) +

k+1∑
i=1

(Ũ′
iŨi),

where Mbi = Ii − Z̃bi(Z̃′
biZ̃bi)

−1Z̃′
bi and Ii the (Ti − Ti−1) ×

(Ti − Ti−1) identity matrix. Thus,

SSR0 − SSRk

= −(
Z∗′

(1,k+1)U
∗
(1,k+1)

)′(Z∗′
(1,k+1)Z

∗
(1,k+1)

)−1

× (
Z∗′

(1,k+1)U
∗
(1,k+1)

)

+
(

k+1∑
i=1

Z̃′
fiMbiŨi

)′(k+1∑
i=1

Z̃′
fiMbiZ̃fi

)−1(k+1∑
i=1

Z̃′
fiMbiŨi

)

+
k+1∑
i=1

(Z̃′
biŨi)

′(Z̃′
biZ̃bi)

−1(Z̃′
biŨi)

+ U∗′
(1,k+1)U

∗
(1,k+1) −

k+1∑
i=1

(Ũ′
iŨi)

and, with Bfb
z (r) = (Bf

z(r)′, Bb
z (r)

′)′,

SSR0 − SSRk

⇒ −
(∫ 1

0
Bfb(1,k+1)

z dB1

)′(∫ 1

0
Bfb(1,k+1)

z Bfb(1,k+1)′
z

)−1

×
(∫ 1

0
Bfb(1,k+1)

z dB1

)

+
(

k+1∑
i=1

∫ λi

λi−1

BM(i,i)
z dB1

)′(k+1∑
i=1

∫ λi

λi−1

BM(i,i)
z BM(i,i)′

z

)−1

×
(

k+1∑
i=1

∫ λi

λi−1

BM(i,i)
z dB1

)

+
k+1∑
i=1

(∫ λi

λi−1

Bb(i,i)
z dB1

)′(∫ λi

λi−1

Bb(i,i)
z Bb(i,i)′

z

)−1

×
(∫ λi

λi−1

Bb(i,i)
z dB1

)

+
k∑

i=1

(
(λiB1(λi+1) − λi+1B1(λi))

′

× (λiB1(λi+1) − λi+1B1(λi))
)
/(λi+1λi(λi+1 − λi)),

where BM(i,i)
z (r) = Bf (i,i)

z (r) − ∫ λi
λi−1

Bf (i,i)
z Bb(i,i)′

z (
∫ λi
λi−1

Bb(i,i)
z ×

Bb(i,i)′
z )−1Bb(i,i)

z (r). Note that each element of BM(i,i)
z (r) is the

residual from the projection of the corresponding element of
Bf (i,i)

z (r) onto the space spanned by {Bb(i,i)
zj }qb

j=1 for a given real-

ization of these stochastic processes. We also have BM(i,i)
z (r) =

(�
ff
zz)

1/2WM(i,i)
z (r), so that

kFT(λ, k)

⇒ −
(∫ 1

0
Wfb(1,k+1)

z dW1

)′

×
(∫ 1

0
Wfb(1,k+1)

z Wfb(1,k+1)′
z

)−1

×
(∫ 1

0
Wfb(1,k+1)

z dW1

)

+
(

k+1∑
i=1

∫ λi

λi−1

WM(i,i)
z dW1

)′

×
(

k+1∑
i=1

∫ λi

λi−1

WM(i,i)
z WM(i,i)′

z

)−1

×
(

k+1∑
i=1

∫ λi

λi−1

WM(i,i)
z dW1

)

+
k+1∑
i=1

(∫ λi

λi−1

Wb(i,i)
z dW1

)′(∫ λi

λi−1

Wb(i,i)
z Wb(i,i)′

z

)−1

×
(∫ λi

λi−1

Wb(i,i)
z dW1

)

+
k∑

i=1

(
(λiW1(λi+1) − λi+1W1(λi))

′

× (λiW1(λi+1) − λi+1W1(λi))
)
/(λi+1λi(λi+1 − λi)).
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Proof of Theorem 2

We give the details only for cases 4 to 6.
Case 4: The regression under H1 is yt = ci +z′

btδbi +x′
btβbi +

ut. We have,

SSR0 = [
Y∗

(1,k+1) − Z∗
b(1,k+1)δ̃b − X∗

b(1,k+1)β̃b
]′

× [
Y∗

(1,k+1) − Z∗
b(1,k+1)δ̃b − X∗

b(1,k+1)β̃b
]

By Lemmas A.1 and A.2, T−3/2Z∗′
b(1,k+1)X

∗
b(1,k+1) = op(1).

Thus,

SSR0 = [
Z∗

b(1,k+1)(δb − δ̃b) + X∗
b(1,k+1)(βb − β̃b) + U∗

(1,k+1)

]′
× [

Z∗
b(1,k+1)(δb − δ̃b) + X∗

b(1,k+1)(βb − β̃b)

+ U∗
(1,k+1)

]
= (δb − δ̃b)

′Z∗′
b(1,k+1)Z

∗
b(1,k+1)(δb − δ̃b)

+ 2(δb − δ̃b)
′Z∗′

b(1,k+1)U
∗
(1,k+1) + U∗′

(1,k+1)U
∗
(1,k+1)

+ (βb − β̃b)
′X∗′

b(1,k+1)X
∗
b(1,k+1)(βb − β̃b)

+ 2(βb − β̃b)
′X∗′

b(1,k+1)U
∗
(1,k+1) + op(1)

= −(
T−1U∗′

(1,k+1)Z
∗
b(1,k+1)

)(
T−2Z∗′

b(1,k+1)Z
∗
b(1,k+1)

)−1

× (
T−1Z∗′

b(1,k+1)U
∗
(1,k+1)

)
− (

T−1/2U∗′
(1,k+1)X

∗
b(1,k+1)

)
× (

T−1X∗′
b(1,k+1)X

∗
b(1,k+1)

)−1

× (
T−1/2X∗′

b(1,k+1)U
∗
(1,k+1)

)
+ U∗′

(1,k+1)U
∗
(1,k+1) + op(1).

We have SSRk = ∑k+1
i=1 [Ỹi − X̃biβ̂bi − Z̃biδ̂bi]′[Ỹi − X̃biβ̂bi −

Z̃biδ̂bi]. Using Lemmas A.1–A.2, T−3/2Z̃′
biX̃bi = op(1) and un-

der H0, Ỹi = X̃biβb + Z̃biδb + Ũi, so that

SSRk =
k+1∑
i=1

[X̃bi(βb − β̂bi) + Z̃bi(δb − δ̂bi) + Ũi]′

× [X̃bi(βb − β̂bi) + Z̃bi(δb − δ̂bi) + Ũi]

=
k+1∑
i=1

[−(T−1Ũ′
iZ̃bi)(T

−2Z̃′
biZ̃bi)

−1(T−1Z̃′
biŨi)

− (
T−1/2Ũ′

iX̃bi
)
(T−1X̃′

biX̃bi)
−1(T−1/2X̃′

biŨi
) + Ũ′

iŨi
]

+ op(1).

Therefore,

kFT(λ, k)

⇒ −
(∫ 1

0
Wb(1,k+1)

z dW1

)′

×
(∫ 1

0
Wb(1,k+1)

z Wb(1,k+1)′
z

)−1

×
(∫ 1

0
Wb(1,k+1)

z dW1

)
− W∗

xb(1)
′W∗

xb(1) − W1(1)
2

+
k+1∑
i=1

{
(λi − λi−1)

−1(W1(λi) − W1(λi−1))
2}

+
k+1∑
i=1

(λi − λi−1)
−1(W∗

xb(λi) − W∗
xb(λi−1))

′

× (W∗
xb(λi) − W∗

xb(λi−1))

+
k+1∑
i=1

[(∫ λi

λi−1

Wb(i,i)
z dW1

)′(∫ λi

λi−1

Wb(i,i)
z Wb(i,i)′

z

)−1

×
(∫ λi

λi−1

Wb(i,i)
z dW1

)]

which reduces to the expression stated in the theorem.
Case 5: The model under H1 is yt = ci + z′

ftδf + x′
ftβ f + ut.

We have SSRk = ∑k+1
i=1 [Ỹi −X̃fiβ̂ f − Z̃fiδ̂f ]′[Ỹi −X̃fiβ̂ f − Z̃fiδ̂f ].

Under H0, Ỹi = X̃fiβ f + Z̃fiδf + Ũi, so that

SSRk =
k+1∑
i=1

[X̃fi(β f − β̂ f ) + Z̃fi(δf − δ̂f ) + Ũi]′

× [X̃fi(β f − β̂ f ) + Z̃fi(δf − δ̂f ) + Ũi].
Furthermore, T(δ̂f − δf ) = (T−2 ∑k+1

i=1 Z̃′
fiZ̃fi)

−1(T−1 ×∑k+1
i=1 Z̃′

fiŨi) + op(1) and

T1/2(β̂ f − β f ) =
(

T−1
k+1∑
i=1

X̃′
fiX̃fi

)−1(
T−1/2

k+1∑
i=1

X̃′
fiŨi

)

+ op(1).

Hence, after some algebra,

SSRk = −
(

T−1
k+1∑
i=1

Ũ′
iZ̃fi

)(
T−2

k+1∑
i=1

Z̃′
fiZ̃fi

)−1

×
(

T−1
k+1∑
i=1

Z̃′
fiŨi

)

−
(

T−1/2
k+1∑
i=1

Ũ′
iX̃fi

)(
T−1

k+1∑
i=1

X̃′
fiX̃fi

)−1

×
(

T−1/2
k+1∑
i=1

X̃′
fiŨi

)
+

k+1∑
i=1

Ũ′
iŨi + op(1)

and

kFT(λ, k)

⇒ −
(∫ 1

0
Wf (1,k+1)

z dW1

)′(∫ 1

0
Wf (1,k+1)

z Wf (1,k+1)′
z

)−1

×
(∫ 1

0
Wf (1,k+1)

z dW1

)

+
(

k+1∑
i=1

∫ λi

λi−1

Wf (i,i)
z dW1

)′
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×
(

k+1∑
i=1

∫ λi

λi−1

Wf (i,i)
z Wf (i,i)′

z

)−1

×
(

k+1∑
i=1

∫ λi

λi−1

Wf (i,i)
z dW1

)

+
k∑

i=1

(λiW1(λi+1) − λi+1W1(λi))
2

λi+1λi(λi+1 − λi)
.

Case 6: The model under H1 is yt = ci + z′
btδbi + x′

ftβ f + ut.

In this case, SSRk = ∑k+1
i=1 [Ỹi − X̃fiβ̂ f − Z̃biδ̂bi]′[Ỹi − X̃fiβ̂ f −

Z̃biδ̂bi]. Under H0, Ỹi = X̃fiβ f + Z̃biδb + Ũi, so that

SSRk =
k+1∑
i=1

[X̃fi(β f − β̂ f ) + Z̃bi(δb − δ̂bi) + Ũi]′

× [X̃fi(β f − β̂ f ) + Z̃bi(δb − δ̂bi) + Ũi].
We also have T(δ̂bi − δb) = (T−2Z̃′

biZ̃bi)
−1T−1Z̃′

biŨi + op(1)
and

T1/2(β̂ f − β f ) =
(

T−1
k+1∑
i=1

X̃′
fiX̃fi

)−1

×
(

T−1/2
k+1∑
i=1

X̃′
fiŨi

)
+ op(1).

Hence,

SSRk = −
k+1∑
i=1

(T−1Ũ′
iZ̃bi)(T

−2Z̃′
biZ̃bi)

−1(T−1Z̃′
biŨi)

−
(

T−1/2
k+1∑
i=1

Ũ′
iX̃

′
fi

)(
k+1∑
i=1

T−1X̃′
fiX̃fi

)−1

×
(

T−1/2
k+1∑
i=1

X̃′
fiŨi

)
+

k+1∑
i=1

Ũ′
iŨi

so that

kFT(λ, k)

⇒
k+1∑
i=1

[
−

(∫ λi+1

0
Wb(1,i+1)

z dW1

)′

×
(∫ λi+1

0
Wb(1,i+1)

z Wb(1,i+1)′
z

)−1

×
(∫ λi+1

0
Wb(1,i+1)

z dW1

)

+
(∫ λi

0
Wb(1,i)

z dW1

)′(∫ λi

0
Wb(1,i)

z Wb(1,i)′
z

)−1

×
(∫ λi

0
Wb(1,i)

z dW1

)
+

(∫ λi+1

λi

Wb(i+1,i+1)
z dW1

)′

×
(∫ λi+1

λi

Wb(i+1,i+1)
z Wb(i+1,i+1)′

z

)−1

×
(∫ λi+1

λi

Wb(i+1,i+1)
z dW1

)]

+
k∑

i=1

(λiW1(λi+1) − λi+1W1(λi))
2

λi+1λi(λi+1 − λi)
.

Proof of Theorem 3

We provide a proof for the testing problem (2) in category (a),
a pure structural change model with only I(1) regressors and
a constant. The proofs for the other cases are very similar.
We first let B̃T = T−1/2 ∑[Tr]

j=1 ζ̃ j, where ζ̃ t = (vt,ub′
zt )

′. Under
the stated conditions, B̃T ⇒ B̃ ≡ (B1.z,Bb

z ) as T → ∞, where
Bb
1.z = B1−�b

1z(�
bb
zz )−1Bb

z . Note that Bb
1.z is independent of Bb

z .

Thus, B̃ denotes a vector Brownian motion with block diago-
nal covariance matrix �̃ = diag((σ b

1.z)
2,�bb

zz ), where (σ b
1.z)

2 =
σ 2 − �b

1z(�
bb
zz )−1�b

z1. The relevant regression under the alter-
native hypothesis is

yt = ci + z′
btδ̂bi +

�T∑
j=−�T

�z′
b,t−j�̂j + v̂∗

t .

As amatter of notation, let η∗
bt = (�z′

bt−�T
, . . . ,�z′

bt+�T
)′, η∗

b =
(η∗

b1, . . . ,η
∗
bT)′, E = (e1, . . . , eT)′, V = (v1, . . . , vT)′, and � =

(�′−�T
, . . . ,�′

�T
)′. Also, define Mη = IT − η∗

b(η
′∗
b η∗

b)
−1η′∗

b ,

zt = (1, zbt)
′,Z = (z1, . . . , zT)′,Zi = (zTi−1+1, . . . , zTi), Z̄ =

diag(Z1, . . . ,Zk+1), δ = (c, δ′
b)

′, and the [(k + 1)(qb + 1) × 1]
vector δ̄ = (δ, δ, . . . , δ). The vectors of estimates under the null

and the alternative are δ̃ and δ̂, respectively. The vector of resid-

uals is ṽ∗ = MηY − MηZ̄δ̃ under the null and v̂∗ = MηY −
MηZ̄δ̂ under the alternative. We have ṽ∗ = v̂∗ + MηZ̄(δ̂ − δ̃),
so that

SSR0 − SSRk = ṽ∗′ṽ∗ − v̂∗′v̂∗ = (δ̂ − δ̃)′Z̄′MηZ̄(δ̂ − δ̃)

= (δ̂ − δ̃)′Z̄′Z̄(δ̂ − δ̃)

− (δ̂ − δ̃)′Z̄′η∗
b(η

′∗
b η∗

b)
−1η′∗

b Z̄(δ̂ − δ̃).

Now note that

‖(δ̂ − δ̃)′Z̄′η∗
b(η

′∗
b η∗

b)
−1η′∗

b Z̄(δ̂ − δ̃)‖
≤ ‖(δ̂ − δ̃)′DT‖‖D−1

T Z̄′η∗
b‖

× ‖(η′∗
b η∗

b)
−1‖‖η′∗

b Z̄D
−1
T ‖DT(δ̂ − δ̃)‖,

where the [(k +1)× (qb +1)] diagonal matrix DT = diag(T1/2,

T,T, . . . ,T, . . . ,T1/2,T, . . . ,T). We have ‖DT(δ̂ − δ̃)‖ =
Op(1),‖(η′∗

b η∗
b)

−1‖ = Op(T−1), ‖D−1
T Z̄′η∗

b‖ = Op(l
1/2
T ), since

‖T−1 ∑T
t=1 Zbtη

∗′
bt‖ = Op(l

1/2
T ), ‖T−1/2 ∑T

t=1 η∗′
bt‖ = Op(l

1/2
T )

(Saikkonen 1991; Kejriwal and Perron 2008a). Hence, ‖(δ̂ −
δ̃)′Z̄′η∗

b(η
′∗
b η∗

b)
−1η′∗

b Z̄(δ̂ − δ̃)‖ = Op(lT/T) = op(1). Next,

(δ̂ − δ̃)′Z̄′Z̄(δ̂ − δ̃)

= −(Z′V)′(Z′Z)−1Z′V

+
k+1∑
i=1

(Z′
iVi)

′(Z′
iZi)

−1(Z′
iVi) + op(1)
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= −(
Z∗′

b(1,k+1)V
∗
(1,k+1)

)′(Z∗′
b(1,k+1)Z

∗
b(1,k+1)

)−1

× (
Z∗′

b(1,k+1)V
∗
(1,k+1)

) + V∗′
(1,k+1)V

∗
(1,k+1)

+
k+1∑
i=1

{(Z̃′
biṼi)

′(Z̃′
biZ̃bi)

−1(Z̃′
biṼi) − Ṽ′

iṼi} + op(1).

Therefore,

SSR0 − SSRk

⇒ −
(∫ 1

0
Bb(1,k+1)

z dBb
1.z

)′(∫ 1

0
Bb(1,k+1)

z Bb(1,k+1)′
z

)−1

×
(∫ 1

0
Bb(1,k+1)

z dBb
1.z

)

+
k+1∑
i=1

{(∫ λi

λi−1

Bb(i,i)
z dBb

1.z

)′(∫ λi

λi−1

Bb(i,i)
z Bb(i,i)′

z

)−1

×
(∫ λi

λi−1

Bb(i,i)
z dBb

1.z

)}

+
k∑

i=1

(λiBb
1.z(λi+1) − λi+1Bb

1.z(λi))
2

λi+1λi(λi+1 − λi)
.

Since Bb
1.z and Bz are independent, Bb

1.z = σ b
1.zW1 and Bb

z =
(�b

zz)
1/2Wb

z , so that

SSR0 − SSRk

⇒ −(σ b
1.z)

2
(∫ 1

0
Wb(1,k+1)

z dW1

)′

×
(∫ 1

0
Wb(1,k+1)

z Wb(1,k+1)′
z

)−1(∫ 1

0
Wb(1,k+1)

z dW1

)

+ (σ b
1.z)

2
k+1∑
i=1

{(∫ λi

λi−1

Wb(i,i)
z dW1

)′

×
(∫ λi

λi−1

Wb(i,i)
z Wb(i,i)′

z

)−1(∫ λi

λi−1

Wb(i,i)
z dW1

)}

+ (σ b
1.z)

2
k∑

i=1

(λiW1(λi+1) − λi+1W1(λi))
2

λi+1λi(λi+1 − λi)
.

It can be shown, using arguments as in Kejriwal and Perron
(2008a) that σ̂v is a consistent estimate of σ b

1.z under the stated
conditions (the proof is quite tedious and omitted). This proves
the theorem.
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