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Abstract

In this paper we investigate how cognitive ability and character skills influence behavior,

success and the evolution of play towards Nash equilibrium in repeated strategic interactions.

We study behavior in a p-beauty contest experiment and find striking differences according

to cognitive ability: more cognitively able subjects choose numbers closer to equilibrium,

converge more frequently to equilibrium play and earn more even as behavior approaches

the equilibrium prediction. To understand better how subjects with different cognitive abil-

ities learn differently, we estimate a structural model of learning based on level-k reasoning.

We find a systematic positive relationship between cognitive ability and levels; furthermore,

the average level of more cognitively able subjects responds positively to the cognitive ability

of their opponents, while the average level of less cognitively able subjects does not respond.

Finally, we compare the influence of cognitive ability to that of character skills, and find that

both cognition and personality affect behavior and learning. More agreeable and emotionally

stable subjects perform better and learn faster, although the effect of cognitive ability on

behavior is stronger than that of character skills.
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1 Introduction

In this paper, we aim to discover how cognitive ability and character skills influence behavior,

success and the evolution of play towards Nash equilibrium in repeated strategic interactions.1

Many economic interactions are strategic and repeated. Examples include: sequences of market

entry, exit and expansion decisions; repeated procuring or selling items via auctions; determining

optimal pricing strategies in markets with dynamic price competition; engaging in repeated

rounds of hiring or job searching; and competing within firms for promotions and bonuses. Given

that cognitive ability and character skills vary greatly at the population level, to understand

fully the dynamics of how people behave and learn in repeated strategic interactions we need

to establish the roles of cognition and character. Despite well-documented heterogeneity in

cognitive ability and character skills, to the best of our knowledge we are the first to study how

cognition and character affect how people learn to play equilibrium.

Our experiment was designed to answer the following questions: (i) does cognitive ability

influence the way that groups of agents learn to play equilibrium over time when they engage

in repeated strategic interaction?; (ii) how do subjects’ learning processes depend both on their

own cognitive ability and that of their opponents?; (iii) do character skills influence how people

learn to play equilibrium?; and (iv) how do the effects of character skills compare to those of

cognitive ability?

We first measured the cognitive ability of our 780 subjects using a 60 question non-verbal

Raven test. We classified each subject as either of ‘high cognitive ability’ or of ‘low cognitive

ability’ according to whether her test score was in the top or bottom half of the distribution

of scores in her session. We then matched our subjects into groups of three. In ‘own-matched’

groups, all three members were of the same cognitive ability type. In ‘cross-matched’ groups,

the three members were of mixed ability (either two high ability and one low ability subject,

or vice versa). Subjects found out their own cognitive ability type as well as the ability type

of the other two group members.2 This design feature allows us to conduct an analysis of how

behavior responds to the cognitive ability of opponents.

Each group of three then played the p-beauty contest ten times without rematching and with

feedback.3 In our p-beauty contest, the three group members simultaneously chose an integer

between 0 and 100 inclusive, and the subject whose choice was closest to 70% of the average

of the three numbers won $6. In the unique Nash equilibrium, all subjects choose 0; however,

the game is well suited to study learning since best responses to non-equilibrium choices are

often above 0, but with repetition behavior tends to move towards equilibrium. Our focus on

repeated interaction makes it natural to keep group membership constant over the ten rounds

1We follow Heckman and Kautz (2014) in using the term ‘character skills’ to describe personal attributes that
are sometimes called ‘personality traits’ or ‘non-cognitive’ skills. Heckman and Kautz (2014) note that character
skills can be shaped and changed over the life-cycle, while the term ‘traits’ conveys “a sense of immutability or
permanence.”

2As far as possible the instructions used neutral language, and so did not refer to ‘high ability’, ‘low ability’,
‘winning’, and so on. Controlling for a subject’s own Raven test score, we find no evidence that the allocation to
cognitive ability type per se has any influence on choices or earnings (see Appendix A for details of the analysis).

3Real-world parallels to p-beauty contests include timing games in financial markets: “Think of the time at
which investors choose to sell a rising stock as picking a number. When many investors choose to sell, the stock
crashes; the time of the crash is around the average number (selling time) chosen. Then professional investment is
a p-beauty contest (with p < 1) in which investors want to sell a few days ahead of the crash – picking a number
equal to p times the average number – but not too far ahead” (Ho et al., 1998, p.948).
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of the experiment; indeed, only with constant groups can we conduct our analysis of how often

different groups converge to equilibrium play. We chose a group size of three to maximize the

number of independent observations, while ensuring that the game has an interesting strategic

component (with a group size of just two, choosing zero is weakly dominant).

We find striking differences by cognitive ability: more cognitively able subjects choose num-

bers closer to equilibrium, converge more frequently to equilibrium play and earn substantially

more on average even as behavior approaches the equilibrium prediction. In the final two rounds,

all three group members choose the equilibrium action 29% of the time in own-matched high

ability groups, but only 15% of the time in cross-matched groups and 13% of the time in own-

matched low ability groups; similar results hold for measures of close-to-equilibrium play.

To help gain insight into the micro-processes that drive these differences, and thus to un-

derstand better how subjects with different cognitive abilities learn differently, we estimate a

structural model of learning based on level-k reasoning that fits well the differences in behav-

ior according to cognitive ability that we observe in the data.4,5 Following Nagel (1995), Stahl

(1996) and Duffy and Nagel (1997), we assume that level-0 types “follow the crowd” in the sense

that they copy the average group behavior from the previous round, level-1 types best respond

to the choices of level-0 types, level-2 types best respond to the choices of level-1 types, and so

on. We also incorporate a form of rule learning (Stahl, 1996) by including types who switch

up one level during the course of the experiment. The model allows subjects’ levels to vary in

their own cognitive ability and that of their opponents: we find a systematic positive relation-

ship between cognitive ability and levels; furthermore, the average level of more cognitively able

subjects responds positively to the cognitive ability of their opponents, while the average level

of less cognitively able subjects does not respond.

The estimates of the structural model’s parameters also allow us to simulate the earnings of

each level-k type, according to subjects’ own cognitive ability and that of their opponents. This

analysis shows that subjects are constrained in their levels below those that are optimal, but that

high cognitive ability subjects leave less money on the table compared to the payoff-maximizing

type (the payoff-maximizing type is allowed to vary in subjects’ own cognitive ability and that

of their opponents). On average, own-matched high ability subjects leave $4.59 on the table,

cross-matched high ability subjects leave $4.61 on the table, own-matched low ability subjects

leave $5.75 on the table, and cross-matched low ability subjects leave $7.75 on the table.

Before the test of cognitive ability, we administered questionnaires to 270 of the 780 subjects

4Methodologically, our structural analysis builds on existing level-k mixture-of-types models estimated using
Maximum Likelihood, including Stahl and Wilson (1995), Ho et al. (1998), Costa-Gomes et al. (2001), Costa-
Gomes and Crawford (2006), Crawford and Iriberri (2007a), Crawford and Iriberri (2007b) and Costa-Gomes and
Weizsäcker (2008). Structural level-k mixture-of-types models have been applied successfully to study behavior
in, for example, guessing games (Costa-Gomes and Crawford, 2006), coordination games (Costa-Gomes et al.,
2009) and auctions (Crawford and Iriberri, 2007a), and to analyze the role of beliefs in normal-form games (Costa-
Gomes and Weizsäcker, 2008). The closely related cognitive hierarchy model (Camerer et al., 2004) has been used
to study behavior in, e.g., zero-sum betting games (Brocas et al., forthcoming), telecoms markets (Goldfarb and
Xiao, 2011) and the Lowest Unique Positive Integer game used by the Swedish national lottery (Östling et al.,
2011). See Crawford et al. (2013) for a comprehensive survey of applications of level-k and cognitive hierarchy
models.

5Our level-k model of learning provides a relatively simple framework that organizes succinctly differences in
behavior by cognitive ability. As is the case in all modeling exercises, we cannot rule out the existence of other
models with superior or equal ability to fit our sample. Further, we cannot rule out the existence of alternative
models that are observationally equivalent to our level-k model of learning.
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to measure seven character skills: openness, conscientiousness, extraversion, agreeableness and

emotional stability (the Big Five), grit and Consideration of Future of Consequences (CFC).6

The high degree of correlation between our seven measures justifies the construction of a smaller

number of uncorrelated factors. A principal component factor analysis gives three factors, which

explain two-thirds of the variance: Factor 1 mainly captures conscientiousness, grit and CFC;

Factor 2 mainly captures agreeableness and emotional stability; while Factor 3 mainly captures

openness, extraversion and CFC.

We find that both cognitive ability and character skills influence behavior, success and learn-

ing in our repeated strategic interaction. Subjects with a higher Raven test score (who are more

cognitively able) and a higher Factor 2 score (who are more agreeable and emotionally stable)

choose numbers closer to equilibrium, earn more and, within the context of our level-k model of

learning, adopt higher level-k choice rules. We also find that both cognitive ability and character

skills influence learning at the group level: groups with higher cognitive ability on average and

higher Factor 2 on average end up closer to the Nash equilibrium in the last few rounds. Recent

evidence from the psychology literature links agreeableness to a better theory of mind (Nettle

and Liddle, 2008; DeYoung et al., 2010),7 thus providing a channel through which agreeable-

ness might help performance in settings like ours that require strategic reasoning, and shows

that emotional stability aids performance in more complex tasks (Eysenck, 1985; Szymura and

Wodniecka, 2003).

The impact of cognitive ability on behavior is about 75% bigger than that of character

skills, but the estimated influence of cognitive ability does not depend on whether we control

for character skills, and vice versa. Interestingly, we also find that marginal changes in cognitive

ability mainly affect the behavior of subjects who are already cognitively able, while changes

in character skills influence the behavior of subjects who are high or low in cognitive ability.

Our results mirror those of recent studies that show that both cognitive ability and character

skills help to predict outcomes such as workplace performance, educational attainment, marital

status and risky behaviors (Heckman et al., 2006; Mueller and Plug, 2006; Duckworth et al.,

2007; Borghans et al., 2008; Cunha et al., 2010; Lindqvist and Vestman, 2011; Burks et al.,

2014; Heckman et al., 2015). Consonant with our finding that marginal increases in cognitive

ability matter more for subjects who are already cognitively able, Lindqvist and Vestman (2011)

find that noncognitive skills predict wages more strongly than do cognitive skills at the lower

end of the earnings distribution, while cognitive skills are the stronger predictor at the higher

end of the earnings distribution. Heckman et al. (2006) and Heckman et al. (2015) show that

the relative importance of cognitive and noncognitive skills varies according to the outcome:

for example, Heckman et al. (2006) find that cognitive ability has the same effect on wages as

noncognitive ability, while noncognitive ability is the dominant factor in explaining participation

in crime (see the surveys by Almlund et al., 2011, and Heckman and Kautz, 2012, for further

examples). An interesting extension of our study would investigate the relative importance of

6We measured the Big Five using the Big Five Inventory (John et al., 1991; John et al., 2008). The Grit
Scale measures “perseverance and passion for long-term goals” (Duckworth et al., 2007). CFC is a survey-based
measure of time preference (Strathman et al., 1994).

7According to Coricelli and Nagel (2009), theory of mind is “the ability to think about others’ thoughts and
mental states to predict their intentions and actions”, and playing the beauty contest against humans rather
than a computer “activated areas commonly associated with theory of mind or mentalizing-thinking about other
people’s minds.”
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cognition and character in explaining learning in different strategic games or in other tasks. It

would be particularly interesting to study whether the factor intensities attached to cognitive

and noncognitive skills vary between games in which subjects learn a less-than-obvious dominant

strategy, such as Race games (Dufwenberg et al., 2010; Gneezy et al., 2010; Cardella, 2012), and

games like the beauty contest in which players do not have a dominant strategy.

The contribution of our paper is to investigate how cognitive ability and character skills

influence learning to play equilibrium in repeated strategic interactions. In doing so, we ex-

tend three established literatures. The first literature studies learning in strategic games, both

theoretically and empirically, without considering the influence of cognitive ability or character

skills (see Camerer, 2003, for a survey). The second literature studies the relationship between

cognitive ability and behavior in strategic games without considering the dynamics of how peo-

ple learn over time to play equilibrium.8 The third literature studies the relationship between

character skills and behavior in strategic games, again without considering how people learn to

play equilibrium.9

A further innovation of our paper is to study how learning behavior varies in the cognitive

ability of opponents, and to study how subjects’ own cognitive ability influences how they

respond to their opponents’ cognitive ability. This analysis extends a burgeoning literature that

studies how strategic play is affected by information about opponent characteristics other than

cognitive ability. In particular, a small literature looks at the effects of information about how

much experience opponents have of the type of strategic reasoning required in the game being

studied. Notably, Agranov et al. (2012) find that, in a one-shot beauty contest, inexperienced

undergraduates shift to higher level-k types on average when they play against graduates with

some experience of the game, while Le Coq and Sturluson (2012) find that play in a Cournot game

shifts with the experience of opponents in the game, and Palacios-Huerta and Volij (2009) find

an effect of opponent experience of backward-induction reasoning on behavior in the centipede

game.

We study how cognitive ability measured in a non-strategic setting affects how people perform

and learn in a strategic environment. In contrast, Palacios-Huerta and Volij (2009) focus on

8In one-shot beauty contest games, Burnham et al. (2009) and Brañas-Garza et al. (2012) find that subjects
with higher cognitive ability choose lower numbers, while Agranov et al. (2011) find that, when subjects are given
time to think about their choices, higher cognitive ability subjects’ choices fall more with thinking time. In related
dominance-solvable and guessing games, working memory (Rydval et al., 2009) and depths of reasoning in the
red hat puzzle (Bayer and Renou, 2012) correlate with behavior. Cognitive ability also influences behavior in
public good games (Millet and Dewitte, 2007) and in the prisoner’s dilemma (Burks et al., 2009). Schnusenberg
and Gallo (2011) run a three-round beauty contest with one winner per round and no monetary incentives (the
prize was a small in-class grade improvement), and find that scores in Frederick (2005)’s three-question Cognitive
Reflection Test affect choices in the first round only.

9In public good games, self-esteem (Kurzban and Houser, 2001) and agreeableness (Volk et al., 2011) generate
higher contributions, and more agreeable subjects choose to lead less frequently (Arbak and Villeval, 2013). More
self-controlled, more tough-minded and less extraverted subjects offer more in the ultimatum game (Brandstätter
and Königstein, 2001). More agreeable subjects send more in a sequential prisoner’s dilemma (Rustichini et al.,
2012). Higher need-for-cognition and premeditation give rise to fewer dominated choices in dominance-solvable
games (Rydval et al., 2009). More neurotic subjects earn more in the stag-hunt game (Al-Ubaydli et al., 2013).
In trust games, less anxious (Fahr and Irlenbusch, 2008), less alienated (Johnson et al., 2009), less conscientious,
less neurotic and more agreeable (Müller and Schwieren, 2012) subjects are more trusting. Less anxious and
more aggressive subjects are more likely to take a risky entry decision (Neeman et al., 2013). This literature does
not focus on how character skills influence learning to play equilibrium, although Boone et al. (2002) find that
sufficient repetition allows subjects with an external locus of control to become more cooperative in the prisoner’s
dilemma.
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the role of experience of a particular type of strategic reasoning (backward induction) on how

subjects play in a repeated strategic game that uses this type of reasoning (the centipede game).

To vary the amount of experience, Palacios-Huerta and Volij (2009) compared students and

chess players in a laboratory experiment. As the authors state: “Backward induction reasoning

is second nature to expert chess players. They devote a large part of their life to finding optimal

strategies for innumerable chess positions using this reasoning” (p.1624). The chess players

were recruited from local chess clubs and none held an official chess title; thus there is no

evidence that they were of exceptional intelligence.10 Palacios-Huerta and Volij (2009) did not

measure cognitive ability, and they do not claim that the chess players were more intelligent

than the students. Even if we accept that the chess players were more intelligent (on one or

more dimensions) as well as more experienced, Palacios-Huerta and Volij (2009)’s data cannot

be used to distinguish the effects of cognitive ability on behavior from that of experience: a

study that aims to use chess playing as a proxy for intelligence should use a game that does not

require backward-induction reasoning.

The paper proceeds as follows. Section 2 describes the experimental design. Section 3 reports

descriptive statistics and reduced form regression results that describe how behavior and learning

vary with cognitive ability. Section 4 presents the structural analysis of the influence of cognitive

ability. Section 5 compares the effects of cognitive ability to those of character skills. Section 6

discusses some broader implications of our findings and concludes.

2 Experimental design

We ran 37 experimental sessions at the University of Arizona’s Experimental Science Laboratory

(ESL), all conducted on weekdays between November 2010 and March 2011 and in January

2014, and lasting approximately 75 minutes. 18 or 24 student subjects participated in each

session, with 780 participants in total.11 The participants were drawn from the ESL subject

pool, which is managed using a bespoke online recruitment system. We excluded any graduate

students in economics. Seating positions were randomized. The experimental instructions (see

the Supplementary Web Appendix) were provided to each subject on their computer screen and

were read aloud to the subjects. Questions were answered privately. Each subject was paid

a show-up fee of $5.00 and earned an average of a further $20.00 during the experiment (all

payments were in U.S. dollars). Subjects were paid privately in cash. The experiment was

programmed in z-Tree (Fischbacher, 2007).

10In a separate field experiment reported in Palacios-Huerta and Volij (2009), chess players played the centipede
game a single time. These chess players were recruited from international chess competitions and included a
number of Grandmasters, International Masters and Federation Masters. Palacios-Huerta and Volij (2009) find
that 69% of first movers stopped at the first node, with the proportion rising to 100% for Grandmasters. In a
close replication (with the same game and information about the opponent, and with similar subjects and stakes),
Levitt, List, and Sadoff (2011) find different results: only 4% of first movers stopped at the first node, with the
proportion falling to 0% for Grandmasters.

11All sessions were run during the Fall or Spring Semesters. Before running these sessions, we also ran one pilot
session without any monetary incentives and two sessions with a different form of the p-beauty contest (where
the target was 90% of the mean of the choices) whose results are not reported here.
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2.1 The test of cognitive ability

Each session consisted of a test of cognitive ability followed by repeated play of the p-beauty

contest (Nagel, 1995). (The sessions that we ran in January 2014 also included questionnaires

to measure character skills that were administered before the test of cognitive ability: Section 5

provides the details of the measures and analysis of the impact of character skills.) In more

detail, each session included a 30 minute computerized test of cognitive ability using Raven’s

Progressive Matrices. The Raven test, which consists of non-verbal multiple choice questions,

is recognized as a leading measure of analytic intelligence (Carpenter et al., 1990; Gray and

Thompson, 2004, Box 1, p. 472).12 In economics, Raven test scores have been found to correlate

positively with fewer Bayesian updating errors (Charness et al., 2011) and with more accurate

beliefs (Burks et al., 2009). Each question asks the subjects to identify the missing element

that completes a visual pattern. We used the Standard Progressive Matrices Plus version of the

Raven test (the level of difficulty lies between that of the Standard Progressive Matrices and the

Advanced Progressive Matrices), which consists of 60 questions split into 5 parts of increasing

difficulty, labeled A-E, with 12 questions in each. We gave the subjects 3 minutes for each of

parts A and B (which are easier than parts C-E) and 8 minutes for each of parts C, D and E.

Within each part subjects could move back and forth between the 12 questions in that part and,

time permitting, they were allowed to change their previous answers. The subjects were not

made aware of what would follow the Raven test until the test was completed.

We did not provide any monetary incentives for completing the Raven test. This is con-

ventional in the psychology and psychometric literatures and avoids the possibility that income

effects might spill over from the test to behavior in the p-beauty contest. We did, however, tell

the subjects that we would inform them privately of their own score at very end of the session.

Figure 1(a) shows how the Raven test scores of our subjects were distributed. The mean test

score was 40.7, with individual scores ranging from 12 to 58.

2.2 Subject matching

Following the Raven test, each subject was determined to be either (i) of ‘high cognitive ability’

if her test score was in the top half of the distribution of scores of the subjects in her session

or (ii) of ‘low cognitive ability’ if her test score was in the bottom half of the distribution in

her session. Subjects scoring exactly the session median were allocated to ability types so as to

ensure an equal number of subjects of each ability type for that session. Figure 1(b) illustrates

the densities of the Raven test scores by cognitive ability type. On average, the Raven test score

of high ability subjects was 7.0 higher than that of low ability subjects. The range of overlap

arises because the median Raven test score varied over sessions, from 37.0 to 43.5. We found no

time trend in the median test score over sessions (2-sided p = 0.530).

Subjects were then put into groups of 3. In ‘own-matched’ sessions, all 3 members of a group

12Carpenter et al. (1990) define analytic intelligence (also sometimes called fluid intelligence, as opposed to
crystalized intelligence) as “the ability to reason and solve problems involving new information, without relying
extensively on an explicit base of declarative knowledge derived from either schooling or previous experience”, and
show that Raven test scores discriminate according to the ability to use abstract reasoning and correlate highly
with scores on other complex cognitive tasks. Raven et al. (2000, SPM25-SPM37) survey the extensive literature
that studies: (i) correlations between Raven test scores and scholastic aptitude and achievement tests and other
measures of cognitive ability; and (ii) the internal consistency and test-retest reliability of the Raven test.
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Figure 1: Histogram and densities of Raven test scores.

were of the same ability type. 450 subjects participated in own-matched sessions, giving 75

groups of 3 high cognitive ability subjects (‘own-matched high ability groups’) and 75 groups of

3 low cognitive ability subjects (‘own-matched low ability groups’). In ‘cross-matched’ sessions,

the 3 members of a group were of mixed ability (half the groups were made up of 2 high cognitive

ability subjects matched with 1 low cognitive ability subject and the other half were made up

of 2 low cognitive ability subjects matched with 1 high cognitive ability subject). 330 subjects

participated in cross-matched sessions, giving 110 ‘cross-matched groups’. Conditional on a

subject’s cognitive ability type, the allocation to groups was random. The subject matching

implies that, on average, high ability subjects face 4/3 more high ability opponents in own-

matched groups than in cross-matched groups, while low ability subjects face 4/3 more high

ability opponents in cross-matched groups than in own-matched groups.

We informed each subject of her own cognitive ability type as well as the cognitive ability type

of the 2 other members of her group. The instructions (see the Supplementary Web Appendix)

did not use the terms ‘high ability’ or ‘low ability’; instead, we referred more neutrally to the

top and bottom half of the test scores of all participants in the room. Controlling for a subject’s

own test score, we find no evidence that the allocation to cognitive ability type per se influenced

behavior or earnings in the experiment: Appendix A provides the details of this analysis.

2.3 p-beauty contest game

Each group of 3 then played 10 rounds of the p-beauty contest (Nagel, 1995) with p = 0.7 and

without rematching (no rematching allows us to treat behavior across groups as independent).

In particular, in every round each group member privately chose an integer between 0 and 100

inclusive (the subjects typed their chosen number into a box rather than selecting it from an

on-screen grid). The group member whose chosen number was closest to 70% of the mean

of the 3 numbers chosen by the group members (the ‘target’) was paid $6.00 and the other

group members received nothing. In the case of ties, the $6.00 was split equally among the

winners. To keep the language as neutral as possible, the instructions (see the Supplementary
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Web Appendix) did not use terms such as ‘prize’, ‘winner’, ‘loser’, ‘ties’ or ‘target’. The unique

Nash equilibrium is for all players to choose 0.13

Before the start of the first round, we described the number of rounds, the rules of the

game and the information feedback the subjects would receive at the end of each round. At the

end of every round, each group member was informed of: (i) the numbers chosen by the group

members; (ii) the mean of the 3 chosen numbers; (iii) 70% of the mean (the target); (iv) which

group member(s)’ number(s) was (were) closest to the target; and (v) how much each group

member was paid for the round.14 While deciding on their choice of number and also when

receiving feedback, the subjects could see a reminder of the rules and of the cognitive ability

type of each member of their group. All interactions were anonymous, but subjects were given

labels (X, Y or Z) which were held fixed for the 10 rounds; hence each subject could link the

choices in their group to particular opponents whose cognitive ability type they knew.

The subjects had 90 seconds to make their choice in each round. The subjects were told that

if they made their choice early, they would still have to wait for the full 90 seconds. If a subject

failed to make a choice within 90 seconds, a flashing request prompted an immediate choice. At

the end of each round, the subjects could see the feedback information described above for a

period of 30 seconds before the next round began.

3 Reduced form results

In this section, we report descriptive statistics and reduced form regression results in order

to describe how average behavior, the evolution of play over rounds and the group-by-group

dynamics of convergence towards equilibrium vary with cognitive ability. In Section 4, we go

on to build and estimate a structural model of learning that aims to provide insight into the

behavioral mechanisms that underlie the patterns that we describe below.

3.1 Behavior and earnings in the first round

We start by reporting briefly how behavior and earnings vary with cognitive ability in the first

round. The mean choice of high cognitive ability subjects is 42.9 while that of low cognitive

ability subjects is 43.6. The difference of 0.7 is not statistically significant (a regression of p-

beauty contest choices on cognitive ability type gives a 2-sided p = 0.626).15 To study differences

13The game is discrete, and hence this is not true for all values of p (López, 2001). However, it is relatively
straightforward to show for our p = 0.7. A proof starts from the observation that the highest chosen number can
never win or tie unless all 3 players choose that number. Suppose that xi ≥ xj and xi > xh. Let t be the target. If
xh ≥ t, clearly i cannot win or tie. If xh < t, xh is closer to the target than xi if and only if (xi− t)− (t−xh) > 0.
When p = 0.7, this difference equals (1/15)(8xi−7xj +8xh) > 0. Now suppose a Nash equilibrium exists in which
the players do not always all choose zero. Let xmax be the highest number that is ever played in equilibrium.
xmax cannot be a best response. From the observation, the payoff from xi = xmax is strictly positive if and only
if xj = xh = xmax (giving a tie). If that can happen with strictly positive probability, deviating to any lower
number is profitable (from the observation giving a win when xj = xh = xmax). If not, deviating to the lowest
number ever chosen by your opponents is profitable (from the observation giving a tie when at least one opponent
chooses that number).

14In terms of information feedback, our design is close to that of Nagel (1995), where the whole distribution
of choices was revealed at the end of each round (but with much larger groups and just 4 repetitions).

15Throughout Sections 3.1 and 3.2, all statistical tests are based on Ordinary Least Squares regressions and use
heteroskedasticity-consistent standard errors. Apart from the case of first round choices, we cluster at the group
level to allow for within-group non-independence. In Section 3.1 the regressions use the 780 subjects observed
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in earnings by cognitive ability we only look at subjects in cross-matched groups: low cognitive

ability subjects in own-matched low ability groups must by construction earn as much on average

as high cognitive ability subjects in own-matched high ability groups (i.e., $2.00 on average in

every round). In the first round, cross-matched high ability subjects earn $0.11 more than cross-

matched low ability subjects (mean earnings in the first round are $2.00), but the difference is

not statistically significant (2-sided p = 0.761).

3.2 Behavior across all 10 rounds

We now consider how behavior varies with cognitive ability across all rounds of the experiment,

describing both average behavior across all 10 rounds and the evolution of behavior during the

course of the experiment. We first study the behavior of all subjects, and then focus on own-

matched subjects and cross-matched subjects separately.16 We study differences in earnings

only for cross-matched subjects: as noted in Section 3.1, low cognitive ability subjects in own-

matched low ability groups must by construction earn as much on average as high cognitive

ability subjects in own-matched high ability groups (i.e., $2.00 on average in every round).

3.2.1 Behavior of all subjects

Across all 10 rounds of the p-beauty contest, the mean choice of high cognitive ability subjects

is 17.9 while that of low cognitive ability subjects is 20.1. Regressing p-beauty contest choices

on cognitive ability type, we find that the difference of 2.2 is highly statistically significant (2-

sided p = 0.007). Figure 2 shows the round-by-round evolution of mean choices for high and low

cognitive ability subjects. We can see that average behavior moves towards the Nash equilibrium

for both types. Shortly, we will show that the high ability subjects earn significantly more

than low ability subjects (Section 3.2.3) and converge to a greater degree to Nash equilibrium

(Section 3.3.2).
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Figure 2: Round-by-round means of p-beauty contest choices (all subjects).

for 1 round, in Section 3.2.1 they use the 780 subjects observed for 10 rounds, in Section 3.2.2 they use the 450
own-matched subjects observed for either 5 or 10 rounds, and in Section 3.2.3 they use the 330 cross-matched
subjects observed for either 5 or 10 rounds.

16Appendices C and D provide further analysis of the cross-matched subjects.
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3.2.2 Behavior of own-matched subjects

The difference in average behavior between high and low cognitive ability subjects is more

pronounced for own-matched subjects than for the sample as a whole. Across all 10 rounds,

the mean choice of own-matched high cognitive ability subjects is 3.5 lower than that of own-

matched low ability subjects (2-sided p = 0.005). Figure 3 shows round-by-round mean choices

for own-matched subjects only. In rounds 1-5, choices of own-matched high cognitive ability

subjects are on average 3.1 lower than choices of own-matched low ability subjects (2-sided

p = 0.025). In rounds 6-10, own-matched high cognitive ability subjects’ choices remain lower,

by an average of 3.9 (2-sided p = 0.006). By the final round, the mean choice of own-matched

high cognitive ability subjects falls to 4.3, while that of own-matched low ability subjects falls

to 8.2.
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Figure 3: Round-by-round means of p-beauty contest choices of own-matched subjects.

3.2.3 Behavior and earnings of cross-matched subjects

Across all 10 rounds, the mean choice of cross-matched high cognitive ability subjects is only

0.4 lower than the mean choice of cross-matched low ability subjects, and the difference is not

statistically significant (2-sided p = 0.653). Figure 4(a) shows round-by-round mean choices

for cross-matched subjects only. Cross-matched high and low cognitive ability subjects behave

similarly on average in both the first and second halves of the experiment: there is no statistically

significant difference in behavior in either rounds 1-5 (2-sided p = 0.181) or in rounds 6-10 (2-

sided p = 0.330).

Despite the similarity in the average behavior of cross-matched high and low cognitive ability

subjects, we find that cross-matched high cognitive ability subjects are more successful in the

sense that they earn significantly more money in the experiment. Over the 10 rounds cross-

matched high ability subjects earn $3.56 more than cross-matched low ability subjects, and the

difference is highly statistically significant (2-sided p = 0.007).

Figure 4(b) shows how the earnings of cross-matched subjects evolve during the course of

the experiment. We can see that: (i) cross-matched high ability subjects earn more than cross-

matched low ability subjects in both the first and second halves of the experiment; and that (ii)
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the earnings difference becomes bigger in the second half. In rounds 1-5, cross-matched high

cognitive ability subjects earn $0.27 more per round than cross-matched low ability subjects,

although the difference is not quite statistically significant (2-sided p = 0.143). In rounds 6-10,

cross-matched high cognitive ability subjects earn $0.44 more per round than cross-matched low

ability subjects, and the difference is highly statistically significant (2-sided p = 0.003). By the

final round, the difference in earnings rises to $0.79.

Thus earnings diverge in the second half of the experiment, even though average behavior

remains similar. Somehow, cross-matched high cognitive ability subjects ‘learn’ better how to

play the game than do cross-matched low cognitive ability subjects. An important aim of the

structural analysis described in Section 4 is to provide insight into the mechanisms driving these

results.
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(a) Round-by-round means of choices.
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(b) Round-by-round means of earnings.

Figure 4: p-beauty contest choices and earnings of cross-matched subjects.

3.3 Group-by-group convergence towards equilibrium

Section 3.2 provides a good overview of how average behavior evolves over time. However, this

overview masks a significant amount of group-by-group variation in exactly how play evolves

towards equilibrium. In order to better understand how the dynamics of the learning process

vary with cognitive ability, in this section we look in more detail at the process of convergence

towards Nash equilibrium. We start by providing a visual description of the way in which some

individual groups succeed or fail to converge towards equilibrium; we then present results about

the proportion of groups that converge and how the degree of convergence varies with group

composition.

12



3.3.1 Visual description of group-by-group behavior

Figures 5(a)-5(d) and 6(a)-6(d) give an overview of the group-by-group variation in the dynamics

of convergence. Each of the 8 figures shows, for a specific group, how the choices of the 3 group

members change round-by-round. The figures also show the winning choice or choices in each

round.17

Figures 5(a)-5(c) show examples of 3 groups which slowly converge towards equilibrium.

No group ever reaches equilibrium in Figures 5(a)-5(c). However, some groups do successfully

converge all the way to equilibrium. Figure 5(d) shows an own-matched high ability group

in which convergence to equilibrium is almost immediate: by the fourth round all 3 group

members choose 0, and all 3 then stick to the equilibrium choice for the remainder of the

experiment. Figure 6(a) shows a cross-matched group in which behavior also converges to

equilibrium, although not as fast. As we will see shortly in Section 3.3.2, convergence is much

more common when all 3 members of the group are of high cognitive ability.

Convergence towards equilibrium is not the only pattern that we observe. Figures 6(b)

and 6(c) show groups in which behavior does not move discernibly towards equilibrium. In

both cases, high choices by some of the subjects seem to disturb the learning process. However,

Figure 6(d) shows an own-matched high ability group in which such a high choice seems hardly

to affect the learning process at all.

17The Supplementary Web Appendix contains figures illustrating the dynamics of convergence for each of the
260 groups in our sample.
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(a) Own-matched high ability group.
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(b) Own-matched low ability group.
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(c) Cross-matched group with 1 high ability subject.

0
20

40
60

80
10

0

C
ho

ic
e

1 2 3 4 5 6 7 8 9 10
Round

(d) Own-matched high ability group.
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Notes: Ties are represented by overlapping markers. In cross-matched groups, the subject represented by the
solid line is of the minority cognitive ability type.

Figure 5: Examples of group-by-group behavior: groups 1-4 of 8.
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(a) Cross-matched group with 1 high ability subject.
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(b) Cross-matched group with 2 high ability subjects.
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(c) Own-matched low ability group.
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(d) Own-matched high ability group.
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Notes: Ties are represented by overlapping markers. In cross-matched groups, the subject represented by the
solid line is of the minority cognitive ability type.

Figure 6: Examples of group-by-group behavior: groups 5-8 of 8.
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3.3.2 Statistics on group-by-group convergence

Of course, the figures in Section 3.3.1 illustrate the behavior of just a small subset of the 260

groups in our sample. We now study the degree of convergence more systematically, differen-

tiating between own-matched high ability groups, cross-matched groups and own-matched low

ability groups. Table 1 shows the frequency of equilibrium and close-to-equilibrium play in the

final 2 rounds of the experiment.

Equilibrium Group mean ≤ 1 Group mean ≤ 2

Observed proportions:

Own-matched high ability groups 0.293 0.453 0.540

Cross-matched groups 0.145 0.282 0.368

Own-matched low ability groups 0.127 0.247 0.313

Cross-group differences in proportions:

Own-matched high ability groups vs. 0.167
(0.062)

∗∗∗ 0.207
(0.072)

∗∗∗ 0.227
(0.072)

∗∗∗

own-matched low ability groups

Own-matched high ability groups vs. 0.148
(0.059)

∗∗ 0.172
(0.069)

∗∗ 0.172
(0.070)

∗∗

cross-matched groups

Cross-matched groups vs. 0.019
(0.049)

0.035
(0.061)

0.055
(0.064)own-matched low ability groups

Notes: The table is based on 520 group-round observations (the 75 own-matched high ability groups, the 75 own-
matched low ability groups and the 110 cross-matched groups, observed in rounds 9 and 10). The first column
reports the proportion of group-round observations in rounds 9 and 10 in which all 3 group members choose 0.
The second (third) column reports the proportion of group-round observations in rounds 9 and 10 in which the
mean choice of the 3 group members is less than or equal to 1 (2). The statistical tests of differences in proportions
are based on Ordinary Least Squares regressions. Heteroskedasticity-consistent standard errors (with clustering
at the group level) are shown in parentheses. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels
(2-sided tests).

Table 1: Proportions of equilibrium and close-to-equilibrium play in rounds 9 and 10.

The first column shows the proportion of equilibrium play, that is the proportion of group-

round observations in which all 3 group members choose 0. Own-matched high ability groups

play the equilibrium around 29% of the time in the final 2 rounds, which is statistically signif-

icantly more often than for cross-matched groups (15%) and own-matched low ability groups

(13%). The second and third columns show that the results extend when we consider close-to-

equilibrium play, defined to be the proportion of group-round observations in the final 2 rounds

in which the mean choice of the 3 group members is less than or equal to 1 (second column)

or 2 (third column). Own-matched high ability groups are close to equilibrium statistically

significantly more frequently than cross-matched groups and own-matched low ability groups.

In Section 4.3.1 we report how well our structural level-k model of learning can match

these differences in convergence according to group composition. In particular, we compare the

observed proportions of equilibrium and close-to-equilibrium play to those arising from simulated
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choices constructed using the estimated parameters of the structural model, and we find that

the structural model fits well the broad patterns that we find here.

4 Structural analysis

Section 3 presented a detailed reduced form description of how behavior and earnings vary

with cognitive ability. To help gain insight into the behavioral mechanisms that underlie these

differences we turn to a level-k model of learning. Below we describe our empirical model’s

specification, our estimation strategy and our results.

4.1 Level-k model of learning

We estimate a structural level-k mixture-of-types model of learning using Maximum Likelihood.

Choices in the first round serve as the initial conditions. Our level-k model of learning includes

nine learner types; and since our model includes rule learners, we distinguish level-k types from

level-k choice rules (described below). Five fixed level-k types with k ∈ {0, 1, 2, 3, 4} follow the

level-k choice rule in all rounds r ≥ 2 (therefore an individual drawn as a level-k type follows

the same choice rule in every round). We also include four rule learner types who switch from

following the level-k choice rule in round r = 2, with k ∈ {0, 1, 2, 3}, to following the level-(k+1)

choice rule in round r = 10. For such Lk − (k + 1) rule learners, the probability of choosing

the level-(k + 1) choice rule increases linearly over rounds from 0 in round r = 2 to 1 in round

r = 10 (and is thus given by (r − 2)/8 in round r), while the complementary probability of

choosing the level-k choice rule falls linearly over rounds.18,19

Some further notation is necessary to describe the level-k choice rules. Subject i ∈ {1, 2, 3}
in group g ∈ {1, 2, ..., G} is denoted by ig ∈ {1g, 2g, 3g}. The choice of subject ig in round

r ∈ {1, 2, ..., 10} is denoted by xig,r ∈ {0, 1, ..., 100}. The set of choices in round r of the 3 subjects

in group g is denoted by xg,r ≡ {x1g,r, x2g,r, x3g,r}, with mean choice xg,r ≡
(∑3

i=1 xig,r

)
/3.

To model the noise in the choice process, we assume that subjects’ choices are independent

draws (over rounds and subjects) from discretized and truncated t-distributions.20 Letting

18Although the probability of choosing the level-(k + 1) choice rule goes up over time, a Lk − (k + 1) rule
learner is allowed to switch back and forth between the level-k and level-(k + 1) choice rules. An alternative
specification (AS1) in which rule learners make a once-and-for-all transition to the level-(k + 1) choice rule, and
so cannot switch back, fits the data significantly less well (see Table A3 in Appendix B). Note also that in our
mixture model framework, we do not model explicitly how rules are chosen; in contrast, Stahl (1996) uses an
attraction framework in which a given rule is more attractive the higher its past payoff.

19We have successfully estimated richer and more parsimonious specifications of our level-k model of learning.
A Bayesian information criterion (BIC)-based model selection exercise selects the preferred specification over a
richer model that additionally includes a fixed L5 type (that follows the L5 choice rule in every round r ≥ 2) and
a L4-5 rule learner type. Based on the same model selection criterion, the preferred specification also outperforms
a more parsimonious model that excludes the fixed L4 type and the L3-4 rule learner type. Additionally, we
estimated a specification that extends the preferred specification by including three 2-step rule learner types who
switch from following the level-k choice rule in round r = 2, with k ∈ {0, 1, 2}, to following the level-(k + 2)
choice rule in round r = 10. The BIC values for the preferred specification and this extended specification are
the same to 3 decimal places, and the estimates of the average level-k choice rules followed by own-matched
and cross-matched high and low cognitive ability subjects differ little between the two specifications (see Table 4
for the preferred specification estimates). However, due to the large number of similar types, we encountered
numerical difficulties when trying to obtain standard errors for this extended specification; 2-step rule learners
are therefore excluded from our analysis.

20Stahl (1996) and Offerman et al. (2002) use truncated normal distributions to model noise in the choice
process in structural models of learning. In Table A3 in Appendix B, we show that an alternative specification
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f (·;µ, σ, ν) be the density of the three-parameter t-distribution with mean µ, scale σ and degrees

of freedom ν, the probability of a particular choice x by subject ig when following the level-k

choice rule in round r ≥ 2 given the group-specific choices in the previous round xg,r−1 is

Pr(x|k,xg,r−1) = (1− γ (r))
f(x;µ (k,xg,r−1) , σ (µ, r) , ν)∑99
j=0 f(j;µ (k,xg,r−1) , σ (µ, r) , ν)

1x∈{0,1,...,99} + γ (r)1x=100 (1)

where

µ (k,xg,r−1) =

(
7

10

)k

xg,r−1, (2)

rounded to the nearest integer, and γ (r) is the probability of choosing 100 in round r given by

the empirical frequency of subjects choosing 100 that we observe in that round in our sample

(independently of cognitive ability).21 Therefore, as in Nagel (1995), Stahl (1996) and Duffy

and Nagel (1997), a subject following the level-0 choice rule “follows the crowd” in the sense

that she aims to copy the average group behavior from the previous round, while a subject who

follows the level-k choice rule for k > 0 best responds to level-(k − 1) choices in the sense that

she aims to hit the current round’s target in her group tg,r ≡ (7/10) xg,r that would result from

everybody in the group noiselessly following the level-(k − 1) choice rule.22

For all level-k choice rules the scale parameter σ depends on µ and on the round r in the

following way:

σ (µ, r) = exp

(
α+

[
1µ∈{0},1µ∈{1},1µ∈{2,3,4,5}

]
β − δ

(
r − 2

8

))
. (3)

In the above, 1µ∈M is an indicator function taking the value 1 when µ ∈ M and taking the value

0 otherwise, and β is a 3-element vector. Thus we allow the variance of the discretized choice

distribution to vary with µ in a flexible way and to include a round trend.23 The number of

degrees of freedom ν is common to all level-k choice rules.

4.2 Estimation strategy

Using the full sample of 780 subjects observed for 10 rounds, we estimate the parameter vector

θ that contains 38 elements. In more detail, we estimate the parameters that describe the prob-

abilities of being the 9 different learner types for own-matched high cognitive ability subjects,

cross-matched high ability subjects, cross-matched low ability subjects and own-matched low

ability subjects, giving 8 × 4 = 32 parameters. In addition, we estimate the 6 parameters of

(AS2) in which the normal distribution replaces the t-distribution fits the data significantly less well.
21We observe 106 instances of subjects choosing 100 in our sample, making up 1.4% of observations. Although

such extreme choices are a standard feature in beauty contest datasets, their attraction cannot be explained
readily by level-k choice rules. Ho et al. (1998) argue that such choices “are probably due to frustration or to
misguided attempts to win by singlehandedly raising the mean dramatically.” In Table A3 in Appendix B, we
show that an alternative specification (AS3) in which the choices of 100 come from the same t-distribution as for
the other choices fits the data significantly less well.

22If subjects took into account the effect of their own choice on the target, they would choose lower fractions of
xg,r−1; however, in Table A3 in Appendix B, we show that an alternative specification (AS4) in which µ (k,xg,r−1)
is given by this lower fraction fits the data significantly less well.

23We need the variance to depend on µ and r in order to fit the degree of convergence towards equilibrium
play that we observe in the data. The time trend is a function of r−2 since first round choices serve as the initial
conditions and the second round acts as the omitted category. Stahl (1996) also allows the variance of the choice
distribution to depend on µ; Ho et al. (1998) allow a time trend in variances.
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the t-distribution (α, the 3-element vector β, δ and ν). Recall that our model includes fixed

level-k types who follow the same choice rule in every round and rule learners who switch choice

rules over time. Letting kig,r be the level-k choice rule that subject ig follows in round r,

the set of level-k choice rules followed by the 3 subjects in group g in round r is denoted by

kg,r ≡ {k1g,r, k2g,r, k3g,r}, and the set of group g′s choice rules for every round r ≥ 2 is denoted

by kg ≡ {kg,2,kg,3, ...,kg,10}. The 32 parameters that measure the probabilities of the different

learner types determine the probability of each different combination of choice rules, so Pr(kg)

depends on θ. Finally, letting xg ≡ {xg,2,xg,3, ...,xg,10} be the set of group g′s choices for every

round r ≥ 2,

Pr (xg|kg,xg,1) =
10∏
r=2

Pr (xg,r|kg,r,xg,r−1) =
10∏
r=2

3∏
i=1

Pr(xig,r|kig,r,xg,r−1), (4)

and the likelihood for group g

Lg (θ|xg,xg,1) = Pr (xg|xg,1) =
∑
kg

Pr(kg) Pr (xg|kg,xg,1) . (5)

The sample likelihood is then the product over the G groups of the group likelihoods.

We maximized the sample log likelihood function using a Hessian-based optimization routine.

Following Berndt et al. (1974), the Hessian employed in the optimization process was approxi-

mated as the sum of outer products of the gradients of the group log likelihoods. The gradients

of the group log likelihoods, in turn, were obtained via numerical differentiation. Standard errors

were obtained from a Hessian matrix computed using numerical differentiation. We found the

optimization problem to be well behaved. In particular, the optimization routine converged to

the same parameter vector for multiple sets of starting values, and the Hessian matrix used to

obtain standard errors was never found to be close to singular.24

4.3 Results

In Section 4.3.1, we start by reporting the estimated proportions of learner types arising from

our level-k model of learning, and we provide evidence that our preferred specification fits well

the differences in behavior by cognitive ability observed in the data. In Section 4.3.2, we then

show how the subjects’ average level-k choice rule varies with their own cognitive ability and

with that of their opponents. Finally, in Section 4.3.3 we simulate the earnings that accrue to

different learner types in order to discover which learner types earn the most.

4.3.1 Estimated learner types and model goodness of fit

Table 2 reports the estimated proportions of learner types.25 In Section 4.3.2 below we summa-

rize this information in terms of average level-k choice rules and analyze how the averages vary

with own cognitive ability and that of opponents. Instead, our focus here is on the implications

24According to the model outlined in Section 4.1, choice probabilities conditional on the group playing Nash
equilibrium in the previous round are identical across learner types. However, there are enough group-round
observations in which Nash equilibrium was not played to identify all the learner type probabilities.

25The estimated parameters of the t-distribution, which complete the estimate of the parameter vector θ, are:
α = −2.734(0.047); β = [−2.778(0.102),−1.826(0.079),−1.134(0.066)]; δ = 0.844(0.088); and ν = 0.749(0.035).
Standard errors are in parentheses. As reported in Table A3, the maximized log likelihood is −21, 510.
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of these estimates for behavior in order to see how well our model fits the differences in behavior

by cognitive ability in the observed data.

Own-matched subjects Cross-matched subjects
High ability Low ability High ability Low ability

L0 Type 0.002
(0.009)

0.023
(0.016)

∗ 0.004
(0.009)

0.021
(0.018)

L1 Type 0.222
(0.045)

∗∗∗ 0.280
(0.050)

∗∗∗ 0.172
(0.052)

∗∗∗ 0.409
(0.065)

∗∗∗

L2 Type 0.148
(0.053)

∗∗∗ 0.034
(0.047)

0.174
(0.067)

∗∗∗ 0.281
(0.069)

∗∗∗

L3 Type 0.000
−

0.000
−

0.053
(0.051)

0.000
−

L4 Type 0.001
(0.036)

0.000
−

0.000
−

0.013
(0.026)

L0-1 Rule learner type 0.043
(0.025)

∗∗ 0.113
(0.034)

∗∗∗ 0.052
(0.029)

∗∗ 0.090
(0.043)

∗∗

L1-2 Rule learner type 0.218
(0.055)

∗∗∗ 0.256
(0.057)

∗∗∗ 0.334
(0.069)

∗∗∗ 0.061
(0.065)

L2-3 Rule learner type 0.177
(0.055)

∗∗∗ 0.188
(0.051)

∗∗∗ 0.186
(0.071)

∗∗∗ 0.078
(0.061)

∗

L3-4 Rule learner type 0.189
(0.058)

∗∗∗ 0.106
(0.029)

∗∗∗ 0.026
(0.032)

0.047
(0.044)

Proportion of rule learners 0.627
(0.072)

∗∗∗ 0.663
(0.070)

∗∗∗ 0.597
(0.097)

∗∗∗ 0.275
(0.092)

∗∗∗

Notes: Standard errors are shown in parentheses. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels.

Table 2: Estimated learner type probabilities.

To give a visual impression of how well the model fits the observed data, we simulate choices

over the 10 rounds using the estimated parameters. Figure 7 shows the simulated and observed

paths of average behavior for own and cross-matched subjects: we see that the observed and

simulated paths match closely (the notes to the figure explain how the simulated paths were

constructed).

Figure 8(a) shows the simulated path of earnings for cross-matched subjects (recall that,

by construction, own-matched high ability subjects and own-matched low ability subjects must

earn $2 on average in every round). We fit the pattern of divergence in earnings over rounds,

although the magnitude of the divergence is not quite as big as that observed in the data (see

Figure 4(b) in Section 3.2.3). Our simulations return a divergence in earnings over rounds even

though, as in the observed data, high and low ability cross-matched subjects’ simulated choices

remain similar throughout the experiment. Rule learning is crucial to explaining the pattern of

divergence: Table 2 shows that there are 60% of rule learners among cross-matched high ability

subjects, but only 28% among cross-matched low ability subjects (the difference is statistically

significant with a 2-sided p = 0.016),26 and Figure 8(b) shows that when we re-estimate the

26The difference of 0.322 between the proportion of rule learners among cross-matched high ability subjects
(0.597) and the proportion among cross-matched low ability subjects (0.275) appears to be a robust feature of our
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(a) Own-matched subjects.
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(b) Cross-matched subjects.

Notes: Simulated choices were obtained using a sequential method. Specifically, for each of the 260 groups
in the experimental sample we drew the type of each group member from the appropriate estimated distribution
of learner types reported in Table 2. We then simulated the choice of each of the 3 group members in round 2,
given the observed behavior, specifically the group average, in the first round (in the figures, the simulated first
round data are given by the observed data). Next, we simulated the choice of each of the 3 group members in
round 3, given the average of the simulated choices of the group members in round 2. We continued sequentially
in this manner to round 10, with simulated choices in each round being based on the group-level average of the
simulated choices in the previous round. This procedure was repeated 100 times for each of the 260 groups.

Figure 7: Observed and simulated round-by-round means of choices.
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(a) Preferred specification.
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(b) Without rule learners.

Notes: Simulated earnings were computed from the simulated choices generated as described in the notes to
Figure 7.

Figure 8: Simulated round-by-round means of earnings of cross-matched subjects.

sample. As noted above, the difference is statistically significant at the 5% level. To test how sensitive our estimate
of the difference is to our particular sample, we ran 200 Monte Carlo simulations using a data generation process
based on our estimated model, except that we assumed that the proportion of rule learners among cross-matched
low ability subjects in the population matches the proportion that we estimate for the cross-matched high ability
subjects (i.e., 0.597). The simulations show that if our subjects were drawn from a population in which there
was no difference in the proportion of rule learners, then there would be a less than 1% chance of drawing a
sample that gives an estimated difference greater than or equal to our actual estimate of 0.322 (and only a 5%
chance of estimating a difference greater than or equal to 0.200). We have no direct evidence about what might
drive the difference in the proportion of rule learners. One conjecture is that the earnings difference reported
in Section 3.2.3 between cross-matched high and low ability subjects demotivates the low ability subjects, thus
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model without rule learners we can no longer fit the divergence in earnings over rounds. Further

evidence that rule learning plays an important role in explaining subjects’ choices more generally

comes from the estimates of an alternative specification of the structural model without rule

learners: Table A3 in Appendix B shows that this alternative specification (AS5) fits the data

significantly less well.

Table 3 shows that the simulated choices match the extent of equilibrium and close-to-

equilibrium play that we see in the data quite well. In particular, the simulated choices fit well

the broad pattern of increasing convergence as the proportion of high ability subjects in the

group goes up.

Equilibrium Group mean ≤ 1 Group mean ≤ 2

Own-matched high ability groups:
Observed 0.293 0.453 0.540
Simulated 0.201 0.357 0.471

Cross-matched groups:
Observed 0.145 0.282 0.368
Simulated 0.109 0.228 0.336

Own-matched low ability groups:
Observed 0.127 0.247 0.313
Simulated 0.107 0.218 0.317

Notes: Simulated proportions were computed from the simulated choices generated as described in the notes to
Figure 7.

Table 3: Observed and simulated proportions of equilibrium and close-to-equilibrium play
in rounds 9 and 10.

Appendix B provides further evidence that our structural level-k model of learning fits well.

In particular, Table A3 reports values of log likelihoods and of sums of squared deviations

of choices, earnings and convergence statistics computed from simulated choices and provides

evidence that our preferred specification fits better than various alternative specifications (some

nested and others not), while Table A4 shows that our model continues to perform well out of

sample.

4.3.2 The impact of cognitive ability on average level-k choice rules

We now analyze how learner types vary with subjects’ own cognitive ability and that of their

opponents. To do this, we summarize the estimated proportions of learner types in a single

statistic measuring the average level-k choice rule followed by the subjects (the notes to Table 4

provide the details of how these averages of choice rules are computed). From Table 4, we can

see that, across all rounds, the average level-k choice rule followed by own-matched high ability

subjects is 1.97, while for own-matched low ability subjects the average level is 1.63, with the

difference statistically significant at the 1% level. For cross-matched subjects, the difference

is less pronounced but still evident: the average level followed by cross-matched high ability

leading to less rule learning. By contrast, the proportion of rule learners among own-matched subjects is almost
the same for high and low ability subjects (Table 2), and by construction own-matched high ability subjects earn
the same on average in every round as own-matched low ability subjects (Section 3.1).
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subjects is 1.76, while for cross-matched low ability subjects the average level is 1.52, with the

difference significant at the 5% level. The average level followed by cross-matched high ability

subjects is higher even though they face a lower number of high ability opponents on average

than do cross-matched low ability subjects.

Thus subjects’ own cognitive ability type has a significant effect on the average level that they

follow: high cognitive ability subjects follow level-k choice rules that are significantly higher on

average than those followed by low ability subjects. Further evidence that cognitive ability plays

an important role in determining subjects’ choice rules comes from estimating an alternative

specification of the structural model in which the probabilities of the different learner types

are not allowed to vary with subjects’ own cognitive ability or with whether subjects are in

own-matched or cross-matched groups. Table A3 in Appendix B shows that this alternative

specification (AS6) fits the data significantly less well.

Own-matched subjects Cross-matched subjects Diff.-
High ability Low ability Diff. High ability Low ability Diff. in-Diff.

1.974
(0.074)

∗∗∗ 1.629
(0.070)

∗∗∗ 0.346
(0.101)

∗∗∗ 1.759
(0.067)

∗∗∗ 1.520
(0.077)

∗∗∗ 0.240
(0.102)

∗∗ 0.106
(0.144)

High ability subjects Low ability subjects Diff.-
Own-matched Cross-matched Diff. Cross-matched Own-matched Diff. in-Diff.

1.974
(0.074)

∗∗∗ 1.759
(0.067)

∗∗∗ 0.215
(0.099)

∗∗ 1.520
(0.077)

∗∗∗ 1.629
(0.070)

∗∗∗ −0.109
(0.104)

0.324
(0.144)

∗∗

Notes: The average choice rule of an Lk type is k, as this type follows the level-k choice rule in every round.
The average choice rule of an Lk − (k + 1) rule learner is k + (1/2). We use the estimated proportions of learner
types from Table 2 to compute the average level-k choice rule over all learner types. Tests for the significance of
differences and of differences-in-differences are 2-sided. Standard errors are shown in parentheses. ∗, ∗∗ and ∗∗∗

denote significance at the 10%, 5% and 1% levels.

Table 4: Estimated averages of level-k choice rules.

We also find significant differences in how average level-k choice rules respond to the cognitive

ability of opponents. We noted in Section 2.2 that, on average, high ability subjects face 4/3

more high ability opponents in own-matched groups than in cross-matched groups, while low

ability subjects face 4/3 more high ability opponents in cross-matched groups than in own-

matched groups. The second row of Table 4 shows that high cognitive ability subjects respond

to the cognitive ability of their opponents: across all rounds, the average level followed by own-

matched high cognitive ability subjects is 0.21 higher than that followed by cross-matched high

ability subjects, with the difference significant at the 5% level. Low cognitive ability subjects,

on the other hand, do not respond to the cognitive ability of their opponents: the average level

followed by cross-matched low ability subjects is not statistically significantly different from that

followed by own-matched low ability subjects (2-sided p = 0.295). Furthermore, Table 4 shows

that the difference-in-differences in how the average levels followed by high and low cognitive

ability subjects respond to the cognitive ability of opponents is statistically significant (a 2-sided

test shows significance at the 5% level).

Thus subjects’ own cognitive ability has a significant effect on how the average level that
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they follow responds to the cognitive ability of their opponents: the average level-k choice rule

followed by high cognitive ability subjects responds significantly to the number of high ability

opponents that they face, while the average level followed by low cognitive ability subjects does

not respond. Further evidence that cognitive ability plays a role in determining how subjects’

choice rules respond to the cognitive ability of opponents comes from estimating an alternative

specification of the structural model in which the probabilities of the different learner types are

not allowed to vary with whether subjects are in own-matched or cross-matched groups (but are

allowed to vary with subjects’ own cognitive ability). Table A3 in Appendix B provides evidence

that this alternative specification (AS7) fits the data less well.27

4.3.3 Levels and earnings

Finally, we turn to the question of which learner types earn the most. The estimates of the struc-

tural model’s parameters also allow us to simulate the earnings of each learner type, according

to subjects’ own cognitive ability and that of their opponents. Table 5 shows how simulated

total earnings over rounds 2-10 vary according to learner type (the notes to the table describe

how the simulated earnings were computed). The differences in earnings by learner type are

large: for instance, L2 types earn about 40% more than L1 types across the board. In every

case, the 3 best-performing learner types are L3 types, L4 types and L3-4 rule learners, although

the order varies. This means that it is always optimal to be a high-level learner type, even for

subjects facing a large proportion of low ability opponents who tend to choose higher numbers.

In order of decreasing earnings, the order among the other 6 types is always: L2-3 rule learners;

L2 types; L1-2 rule learners; L1 types; L1-0 rule learners; and finally L0 types.

Own-matched subjects Cross-matched subjects
High ability Low ability High ability Low ability

L0 Type 7.83 8.41 8.69 8.25
L1 Type 14.00 15.22 14.75 14.22
L2 Type 19.14 21.03 21.22 20.70
L3 Type 21.96 23.53 24.27 23.85
L4 Type 22.59† 23.18 23.42 24.03†

L0-1 Rule learner type 10.35 11.49 11.96 10.89
L1-2 Rule learner type 16.22 18.44 18.42 17.35
L2-3 Rule learner type 21.35 22.31 22.90 21.68
L3-4 Rule learner type 22.50 23.75† 24.33† 23.86

Notes: † denotes the learner type that maximizes earnings according to subjects’ own cognitive ability and that of
their opponents. The earnings of a player of a particular learner type were computed based on simulated choices
constructed using a method similar to that described in the notes to Figure 7 in which opponents’ types were
drawn from the appropriate estimated distribution of learner types from Table 2.

Table 5: Simulated total earnings over rounds 2-10 (in dollars) by learner type.

Given the estimated proportions of learner types reported in Table 2 and the average level-k

27In our experiment, subjects can condition current behavior on: (i) information about the cognitive ability
type composition of the group; and (ii) the previous behavior of the group members. Our design therefore allows
us to identify how group composition affects current behavior conditional on past group behavior. Our design
does not allow us to identify how subjects would respond to a given history if they did not know the group
composition.
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choice rules that subjects follow reported in Table 4, it is clear that subjects are constrained in

their levels below those that are optimal, given the learner types of their opponents. Of course,

unless subjects all play equilibrium, their level-k choice rules will tend to be too low on average;

nonetheless, subjects are leaving a substantial amount of money on the table.

On average own-matched high ability subjects earn $18 across rounds 2-10, and so are

leaving $4.59 on the table compared to the payoff-maximizing L4 type (recall from Table 4 that

the average level-k choice rule followed by these subjects is only 1.97). Own-matched low ability

subjects also earn $18 on average, and so are leaving $5.75 on the table compared to the payoff-

maximizing L3-4 rule learner type (from Table 4, their average level is 1.63). Thus, even though

high and low ability own-matched subjects earn the same amount on average by construction,

low ability subjects leave more money on the table.

Cross-matched high ability subjects earn $19.73 across rounds 2-10, and so are leaving $4.61

on the table compared to the payoff-maximizing L3-4 rule learner type (their average level is

1.76). Cross-matched low ability subjects earn $16.27 on average, and so are leaving $7.75 on

the table compared to the payoff-maximizing L4 type (their average level is just 1.52). L1 types

are the most common among cross-matched low ability subjects, making up 41% of the total:

they earn a striking $9.80 less on average than the payoff-maximizing learner type.

Finally, by not adjusting their level upward on average, the low cognitive ability subjects

lose out relative to the payoff-maximizing type when the cognitive ability of their opponents

goes up: the low ability subjects leave $2.01 more on the table in cross-matched groups than in

own-matched low ability groups (from above, $7.75 minus $5.75). In contrast, the high ability

subjects adjust their level upward and do not lose out: the high ability subjects leave the same

amount of money on the table in own-matched high ability groups and in cross-matched groups

(from above, $4.59 and $4.61).

5 Comparing the effects of cognitive ability and character skills

As well as exploring how cognitive ability influences behavior, success and the evolution of play

towards Nash equilibrium in repeated strategic interactions, we are also interested in discovering

the effects of character skills. To this end, we administered questionnaires to measure character

skills of a subset of our subjects. Section 5.1 describes our measures of character skills, Sec-

tion 5.2 presents a reduced form analysis comparing the behavioral effects of cognitive ability

and character skills, while Section 5.3 builds on our structural level-k model of learning to com-

pare the influence of cognitive ability and character skills on the level-k choice rules followed by

our subjects.

5.1 Measuring character skills

As noted in Section 2.1, a subset of our sessions included questionnaires to measure character

skills that were administered before the test of cognitive ability. We ran these 15 sessions

in January 2014, with 18 subjects in each session and 270 participants in total. Apart from

administering the questionnaires, these sessions were run in the manner described in Section 2.

All the sessions were ‘own-matched’, giving 45 groups of 3 own-matched high cognitive ability

subjects and 45 groups of 3 own-matched low cognitive ability subjects.
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We measured 7 character skills: openness, conscientiousness, extraversion, agreeableness and

emotional stability (the Big Five), grit and Consideration of Future of Consequences (CFC). We

measured the Big Five using the 44-item Big Five Inventory (John et al., 1991; John et al.,

2008), grit using the 12-item Grit Scale (Duckworth et al., 2007), and CFC using the 12-item

CFC Scale (Strathman et al., 1994), in that order.28 These three questionnaires use a 5-point

Likert scale to measure responses to individual questions.29 We gave the subjects 8 minutes

to complete the 68 questions, which were displayed on 17 screens.30 The subjects could move

back and forth between the 17 screens and, time permitting, they were allowed to change their

previous answers. We did not provide any monetary incentives for answering the questions. The

experimental instructions provided are in the Supplementary Web Appendix.

Table 6 presents the correlation matrix for our 7 measures of character skills. Many of the

correlations are high. For instance, we find a correlation of 0.63 between conscientiousness and

grit, of 0.39 between grit and CFC, of 0.38 between conscientiousness and CFC, and of 0.34

between agreeableness and emotional stability. A further 5 correlations are above 0.2.31

Character skill O C E A ES G CFC

Openness 1.000
Conscientiousness -0.045 1.000
Extraversion 0.130 0.111 1.000
Agreeableness 0.097 0.211 0.112 1.000
Emotional stability 0.024 0.230 0.181 0.341 1.000
Grit -0.041 0.629 0.242 0.183 0.275 1.000
Consideration of Future Consequences 0.246 0.381 0.174 0.041 0.085 0.388 1.000

Table 6: Correlations between measures of character skills.

The high degree of correlation between our 7 measures of character skills justifies the con-

struction of a smaller number of uncorrelated factors to identify the effects of character skills on

behavior and compare the effects to that of cognitive ability. We undertake a principal compo-

nent factor analysis with Varimax rotation, implemented to give factors that are uncorrelated

with each other (see Jolliffe, 1995). Pre-rotation, 3 factors have eigenvalues above 1, and so these

are retained in the rotation.32 These 3 factors explain 66% of the variance (Factor 1 explains

28John et al. (2008) provide a detailed description and history of the Big Five. Borghans et al. (2008, p. 1008),
argue that it is more helpful to use the term emotional stability rather than its obverse, neuroticism. Grit is
defined as “perseverance and passion for long-term goals” (Duckworth et al., 2007, p. 1087) and is viewed as
a measure of persistence (Borghans et al., 2011, p. 318). CFC is a survey-based measure of time preference:
in particular, CFC is designed to measure “a stable individual difference in the extent to which people consider
distant versus immediate consequences of potential behaviors” (Strathman et al., 1994, p. 742). Houser and
Winter (2004) and Daly et al. (2009) find a statistically significant correlation between CFC and discount rates
measured using incentivized choice tasks. Recent papers have found a relationship between CFC and behaviors
such as savings (Webley and Nyhus, 2013), study habits (Delaney et al., 2013) and willingness to undertake
training (Fouarge et al., 2013), while Strathman et al. (1994) find a relationship with concern for health, alcohol
consumption, smoking and environmentally-friendly behavior.

290.3% of the responses are missing (57 of 270 × 68 = 18, 360). For each question, we replaced any missing
responses by the sample average of the non-missing responses to that particular question.

30The Big Five Inventory alone is designed to take about 5 minutes (John et al., 2008, p. 137).
31The correlations between grit and the Big Five are similar to those found by Duckworth et al. (2007):

r = 0.77 (Study 2) and r = 0.64 (Study 5) for conscientiousness; r = 0.38 for emotional stability; r = 0.24 for
agreeableness; r = 0.22 for extraversion; and r = 0.14 for openness. Strathman et al. (1994) find a correlation of
0.49 between CFC and conscientiousness (they did not measure the other Big Five traits).

32Retaining factors with eigenvalues above 1 is a standard criterion for choosing the number of factors due to
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28%, Factor 2 explains a further 20% and Factor 3 explains the final 18%). The factors have

zero mean and unit variance by construction.

Table 7 presents the factor loadings. As we can see from the table, Factor 1 mainly captures

conscientiousness, grit and CFC, Factor 2 mainly captures agreeableness and emotional stabil-

ity, while Factor 3 mainly captures openness, extraversion and CFC. The correlations between

cognitive ability and these factors are low and are reported in the fifth paragraph of Section 5.2.2.

Character skill Factor 1 Factor 2 Factor 3

Openness -0.085 0.043 0.886
Conscientiousness 0.845 0.156 -0.108
Extraversion 0.221 0.295 0.440
Agreeableness 0.067 0.797 0.070
Emotional stability 0.199 0.770 -0.009
Grit 0.850 0.195 -0.041
Consideration of Future Consequences 0.668 -0.162 0.483

Table 7: Factor loadings.

5.2 Reduced form comparison of cognitive ability and character skills

In this section, we compare the behavioral effects of cognitive ability and character skills. In

Section 5.2.1, we first describe the influence of character skills on round-by-round choices. In

Section 5.2.2, we compare the effects of cognitive ability and character skills on average choices

and earnings. Finally, in Section 5.2.3, we examine the influence of cognitive ability and character

skills on learning at the group level.

5.2.1 Round-by-round choices according to character skills

We start by providing a visual description of how the 3 factors capturing character skills influence

behavior in the p-beauty contest. Figure 9 shows the round-by-round evolution of mean choices

for subjects categorized as high (above the sample median) or low (below the sample median)

on Factor 1 and Factor 3. Across all 10 rounds, the mean choice of high Factor 1 subjects is not

statistically significantly different from that of low Factor 1 subjects (2-sided p = 0.608), and

the same is true for Factor 3 (2-sided p = 0.862).

However, as illustrated in Figure 10, across the 10 rounds the mean choice of subjects high

on Factor 2 is 2.7 lower than that of subjects low on Factor 2, and the difference is highly

statistically significant (2-sided p = 0.010). By the final round, the mean choice of high Factor

2 subjects falls to 4.9, while that of low Factor 2 subjects falls to 8.1, and the difference of 3.3

is also statistically significant (2-sided p = 0.033). Thus, subjects high on Factor 2, who are

more agreeable and emotionally stable, tend to choose numbers closer to equilibrium, both on

average across the 10 rounds and in the final round after a period of learning.

The statistical tests reported above are based on Ordinary Least Squares regressions and use

heteroskedasticity-consistent standard errors. We cluster at the group level to allow for within-

group non-independence across rounds. The regressions use the 270 subjects whose character

skills we measured, observed for 10 rounds or, in the last case, just in round 10.

Kaiser (1960).
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Figure 9: Round-by-round means of p-beauty contest choices: Factor 1 and Factor 3.
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Figure 10: Round-by-round means of p-beauty contest choices: Factor 2.

5.2.2 Comparison of the effects on average choices and earnings

Next, we compare the effects of cognitive ability and character skills on choices and earnings

across the 10 rounds. We run linear regressions of choices and earnings on subjects’ score in the

Raven test and on the three factors that capture character skills. Recall that we matched subjects

by cognitive ability type but not according to their character skills. Thus, these regressions

measure the effects of cognitive ability and character skills within matching group: that is, they

measure the effects of cognitive ability and character skills within the set of subjects who were

matched into groups of 3 high cognitive ability subjects and within the set of subjects who were

matched into groups of 3 low cognitive ability subjects. Since the factors have zero mean and

unit variance by construction, we standardize the Raven test scores to also have zero mean and

unit variance.

Table 8 reports the results of the regressions of average choices on cognitive ability and

character skills. The top panel reports the results of regressions that use all 270 subjects whose

character skills we measured, while the other panels report the results of regressions that use only

the 135 own-matched high cognitive ability subjects (middle panel) and the 135 own-matched

low ability subjects (bottom panel). In each case, model (1) includes only cognitive ability as
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an explanatory variable, model (2) includes only character skills, and model (3) includes both

cognitive ability and character skills.

Looking first at model (3) in the top panel of Table 8, we see that both cognitive ability and

character skills influence behavior. In particular, a 1 standard deviation increase in the Raven

test score reduces subjects’ mean choice across the 10 rounds by 2.2, while a 1 standard deviation

increase in Factor 2, which captures an increase in agreeableness and emotional stability, reduces

choices by 1.2. These reductions represent decreases of 12% and 7%, respectively, in choices

relative to the mean. Factors 1 and 3 do not have a statistically significant effect on behavior.

Thus, the impact of cognitive ability on behavior is about 75% bigger than that of character

skills, which operates through Factor 2.

Second, looking at model (3) in the middle and bottom panels of Table 8, we see that the

effect of increasing cognitive ability on behavior operates mainly through the subjects who are

already high in cognitive ability, while character skills affect the behavior of both high and low

cognitive ability subjects. Within the subjects already high in cognitive ability, a 1 standard

deviation increase in the Raven test score reduces subjects’ mean choice by 4.0, a reduction of

22% relative to the mean.33

Third, comparing the estimates across models (1)-(3), we see that the estimated influence

of cognitive ability on behavior does not depend on whether we control for character skills, and

vice versa. Consistent with this, our measures of cognitive ability and character skills are not

strongly correlated: we find a correlation of -0.14 between cognitive ability and Factor 1, of 0.07

between cognitive ability and Factor 2, and of 0.01 between cognitive ability and Factor 3.34

In summary, Table 8 shows that: (i) both cognitive ability and character skills influence

behavior in our repeated strategic interaction; (ii) subjects higher in cognitive ability and higher

in Factor 2 (which captures agreeableness and emotional stability) choose numbers closer to

equilibrium; (iii) changes in cognitive ability have a more powerful effect on behavior than

changes in character skills; (iv) marginal changes in cognitive ability mainly affect the behavior

of subjects who are already cognitively able, while changes in character skills influence the

behavior of subjects who are high or low in cognitive ability; and (v) the estimated influence of

cognitive ability does not depend on whether we control for character skills, and vice versa.

33Note that we can directly compare the parameter estimates in the middle and bottom panels of Table 8,
since the Raven test scores and factors were standardized before splitting the sample by cognitive ability type.
As a result, a single regression with dummy variables for high and low cognitive ability subjects together with
interactions of those dummies with Raven test scores and the three factors returns identical estimates to those
reported in the third column (model (3)) of the middle and bottom panels of Table 8. The same is true for model
(1) when the factors are excluded from the single regression, and for model (2) when the standardized Raven test
score is excluded from the single regression.

34As noted by Almlund et al. (2011), most character skills are weakly correlated with cognitive ability (p. 46),
particularly so for measures of fluid intelligence (p. 43), but character skills may nonetheless have some influence
on measured cognitive ability (Section 5.6).
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All subjects

(1) (2) (3)

Standardized Raven test score −2.142
(0.971)

∗∗ −2.177
(0.985)

∗∗

Factor 1 0.360
(0.517)

0.153
(0.530)

Factor 2 −1.282
(0.508)

∗∗ −1.238
(0.484)

∗∗

Factor 3 0.384
(0.604)

0.411
(0.585)

Subject-round observations 2,700 2,700 2,700

Own-matched high cognitive ability subjects

(1) (2) (3)

Standardized Raven test score −3.935
(1.018)

∗∗∗ −4.029
(1.024)

∗∗∗

Factor 1 0.111
(0.475)

−0.347
(0.522)

Factor 2 −1.049
(0.618)

∗ −1.082
(0.587)

∗

Factor 3 0.219
(0.767)

0.309
(0.767)

Subject-round observations 1,350 1,350 1,350

Own-matched low cognitive ability subjects

(1) (2) (3)

Standardized Raven test score −0.556
(1.555)

−0.636
(1.541)

Factor 1 0.522
(0.905)

0.509
(0.899)

Factor 2 −1.353
(0.740)

∗ −1.372
(0.747)

∗

Factor 3 0.552
(0.899)

0.559
(0.886)

Subject-round observations 1,350 1,350 1,350

Notes: The models are linear and estimated using Ordinary Least Squares regressions. The regressions in the
top panel use the 270 subjects whose character skills we measured, observed for 10 rounds. For all regressions,
we standardize the Raven test scores using these 270 subjects. All models include an intercept. In the top
panel, models (1) and (3) include a dummy for whether subjects are own-matched high cognitive ability or own-
matched low cognitive ability (the coefficients on the dummy are not statistically significantly different from 0).
Heteroskedasticity-consistent standard errors with clustering at the group level are shown in parentheses. ∗, ∗∗

and ∗∗∗ denote significance at the 10%, 5% and 1% levels (2-sided tests).

Table 8: Effects of cognitive ability and character skills on mean p-beauty contest choices.
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Table 9 shows that the effects of cognitive ability and character skills on behavior translate

into differences in success in the beauty contest, in terms of earnings per round, the log of

earnings per round and the per-round probability of winning the contest (where ‘winning’ is

defined to include ties). A 1 standard deviation increase in the Raven test score increases

earnings per round by $0.11, that is an increase of 6% relative to the mean, while a 1 standard

deviation increase in Factor 2 increases earnings per round by $0.13. Thus the effects of cognitive

ability and character skills on earnings are of a similar magnitude in a linear model. Consistent

with the absence of an effect on choices, Factors 1 and 3 do not have a statistically significant

effect on earnings or the probability of winning.

Earnings ($ per round) Log of earnings Winning probability

Standardized Raven test score 0.113
(0.067)

∗ 0.075
(0.032)

∗∗ 0.040
(0.015)

∗∗∗

Factor 1 0.031
(0.051)

0.001
(0.024)

−0.006
(0.011)

Factor 2 0.129
(0.051)

∗∗ 0.057
(0.022)

∗∗ 0.023
(0.010)

∗∗

Factor 3 −0.048
(0.047)

−0.013
(0.021)

−0.002
(0.010)

Subject-round observations 2,700 2,700 2,700

Notes: The models are linear and estimated using Ordinary Least Squares regressions. The regressions use the
270 subjects whose character skills we measured, observed for 10 rounds. We standardize the Raven test scores
using these 270 subjects. All models include an intercept and a dummy for whether subjects are own-matched
high cognitive ability or own-matched low cognitive ability. When taking the log of per-round earnings, we add
$0.50 to earnings in each round (the show-up fee of $5 divided by the number of rounds) to avoid taking the log
of 0. ‘Winning’ is defined to include a tie with one or both other group members. The statistical significances
of the coefficient estimates in the per-round winning probability model are robust to estimating a probit model.
Heteroskedasticity-consistent standard errors with clustering at the group level are shown in parentheses. ∗, ∗∗

and ∗∗∗ denote significance at the 10%, 5% and 1% levels (2-sided tests).

Table 9: Effects of cognitive ability and character skills
on per-round earnings and winning probability.

In Appendix E, we dig deeper into the interplay of cognitive ability and character skills and

show that our main findings are robust to allowing interactions between cognitive ability and

character skills and to including cognitive ability and character skill dummies in our regressions.

Furthermore, we find no statistically significant interactions between cognitive ability and char-

acter skills, except for a weakly statistically significant negative interaction between cognitive

ability and Factor 1 in the case of behavior. That is, we find some evidence that marginal

changes in cognitive ability reduce mean choices more for subjects with a higher Factor 1 score

(who are more conscientious and gritty).

5.2.3 Learning at the group level

Our reduced form analysis concludes with an examination of the influence of cognitive ability

and character skills on learning at the group level. In particular, we look at the effect of group-

level averages of cognitive ability and character skills on how close our groups of 3 subjects come

to equilibrium play toward the end of the 10 rounds. We analyze only behavior, since average

earnings must always be $2 per round at the group level.
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Table 10 reports the results of regressions of group-level average choices in round 10, rounds

9 and 10, and rounds 8-10, on the group-level averages of cognitive ability and Factors 1-3.

We find that cognitive ability and character skills influence learning at the group level: groups

with higher cognitive ability on average and higher Factor 2 on average, which captures higher

agreeableness and emotional stability, end up closer to the Nash equilibrium in the last few

rounds. For instance, a 1 unit increase in a group’s average standardized Raven test score

lowers the group’s average choice by 5.0 in the last 3 rounds, while a 1 unit increase in a group’s

average Factor 2 lowers the group’s average choice by 3.8.35 These reductions represent decreases

of 62% and 48%, respectively, in choices relative to the mean in the last 3 rounds. Once again,

Factors 1 and 3 do not have statistically significant effects.

Round 10 Rounds 9 & 10 Rounds 8-10

Group mean of standardized Raven Test score −5.059
(2.007)

∗∗ −3.873
(2.234)

∗ −4.988
(2.351)

∗∗

Group mean of Factor 1 0.159
(1.568)

0.125
(1.657)

0.378
(1.821)

Group mean of Factor 2 −5.423
(1.871)

∗∗∗ −4.005
(1.268)

∗∗∗ −3.845
(1.376)

∗∗∗

Group mean of Factor 3 −0.744
(1.467)

−0.639
(1.376)

0.404
(1.508)

Group-round observations 90 180 270

Notes: The models are linear and estimated using Ordinary Least Squares regressions. The regressions use the
270 subjects whose character skills we measured, giving 90 groups observed in round 10, rounds 9 and 10, or
rounds 8-10. We standardize the Raven test scores using these 270 subjects, and we calculate group means of
the scores standardized at the individual level. All models include an intercept and a dummy for whether groups
are own-matched high cognitive ability or own-matched low cognitive ability (the coefficients on the dummy are
not statistically significantly different from 0). Heteroskedasticity-consistent standard errors with clustering at
the group level are shown in parentheses. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels (2-sided
tests).

Table 10: Effects of group-level mean cognitive ability and character skills
on group-level mean p-beauty contest choices in the last few rounds.

5.3 Level-k comparison of cognitive ability and character skills

Last, we compare the effects of cognitive ability and character skills on the adoption of level-k

choice rules. In a similar vein to the reduced form analysis reported in Section 5.2.2, we allow

the probabilities of adopting the level-k choice rules to vary in subjects’ score in the Raven test

and their scores on the three factors that capture character skills.

To do this, we modify our structural level-k model of learning from Section 4.1. As before,

this modified model includes five fixed level-k learner types with k ∈ {0, 1, 2, 3, 4}, who follow

the level-k choice rule in all rounds r ≥ 2. We exclude the four rule learner types that were also

included in Section 4.1.36 A subject’s probability of being each of the five learner types depends

35Note that the standard deviation of the group-level mean Raven test score is 0.84, while the standard
deviation of the group-level mean Factor 2 is 0.54. The first standard deviation is higher because subjects are
matched by cognitive ability.

36We do this due to empirical difficulties encountered when estimating the effects of cognitive ability and
character skills on type probabilities in a model with many distinct types.
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on her cognitive ability and character skills as follows:

Pr(k|zig) =
exp(λkzig)∑4
j=0 exp(λjzig)

, (6)

where ig identifies the subject (see Section 4.1), and zig is a vector containing the subject’s

standardized Raven test score, the subject’s scores on Factors 1-3, and a dummy for whether

the subject is own-matched high cognitive ability or own-matched low cognitive ability. zig

further includes an element that equals unity for all subjects, and therefore the model includes

a full set of learner type-specific intercepts. We impose the identifying normalization λ1 = 0. In

all other respects, the modified model is identical to the preferred specification in Section 4.1.

Using the 270 subjects whose character skills we measured, observed for 10 rounds, we estimate

the 30 model parameters: 24 parameters that appear in the type probability functions; and

6 parameters of the t-distribution. Section 4.2 describes the Maximum Likelihood estimation

routine.

Average level-k choice rule

Baseline
Average marginal effects

Standardized
Factor 1 Factor 2 Factor 3

Raven test score

1.832
(0.065)

∗∗∗ 0.264
(0.097)

∗∗∗ −0.038
(0.067)

0.160
(0.070)

∗∗ 0.131
(0.068)

∗

Average probability of following either the L0 or L1 choice rule

Baseline
Average marginal effects

Standardized
Factor 1 Factor 2 Factor 3

Raven test score

0.422
(0.036)

∗∗∗ −0.113
(0.058)

∗∗ −0.004
(0.038)

−0.073
(0.036)

∗∗ −0.044
(0.036)

Notes: The estimation uses the 270 subjects whose character skills we measured, observed for 10 rounds. We
standardized the Raven test scores using these 270 subjects. The baseline average level-k choice rule was obtained
by computing the average level-k choice rule for each subject, conditional on zig (i.e., on the subject’s standardized
Raven test score, the subject’s scores on Factors 1-3, and a dummy for whether the subject is own-matched high
cognitive ability or own-matched low cognitive ability), and then averaging over the subjects. The baseline
average probability of following either the L0 or L1 choice rule was obtained by computing the probability that
each subject follows either the L0 or L1 choice rule, conditional on zig, and then averaging over the subjects.
The reported marginal effects are averages of the individual-level marginal effects (obtained using differentiation).
The matching group dummy did not have a statistically significant effect on the average level-k choice rule or
on the average probability of following either the L0 or L1 choice rule. Tests for the significance of the baseline
quantities are 1-sided, while all other tests are 2-sided. Standard errors are shown in parentheses. ∗, ∗∗ and ∗∗∗

denote significance at the 10%, 5% and 1% levels.

Table 11: Effects of cognitive ability and character skills on level-k choice rules.

Our discussion focuses on Table 11, which shows how cognitive ability and character skills

affect the average level-k choice rule and the average probability of following either the L0 or

L1 choice rule. Looking first at the top panel of Table 11, we see that both cognitive ability

and character skills influence the level-k choice rules that our subjects adopt. Linearizing the

average marginal effects reported in the top panel, a 1 standard deviation increase in the Raven
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test score raises the average level-k choice rule by 0.26, while a 1 standard deviation increase in

Factor 2, which captures an increase in agreeableness and emotional stability, raises the average

level-k choice rule by 0.16. These are increases of 14% and 9%, respectively, relative to the

baseline average level-k choice rule of 1.83. Thus, the impact of cognitive ability on the average

level-k choice rule is about 65% bigger than that of character skills operating through Factor 2.

Looking next at the bottom panel of Table 11, we see that the Raven test score and Factor

2 also significantly decrease (at the 5% level) the average probability of following either the L0

or L1 choice rule. Finally, we note that Factor 3, which captures openness, extraversion and

Consideration of Future Consequences, also increases the average level-k choice rule (at the 10%

level), but does not have a statistically significant effect on the average probability of following

either the L0 or L1 choice rule.

6 Conclusion

Cognitive ability and character skills vary greatly across the population. Our analysis shows that

cognition and character affect behavior and learning in a strategic environment with repeated

interaction: cognitive ability and character skills help to drive observed heterogeneity in choices

and earnings, and strongly predict how quickly groups of agents learn to play equilibrium.

Our finding that more cognitively able, more agreeable and more emotionally stable people

perform better and learn faster is important for understanding how boundedly rational people

might operate in real-world environments that involve some element of strategic interaction. Our

results are also relevant when interpreting close-to-equilibrium behavior: even if average behavior

mimics equilibrium play quite closely after some period of learning, low cognitive ability agents

might nonetheless be earning substantially less than their high cognitive ability counterparts,

with potentially significant implications for fairness and efficiency.

Our findings raise potentially far-reaching practical and ethical questions. For instance:

How much protection should public policy afford to slow learners when they operate in markets,

especially newer markets in which some participants have price-setting power? How can the

design of institutions and mechanisms take into account the impact of bounded rationality on

how agents learn to behave in the strategic environment implied by the rules of the institution

or mechanism? Is redistribution appropriate to correct for differences in outcomes when people

of different cognitive abilities and character skills interact repeatedly? Our findings also link to

a wider debate about how clever agents could create environments and mechanisms designed to

exploit learning deficiencies (Sobel, 2000, p. 259). In our context, more cognitively able agents

may expend resources to ensure that they interact with those less cognitively able. In addition

to being socially wasteful, such efforts have the potential to increase income inequality.

We leave it to future research to investigate the merits of interventions, such as training

and advice, legal protections and redistributive policies, designed to reduce the performance gap

between heterogeneous agents who interact repeatedly or to mitigate the impact of differences

in learning speed.
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Appendix

A Effect of allocation to cognitive ability type

This paper shows that subjects higher in cognitive ability choose lower numbers and earn more.

In this appendix, we consider whether these results could be driven by an effect of allocation to

cognitive ability type per se on behavior.

First, we note that the within matching group effects of cognitive ability on behavior that

we describe in Section 5 cannot be driven by differences in the allocation to cognitive ability

type. In particular, within the set of subjects who were matched into groups of 3 high cognitive

ability subjects, an increase in cognitive ability influences behavior by reducing mean choices

(the effect is substantial and significant at the 1% level - see Section 5.2.2). These own-matched

high ability subjects all share the same cognitive ability type allocation.

Next, we show that the allocation to cognitive ability type did not have a statistically signif-

icant effect on behavior. Thus, we find no evidence that the allocation to cognitive ability type

encouraged or discouraged effort. Recall that each subject was allocated to cognitive ability

type according to whether her test score was in the top or bottom half of the distribution of

scores in her session (see Section 2.2). To test whether the allocation to cognitive ability type

per se affected behavior, we regress mean p-beauty contest choices and earnings across the 10

rounds on cognitive ability type controlling for a subject’s own test score by including a full set

of Raven test score dummies (this allows a fully flexible non-linear control for a subject’s own

cognitive ability). We use only the 445 subjects whose Raven test scores lie in the range of

overlap where, conditioning on a given score, some subjects were allocated to the high cognitive

ability type and others to the low ability type. The range of overlap arises because the session

median Raven test score varied from 37.0 to 43.5.37

Table A1 reports the results of these regressions. The regressions in the ‘Any’ column use

all the 445 subjects whose Raven test scores lie in the range of overlap. Since the matching

procedure implies that the allocation to cognitive ability type influenced the proportion of high

ability opponents on average, these regressions control for the cognitive ability of opponents by

including a full set of dummies for the proportion (1, 0.5 or 0) of high ability opponents. The

next three columns repeat the exercise, restricting attention to subjects facing a given proportion

of high ability opponents (the sum of such subjects is less than 445 because the three ranges

of overlap calculated conditional on the proportion of high ability opponents are different from

each other, with the union given by the unconditional range of overlap).

Looking at the ‘Any’ column in Table A1, we see that being allocated to the high ability type

increases choices and earnings on average, but the effects are not statistically significant. The

next three columns, which condition on the proportion of high ability opponents, also show no

statistically significant effects. We also note that the signs of the estimated coefficients vary and

that the magnitudes are not monotonic in the proportion of high ability opponents. Table A2

shows similar results when we restrict attention only to the first round or to the second round.

Recall that the mean choice of high cognitive ability subjects is 2.2 lower than that of low

37Figure 1(b) in Section 2.2 shows the densities of Raven test scores for high and low ability subjects separately
and thus illustrates the range of overlap in the middle cognitive ability range.
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Proportion of high cognitive ability opponents
Any 1 0.5 0

Effect on mean choices 0.978
(0.957)

0.737
(1.383)

2.305
(1.405)

−0.490
(2.022)

Effect on earnings ($ per round) 0.143
(0.139)

−0.020
(0.237)

−0.071
(0.257)

0.266
(0.211)

Subject-round observations 4,450 1,070 610 900

Notes: The models are linear and estimated using Ordinary Least Squares regressions. All models include a full set
of Raven test score dummies, which control for a subject’s own cognitive ability, and an intercept. The regressions
in the ‘Any’ column use the 445 subjects (observed for 10 rounds) whose Raven test scores lie in the range of
overlap where, conditioning on a given score, some subjects were allocated to the high cognitive ability type and
others to the low ability type (see Section 2.2). These regressions control for the cognitive ability of opponents
using a full set of dummies for the proportion (1, 0.5 or 0) of high ability opponents. The next three columns
repeat the exercise, restricting attention to subjects facing a given proportion of high ability opponents (the sum
of such subjects is less than 445 because the three ranges of overlap calculated conditional on the proportion of
high ability opponents are different from each other, with the union given by the unconditional range of overlap).
The choice regressions control for previous group behavior by including the mean group choice in the previous
round and the square of mean group choice in the previous round. Heteroskedasticity-consistent standard errors,
with clustering at the group level, are shown in parentheses. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and
1% levels (2-sided tests).

Table A1: Effect of allocation to high cognitive ability type (all rounds).

ability subjects (see Section 3.2.1). Monte Carlo simulations show that if half of this difference

was due to a negative effect on choices of being allocated to the high ability type, then there

would be a less than 1% chance of estimating an effect of being allocated to the high ability

type that is greater than or equal to our actual estimate of 0.978.38

Finally, we note that the range of overlap is sufficiently large to detect effects of cognitive

ability. For instance, if we estimate the effect of cognitive ability on choices within the 108

own-matched high ability subjects whose Raven test scores lie in the range of overlap, we find

a substantial negative effect of cognitive ability on choices, significant at the 1% level, thus

replicating the finding from Section 5.2.2 described in the second paragraph of this section.

38The Monte Carlo simulations use a data generation process based on the observed data.
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Round 1

Proportion of high cognitive ability opponents
Any 1 0.5 0

Effect on mean choices 3.815
(2.672)

0.607
(3.976)

4.527
(6.461)

7.268
(4.103)

∗

Effect on earnings ($): 0.078
(0.406)

−0.062
(0.612)

0.422
(0.809)

−0.201
(0.629)

Subject-round observations 445 107 61 90

Round 2

Proportion of high cognitive ability opponents
Any 1 0.5 0

Effect on mean choices 0.606
(2.331)

5.517
(3.949)

0.477
(5.496)

−5.025
(3.095)

Effect on earnings ($): 0.041
(0.421)

−0.701
(0.673)

0.274
(0.717)

0.543
(0.702)

Subject-round observations 445 107 61 90

Notes: See the notes to Table A1. Subjects are observed for a single round (round 1 or round 2).
Heteroskedasticity-consistent standard errors, with clustering at the group level (apart from the round 1 choice
regressions, since within-group first round choices are independent), are shown in parentheses. ∗, ∗∗ and ∗∗∗

denote significance at the 10%, 5% and 1% levels (2-sided tests).

Table A2: Effect of allocation to high cognitive ability type (Round 1 and Round 2).

B Further goodness of fit analysis

Tables A3 and A4 provide further evidence that our structural level-k model of learning fits

well. Table A3 reports values of log likelihoods and of sums of squared deviations of choices,

earnings and convergence statistics computed from simulated choices, which together show that

our model fits the observed data well. The table also provides evidence from Vuong tests (for

non-nested model comparisons) or likelihood ratio tests (for nested model comparisons) that

our preferred specification fits better than various alternative specifications. We now provide a

brief description of each of the alternative specifications:

• AS1: Once a Lk − (k + 1) rule learner switches to the level-(k + 1) choice rule, she never

switches back. In each round r ≥ 3, one-eighth of the Lk− (k+1) rules learners switch to

the level-(k+1) choice rule; therefore, as in the preferred specification, in round 2 they all

follow the level-k choice rule and by round 10 they all follow the Lk − (k + 1) choice rule.

• AS2: The normal distribution replaces the t-distribution in the model of the choice process.

• AS3: The choices of 100 come from the same t-distribution as for the other choices (instead

of the probability of a choice of 100 coming from the round-specific but cognitive ability

independent empirical frequency observed in the sample).

• AS4: Subjects following the level-k choice rule for k > 0 take into account the effect of

their own choice on the target, and understand that subjects following lower level-k choices

rules do so as well. For k > 0, µ (k,xg,r−1) is thus given by a lower fraction of xg,r−1 than

in the preferred specification.

• AS5: Rule learner types are not included in the model (so there are just five standard
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level-k learner types, with k ∈ {0, 1, 2, 3, 4}, who follow the level-k choice rule in all rounds

r ≥ 2).

• AS6: The probabilities of learner types are not allowed to vary with subjects’ own cognitive

ability or with whether subjects are in own-matched or cross-matched groups.

• AS7: The probabilities of learner types are not allowed to vary with whether subjects

are in own-matched or cross-matched groups (but are allowed to vary with subjects’ own

cognitive ability).

• AS8: The Experience-Weighted Attraction (EWA) learning model of Camerer and Ho

(1999) replaces the level-k model of learning.39

Table A4 shows that our structural level-k model of learning continues to perform well out

of sample. In particular, the table reports how the model performs when we simulate choices for

all rounds, but estimate the model’s parameters using only the data from rounds 1-8 (3rd and

4th columns), compared to performance using parameters estimated from all the data (1st and

2nd columns). In each case, we provide statistics of fit computed from the simulated choices for

all rounds and for rounds 9 and 10 alone.

39We “burn in” the initial attractions using the choice probabilities given by an ordered probit model estimated
on the first round data (for discussion see Ho et al., 2007, footnote 6). We set the initial experience weight, N(0),
to unity: Ho et al. (2007, p. 182) impose the same restriction, while noting that the influence of this parameter
decreases rapidly over rounds and most experimental subjects have weak priors. We estimate a total of 16
parameters: that is the 4 remaining parameters, ϕ, λ, ρ and δ, for own-matched high cognitive ability subjects,
cross-matched high ability subjects, cross-matched low ability subjects and own-matched low ability subjects. The
poor fit of the EWA model shown in Table A3 (AS8) is consistent with previous estimations of the EWA model
using beauty contest data (see Camerer and Ho, 1999, Table 1 and the discussion at pp. 863-864). Despite the
poor fit of the EWA model, we briefly discuss differences in parameter estimates by cognitive ability type. High
ability subjects have a statistically significantly lower discount factor for previous attractions, ϕ, and a statistically
significantly higher attraction sensitivity, λ. We find no statistically significant differences by cognitive ability type
in the discount factor for experience, ρ, or in the relative weight given to belief-based learning versus reinforcement
learning in updating attractions, δ. The latter result is perhaps not surprising because whenever beliefs are given
non-zero weight, i.e., δ > 0, attraction updating requires a subject to know her own payoff in the previous round
and to compute all forgone payoffs. In other words, provided δ > 0, the information required to follow the EWA
learning rule does not depend on the value of δ.
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Preferred Alternative specifications
specification AS1 AS2 AS3 AS4

Sum of squared deviations of choices:
Own-matched high ability subjects 17.1 55.5 16.8 32.0 14.6
Own-matched low ability subjects 30.6 125.0 39.2 57.0 35.1
Cross-matched high ability subjects 22.5 84.41 19.7 48.2 16.1
Cross-matched low ability subjects 24.7 53.7 51.3 29.0 13.4

Sum of squared deviations of earnings:
Cross-matched high ability subjects 0.190 0.220 0.269 0.224 0.287

Sum of squared deviations of convergence stats:
Own-matched high ability groups 2.26 0.47 1.57 2.82 0.95

Cross-matched groups 0.53 0.08 1.77 0.71 0.43
Own-matched low ability groups 0.12 0.81 8.32 0.24 0.17

Log likelihood –21,510 –21,563 –23,302 –21,780 –21,556

Test against the preferred specification:
p value – 0.007a 0.000b 0.000a 0.054a

Alternative specifications
AS5 AS6 AS7 AS8

Sum of squared deviations of choices:
Own-matched high ability subjects 40.8 28.5 12.2 755.2
Own-matched low ability subjects 76.6 75.5 32.7 435.3
Cross-matched high ability subjects 44.5 15.7 34.9 574.4
Cross-matched low ability subjects 42.5 30.1 19.3 406.8

Sum of squared deviations of earnings:
Cross-matched high ability subjects 0.246 0.481 0.216 0.585

Sum of squared deviations of convergence stats:
Own-matched high ability groups 3.43 9.90 4.16 57.73

Cross-matched groups 0.88 0.10 0.07 79.40
Own-matched low ability groups 0.32 0.46 0.38 17.43

Log likelihood –21,599 –21,534 –21,522 –26,142

Test against the preferred specification:
p value 0.000b 0.003b 0.104b 0.000a

Notes: Descriptions of each alternative specification are in the text of Appendix B. Squared deviations of choices
and earnings (in dollars) were computed in each round from the simulated choices generated as described in the
notes to Figure 7, and then summed over rounds. By construction, the sum of squared deviations of earnings:
(i) is identical for cross-matched high ability and low ability subjects; and (ii) is zero for both own-matched high
ability and low ability subjects. Squared deviations of convergence statistics were computed for each of the 3
proportions of equilibrium and close-to-equilibrium play in Table 3, and then summed and multiplied by 100.
a 2-sided Vuong test.
b Likelihood ratio test.

Table A3: Goodness of fit: preferred specification vs. alternatives.
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Estimation using all rounds Estimation using rounds 1-8
Goodness of fit: Goodness of fit:

All rounds Rounds 9 & 10 All rounds Rounds 9 & 10

Sum of squared deviations of choices:
Own-matched high ability subjects 17.1 2.48 12.7 0.36
Own-matched low ability subjects 30.6 1.17 34.3 4.07
Cross-matched high ability subjects 22.5 1.17 25.1 2.24
Cross-matched low ability subjects 24.7 1.11 18.5 2.08

Sum of squared deviations of earnings:
Cross-matched high ability subjects 0.190 0.049 0.345 0.154

Sum of squared deviations of convergence statistics:
Own-matched high ability groups - 2.26 - 0.50

Cross-matched groups - 0.53 - 0.05
Own-matched low ability groups - 0.12 - 0.13

Log likelihood -21,510 - -21,553 -

Notes: The statistics were computed in the same way as described in Table A3, except that the 2nd and 4th
columns report the statistics computed only for rounds 9 and 10, while the 3rd and 4th columns were computed
from simulated choices based on an estimate of the parameter vector θ obtained using only the data from rounds
1-8. The statistics in the 4th column are therefore out-of-sample quantities.

Table A4: Goodness of fit: in-sample vs. out-of-sample.

C Disaggregating choices and earnings statistics for cross-matched subjects

In Section 3.2.3 we found that within cross-matched groups: high and low ability subjects choose

similarly on average; and high ability subjects earn more than low ability subjects. Recall, a

cross-matched group is made up of either 2 high ability subjects and 1 low ability subject or 1

high ability subject and 2 low ability subjects. Figure A1(a) shows that, in both types of cross-

matched group, high and low ability subjects choose similarly on average. More formally, over

the 10 rounds, the difference between the average choices of high and low ability subjects in cross-

matched groups with 2 high ability subjects is not statistically significant (2-sided p = 0.543).40

Similarly, over the 10 rounds, the difference between the average choices of high and low ability

subjects in cross-matched groups with 1 high ability subject is not statistically significant (2-

sided p = 0.286).

Figure A1(b) shows that, in both types of cross-matched group, high ability subjects tend to

earn more than low ability subjects. Over the 10 rounds, high ability subjects in cross-matched

groups with 2 high ability subjects earn $2.92 more than low ability subjects in the same type

of cross-matched group (2-sided p = 0.173). Similarly, high ability subjects in cross-matched

groups with 1 high ability subject earn $5.10 more than low ability subjects in the same type

of cross-matched group (2-sided p = 0.013).

40Throughout Appendix C, all statistical tests are based on Ordinary Least Squares regressions and use
heteroskedasticity-consistent standard errors. We cluster at the group level to allow for within-group non-
independence. The regressions use 10 rounds of observations on either the 165 subjects in cross-matched groups
with 2 high ability subjects or the 165 subjects in cross-matched groups with 1 high ability subject.
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(a) Round-by-round means of choices.
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(b) Round-by-round means of earnings.
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Figure A1: Disaggregated p-beauty contest choices and earnings of cross-matched subjects.

D Disaggregating convergence statistics for cross-matched groups

Table A5 shows the frequencies of equilibrium and close-to-equilibrium play in the final 2 rounds

of the experiment separately for cross-matched groups with 2 high ability subjects and for cross-

matched groups with 1 high ability subject. We note that there are no statistically significant

differences between the 2 types of cross-matched groups in the frequencies of equilibrium or

close-to-equilibrium play.

Equilibrium Group mean ≤ 1 Group mean ≤ 2

Observed proportions:

Cross-matched groups with 2 high ability subjects 0.164 0.282 0.345
Cross-matched groups with 1 high ability subject 0.127 0.282 0.391

Cross-group differences in proportions:

Cross-matched groups with 2 high ability subjects vs. 0.036
(0.065)

0.000
(0.081)

−0.045
(0.086)Cross-matched groups with 1 high ability subject

Notes: The table is based on 220 group-round observations (55 cross-matched groups with 2 high ability subjects
and 55 cross-matched groups with 1 high ability subject, observed in rounds 9 and 10). The first column reports
the proportion of group-round observations in rounds 9 and 10 in which all 3 group members choose 0. The
second (third) column reports the proportion of group-round observations in rounds 9 and 10 in which the mean
choice of the 3 group members is less than or equal to 1 (2). The statistical tests of differences in proportions are
based on Ordinary Least Squares regressions. Heteroskedasticity-consistent standard errors (with clustering at
the group level) are shown in parentheses. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels (2-sided
tests).

Table A5: Proportions of equilibrium and close-to-equilibrium play in rounds 9 and 10, split by
type of cross-matched group.
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E Further evidence on the interplay of cognitive ability and character skills

In Section 5.2.2, we showed that: (i) both cognitive ability and character skills influence behavior

and earnings in our repeated strategic interaction; and (ii) the estimated influence of cognitive

ability does not depend on whether we control for character skills, and vice versa. Here, we dig

deeper into the interplay of cognitive ability and character skills. First, we extend the analysis

of Section 5.2.2 to allow interactions between cognitive ability and character skills. Second, we

investigate whether: (a) the estimated effect of cognitive ability is robust to introducing character

skill dummies; and (b) the estimated effects of character skills are robust to introducing cognitive

ability dummies.

The top panel of Table A6 presents this analysis for behavior. As a benchmark, model (1) in

the top panel of Table A6 is identical to model (3) in the top panel of Table 8 in Section 5.2.2.

Model (2) in the top panel of Table A6 adds interactions between cognitive ability and each of

the factors that capture character skills. We see that the estimates of the non-interacted effects

of cognitive ability and character skills on average choices across the 10 rounds are close to the

estimates in model (1) without interactions. Furthermore, we find no statistically significant

interactions between cognitive ability and either Factor 2 or Factor 3. We do find a weakly

statistically significant negative interaction (2-sided p = 0.080) between cognitive ability and

Factor 1, which captures conscientiousness, grit and Consideration of Future Consequences.

That is, we find some evidence that marginal changes in cognitive ability reduce mean choices

more for subjects with a higher Factor 1 score (who are more conscientious and gritty).

Instead of linear effects of the factors, model (3) in the top panel of Table A6 includes 30

character skill dummies (10 for each factor). We see that the estimated influence of cognitive

ability on behavior is robust to the inclusion of these character skill dummies. Instead of a linear

effect of cognitive ability, model (4) in the top panel of Table A6 includes a dummy for each of

the 61 possible scores in the Raven test. We see that the estimated influence of character skills

on behavior is robust to the inclusion of these cognitive ability dummies.

Finally, the bottom panel of Table A6 replicates this analysis for earnings instead of be-

havior. As a benchmark, model (1) in the bottom panel of Table A6 is identical to the model

in the first column of Table 9 in Section 5.2.2. The results for earnings are similar to those

for behavior described above, although we no longer find a statistically significant interaction

between cognitive ability and Factor 1.
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Mean p-beauty contest choices
(1) (2) (3) (4)

Standardized Raven test score −2.177
(0.985)

∗∗ −2.315
(0.977)

∗∗ −2.189
(0.904)

∗∗ –

Factor 1 0.153
(0.530)

0.187
(0.515)

– 0.243
(0.545)

Factor 2 −1.238
(0.484)

∗∗ −1.286
(0.484)

∗∗∗ – −1.211
(0.499)

∗∗

Factor 3 0.411
(0.585)

0.369
(0.574)

– 0.324
(0.634)

Standardized Raven test score × Factor 1 – −0.785
(0.444)

∗ – –

Standardized Raven test score × Factor 2 – 0.533
(0.529)

– –

Standardized Raven test score × Factor 3 – −0.281
(0.530)

– –

Raven test score dummies No No No Yes
Factor 1 dummies No No Yes No
Factor 2 dummies No No Yes No
Factor 3 dummies No No Yes No

Subject-round observations 2,700 2,700 2,700 2,700

Earnings ($ per round)
(1) (2) (3) (4)

Standardized Raven test score 0.113
(0.067)

∗ 0.124
(0.064)

∗ 0.135
(0.070)

∗ –

Factor 1 0.031
(0.051)

0.031
(0.051)

– 0.053
(0.050)

Factor 2 0.129
(0.051)

∗∗ 0.134
(0.051)

∗∗ – 0.156
(0.059)

∗∗∗

Factor 3 −0.048
(0.047)

−0.049
(0.047)

– −0.065
(0.048)

Standardized Raven test score × Factor 1 – 0.045
(0.036)

– –

Standardized Raven test score × Factor 2 – −0.008
(0.048)

– –

Standardized Raven test score × Factor 3 – −0.030
(0.046)

– –

Raven test score dummies No No No Yes
Factor 1 dummies No No Yes No
Factor 2 dummies No No Yes No
Factor 3 dummies No No Yes No

Subject-round observations 2,700 2,700 2,700 2,700

Notes: The models are linear and estimated using Ordinary Least Squares regressions. The regressions use the
270 subjects whose character skills we measured, observed for 10 rounds. We standardize the Raven test scores
using these 270 subjects. All models include an intercept and a dummy for whether subjects are own-matched
high cognitive ability or own-matched low cognitive ability. ‘Raven test score dummies’ are dummies for each
unique value of the Raven test score. ‘Factor j dummies’ for j = 1, 2, 3 are dummies for each decile of Factor j,
i.e., 10 dummies for each factor. Heteroskedasticity-consistent standard errors with clustering at the group level
are shown in parentheses. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels (2-sided tests).

Table A6: Further results on the effects of cognitive ability and character skills on mean p-beauty
contest choices and per-round earnings.
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