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We estimate the degree of spatial differentiation–primarily driven by transportation costs–among
downstream firms that buy corn from upstream farmers and examine whether such differentiation
softens competition enabling buyers to exertmarket power (defined as the ability to pay a price for corn
that is below its marginal value product net of processing cost). We estimate a structural model of spa-
tial competition using corn procurement data from the U.S. state of Indiana from 2004 to 2014. We
adopt a strategy that allows us to estimate firm-level structural parameters while using aggregate data.
Our results return a transportation cost of 0.5 cents per bushel per mile (10% of the corn price under
average conditions), which provides evidence of spatial differentiation among buyers. The estimated
average markdown is $0.67 per bushel (13% of the average corn price in the sample), of which $0.49
is explained by spatial differentiation and the rest by the fact that firms operated under binding capacity
constraints. Finally, we evaluate the effect of hypothetical mergers on input markets and farm surplus.
A merger between nearby ethanol producers eases competition, increases markdowns by 18%, and
triggers a sizable reduction in farm surplus. In contrast, a merger between distant buyers has negligible
effects on competition and markdowns.
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Economists and regulators are paying increas-
ing attention to spatial competition in agricul-
tural procurement markets, defined as
markets in which downstream firms purchase
products from upstream farmers to use as
inputs in their production processes
(Durham, Sexton, and Song 1996; Alvarez
et al. 2000; Zhang and Sexton, 2000; Fousekis
2011b; Graubner, Balmann, and Sexton 2011;
Hamilton and Sunding, 2020; Wang

et al. 2020). These markets are typically char-
acterized by buyers that are spatially dispersed
and by products that are costly to transport
from the farm to the buyer. These features
have led researchers to routinely assert,
despite scant empirical evidence, that spatial
differentiation among agricultural processors
may soften competition, possibly allowing
firms to engage in input price markdown,
defined as firms’ ability to price inputs below
their marginal value product net of processing
costs. In this paper, we examine the extent to
which transportation cost and the resulting
spatial differentiation among buyers of farm
products affects prices, markdowns, and
surpluses.
When a farmer is located at a certain dis-

tance from the buyer, the price received by
the farmer at the farm gate is lower than the
price paid by the buyer at the plant gate.
The difference between these prices is equal
to the transportation cost that is paid by the
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farmer. Therefore, all else constant, farmers
have incentives to sell to nearby buyers in
order to avoid transportation cost and obtain
a higher price. In a way this protects buyers
from competition, which may allow them to
reduce the price offered to farmers, thereby
increasing markdown. Our goal is to examine
empirically whether spatial differentiation
introduced by transportation cost allows
buyers to engage in corn price markdown
and how spatial differentiation affects mergers
among firms that vary in geographic distances
to each other.
We develop and estimate a structural model

of possibly spatially differentiated buyers in
the corn procurement market that closely
mimics documented empirical features of this
market. The model consists of downstream
firms (corn processors, including ethanol firms
and wet-milling food processors) buying corn
from upstream firms (farmers) while account-
ing for a competitive fringe comprising live-
stock operators, dry-milling food processors,
and exporters. Ethanol and wet-milling firms
set input prices paid to farmers at the plant
gate, and farmers pay the transportation cost
to ship the corn to buyers. The structural
approach allows us to explicitly estimate trans-
portation costs, firm-level production cost
parameters, and parameters of the residual
corn supply faced by buyers, all of which are
necessary for computation of price mark-
downs in the presence of spatial competition.
Finally, we use the structural estimates to con-
duct counterfactual experiments simulating
mergers that differ in the distance between
merging firms, thereby characterizing the effi-
ciency and distributional effects of industry
consolidation.
The empirical estimation of parameters nec-

essary to compute markdowns in our struc-
tural model is challenging because input
prices paid by individual firms are negotiated
privately and rarely available to the public.
Most input prices and input production data
are available only at a more aggregate level.
We overcome the aggregation problem by
adopting an estimation strategy (similar to
Miller and Osborne 2014) that allows us
to retrieve firm-specific structural parameter
estimates while using aggregate, county-level
data. The estimation strategy builds on a
firm-level optimization approach that
accounts explicitly for spatial differentiation
and the distance between buyers and sellers.
The optimization approach returns optimal
plant-level input prices and shipments. These

predictions are then aggregated to the level
of data availability such that demand and sup-
ply parameters that rationalize the data can be
estimated.

In this study, we use county-level informa-
tion on corn prices and supply in the
U.S. state of Indiana from 2004 to 2014.
The corn procurement market in Indiana is
an ideal setting for several reasons. First, it dis-
plays all the features associated with spatial
differentiation among buyers: a few large pro-
cessors (oligopsonists) purchase corn from a
large number of producers who pay transpor-
tation costs to deliver products to the buyers.
Second, large processors in Indiana are rela-
tively insulated (more so than their counter-
parts in Illinois, Iowa, or Nebraska) from
other large processors in neighboring states,
though they are likely to compete among
themselves (more so than their counterparts
in Minnesota, Ohio, or Wisconsin). Third, we
did not observe any consolidation between
firms in Indiana that may complicate estima-
tion that allows to, instead, evaluate merger
effects in our counterfactual analysis. Finally,
confining the geographical scope of our analy-
sis eases the computational burden of solving
our optimization approach, which increases
dramatically with the number of counties and
plants considered.

Our data show that corn is shipped around
fifty miles on average. The estimation results
return a transportation cost of 0.5 cents per
bushel per mile (10% of the corn price for
average conditions in the sample), which pro-
vides evidence of spatial differentiation
among buyers. This transportation cost softens
competition and allows corn processors to
exert buyer power, attaining an average input
price markdown (difference betweenmarginal
value product net of processing cost and price
of corn) of $0.49 per bushel (9% of the corn
price) derived from spatial differentiation.
Our results also show that, over our study
period, firms often set prices under binding
capacity constraints, consistent with
Bertrand-Edgeworth competition. Once
capacity constraints are binding, markdown
increases; on average, capacity constraints
increase markdown by $0.18 per bushel, 37%
more in the effect of spatial differentiation.

Finally, consolidation among firms has been
a prominent trend in the corn ethanol industry
over the last few years (Federal Trade Com-
mission 2018). Understanding the efficiency
and distributional implications of mergers
among large corn buyers is of key importance
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for antitrust authorities and agencies in charge
of agricultural policies. Yet, relatively little is
known about merger effects in oligopsonistic
markets characterized by spatial competition.
The framework we develop here can fill this
gap because our estimated structural parame-
ters allow us to evaluate the market and wel-
fare effects of ownership changes between
nearby and distant firms.

The results from our counterfactual experi-
ments on consolidation among ethanol plants
indicate that amerger between nearby ethanol
plants eases competition and increases mark-
downs attained by merging firms by $0.20 or
18%.We also find that themerger also triggers
spillover effects on non-merging firms that
allows them to increase their markdowns as
well, though to a lesser extent than merging
firms. Consequently, we find that mergers
reduce farmers’ surplus, and it does so beyond
a geographically confined area around the
merging firms, suggesting strong spatial spill-
overs. In contrast, a merger between distant
ethanol plants shows no effect on competition
and markdowns. Our results indicate clearly
that themarket and welfare effects of amerger
between firms depend upon their degree of
spatial differentiation, which determines the
intensity of competition via transportation
costs and distance.

Our study is related to work on spatial
differentiation in fast food restaurants
(Thomadsen 2005), movie theaters (Davis
2006), and retail gasoline establishments
(Houde, 2009). It also relates to Durham and
Sexton (1992) in that it estimates residual sup-
plies faced by agricultural processors. How-
ever, unlike Durham and Sexton (1992), our
study follows an estimation strategy proposed
by Miller and Osborne (2014) that will enable
us to estimate firm-level structural parameters
from market-level outcomes. Other promi-
nent contributions that focus on buying power
in the corn procurement market include Sai-
tone, Sexton, and Sexton (2008) and Wang
et al. (2020). Themain differentiating attribute
of our paper relative to these studies is that we
do not impose buyer power but estimate it. In
this sense, our study contributes to a rich
empirical literature on buyer power in input
markets, as reviewed by Azzam (1996),
Sexton (2000), McCorriston (2002), Sexton
(2013), Sheldon (2017), and Merel and Sexton
(2017), among others. In contrast to these
studies, however, our paper explicitly con-
siders the relationship between spatial differ-
entiation and competition. We also estimate

the degree of spatial competition and identify
it as a source of buying power.

The Corn Market in Indiana and the Data

In this section, we introduce the main
data sources and use information extracted
from these sources to document key institu-
tional features of the corn market in Indiana.
We identify four market features that lay out
the foundation of our empirical structural
model.
We use county-level corn prices from Geo

Grain. Geo Grain records corn prices at multi-
ple elevator locations across Indiana. These
data provide full coverage of Indiana. We use
the local corn cash price instead of basis (as is
common in other studies of spatial price pat-
terns of corn) because our model identifies
parameters based on the difference between
observed and predicted county-level prices,
differencing out forward prices (that are based
on the Chicago Board of Trade). We also use
information on location, capacity, and owner-
ship of corn processing plants (which, as will
soon be explained, are modeled as oligopso-
nists), total corn supply in each county in each
crop year, and distance between locations of
processing plants and county centroids. We
also gathered data on supply shifters, includ-
ing distance between locations of exporting
ports and county centroids and corn require-
ments by the livestock and dry-milling sectors
in each county.
We obtained data on corn production, corn

storage, and livestock inventory from the
National Agricultural Statistics Service of
the United States Department of Agriculture
(NASS, USDA). Information on corn exports
and international prices is taken from the Eco-
nomic Research Service (ERS) of the USDA
and the Federal Reserve Bank of St. Louis
(FRED), respectively. The information on
ethanol plant location, ownership, capacity,
and year built comes from the government of
Nebraska, the Renewable Fuel Association
(RFA), the U.S. Environmental Information
Administration (EIA 2020), the Biofuel Atlas
published by the National Renewable Energy
Laboratory (NREL 2020), and the Homeland
Infrastructure Foundation-Level Data
(HIFLD 2018). Information on wet- and dry-
milling food processors’ capacities and loca-
tions is based on Hurt (2012) and the authors’
own personal communications. Historical
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diesel and electricity prices are obtained from
the EIA. Information on the specific locations
of U.S. Exporting Port Facilities is available at
HIFLD (2020). Distances are calculated using
Arc-GIS.
Table 1 portrays an aggregate picture of the

corn market in Indiana. The top part of table 1
shows the presence of five destinations for
Indiana corn: ethanol, wet milling, dry milling,
livestock, exports, and other. This panel
reports the annual shares of Indiana corn sold
to each of these sectors during our period of
analysis (2004 to 2014). The bottom part
of table 1 describes the sources of corn supply
in Indiana for each year. The numbers show
that most of the corn supply in any given year
comes from production in that same year.
However, supply from storage can amount to
more than 10% of the total corn supply.
Our primary concern relates to the possible

existence of concentrated procurement mar-
kets, which may be conducive to market
power. Concentration takes place when a few
large processors purchase a large fraction of
corn supplied within relevant market bound-
aries, and market boundaries can be confined
by transportation costs. Therefore, all else
constant, concentration will increase with
transportation cost and with the size of a
purchasing firm.
Corn farmers typically use trucks to ship

corn to their buyers (Denicoff et al. 2014;
Adam and Marathon 2015) because plants
source corn locally, and trucking within rela-
tively short distances (i.e. less than 500 miles)
is less costly than other forms of transporta-
tion. According to the Grain Truck and Ocean
Rate (GTOR) report from the USDA, the
transportation rate of grains in the North Cen-
tral region1 in the first quarter of 2016 was 0.23
cents, 0.14 cents, and 0.11 cents per bushel-
mile for 25, 100, and 200 miles, respectively
(AMS of USDA 2016; Edwards 2017).2 At
an average corn price of $3.50 per bushel in
2016, this means that transportation costs
amounted to about 3% to 7% of the price
within these distances. This underscores the
importance of transportation costs and sug-
gests a possible geographical localization of

corn procurement markets; that is, plants tend
to source corn locally.

Geographical localization of procurement
markets is not by itself sufficient to soften com-
petition. To exert market power, the buyer
must be large relative to supply in the procure-
ment market. Information reported in table 2
reveals that ethanol plants and wet-milling
processors are quite large, whereas individual
livestock operations and dry millers are not.
On average, ethanol plants and wet-milling
plants are 4,000 times larger than the average
individual livestock operator and six to ten
times larger than dry millers. Table 3 reports
the ratio of each large processor’s
(as identified in table 2) annual corn proces-
sing capacity to annual corn produced in the
county in which the plant operates. In each
case, we report the average ratio over the sam-
ple period. The ratios reported in table 3 show
that these processors are large relative to local
supply. Most of these plants (88%) have an
annual corn processing capacity larger than
the corn produced in the county where they
are located. In several years, ratios for many
of these plants are well above 2.

In line with the existence of large firms pur-
chasing a substantial fraction of the corn sup-
plied locally (table 3), available reduced-form
estimates in the U.S. (McNew and Griffith
2005) and Indiana in particular (Jung et al.
2019) found a positive effect of a plant’s siting
on corn prices, but they also indicate that the
price effect dissipates with distance. The posi-
tive price effect is consistent with large proces-
sing plants facing upward-sloping supplies; it
means plants must offer higher prices to pro-
cure increasing amounts of corn. The dissipa-
tion of the price effect with distance is also
consistent with procurement markets that are
geographically localized due to transportation
costs. Finally, many studies note that ethanol
plants tend to locate in areas with high corn
density (e.g. Li et al. 2018), also consistent with
significant transportation costs. In summary:

Market Feature 1: The corn procurement
market involves large buyers—ethanol
and wet-milling plants—that are spatially
differentiated. Corn sales involve trans-
portation costs such that, all else constant,
sellers prefer selling corn to nearby plants.

Notwithstanding the geographically local-
ized nature of procurement, the sheer size of
these plants relative to localized supply also
suggests that they have to travel considerable

1The North Central region in the GTOR report includes North
Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Mis-
souri, Wisconsin, Illinois, Michigan, Indiana, Kentucky, Tennes-
see, and Ohio.

2These are converted values from the rate reported in GTOR.
GTOR reports the transportation rate per truckload-mile. One
truckload is equivalent to 984 bushels of corn.
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distances to procure enough input. This likely
results in spatial overlap of these plants’ pro-
curement areas, especially when they are spa-
tially clustered. Figure 1 shows the locational
pattern of ethanol plants (yellow circles),
wet-milling plants (red circles), exporting
ports (green circles), as well as the spatial pat-
tern of corn production in Indiana in 2014.
This figure reveals substantial differences in
spatial clustering of ethanol plants. The varia-
tions in the local market conditions have an
effect on the intensity of competition for corn
procurement. But large processors
(as indicated by larger circles in figure 1) will
also compete with the dry-milling sector, the
livestock sector, and exports, which are large
consumers of corn supplied in Indiana (table
1). These facts lead to:

Market Feature 2: Dry-milling firms,
livestock operators, and exporting firms
are small buyers acting as a competitive
fringe. Large buyers (ethanol and wet-
milling firms, as identified in Market Fea-
ture 1) compete with the competitive
fringe and also among themselves.

Another important empirical feature of the
corn procurement market is the nature of pro-
curement channels. A portion of the corn
produced is sold shortly after harvest, but
another portion is stored in elevators and sold
throughout the year. Processors buy corn
from farmers and commercial elevators. They
purchase corn in the spot market and through
contracts, and sellers typically pay for trans-
portation cost. Contracts are usually signed
during the growing season and specify a post-
harvest delivery date, a quantity, and a price.
The nature of procurement channels matters
because our estimation is based on elevator-
level cash prices that are then aggregated to
the county level. Therefore, measurement error
in prices could arise if: (a) a large portion of corn
is purchased directly from farmers and those
prices differ from elevator prices, or (b) a large
portion of corn is purchased through contracts
and contract prices differ from cash prices.
We consider the use of elevator cash prices

to be an adequate strategy in our context for
two reasons. First, although buyers often
bypass elevators and purchase directly from
farmers, elevator prices do not deviate sub-
stantially and systematically from farm prices.
As for the second potential source of measure-
ment error, a large fraction of corn procured
by the processors is purchased in spot markets.T
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Processors use contracts for hedging and pro-
tecting profitability during periods of thinmar-
gins, but hedging opportunities are limited by
illiquid futures markets on the output side
due to limited ethanol and food product stor-
age (see Schill 2016).3 Moreover, corn futures

markets are highly liquid, with efficient price
discovery mechanisms, which causes conver-
gence, albeit partial, of forward prices to spot
prices.4

Table 2. Size of Individual Plants by Sector in Indiana in 2014

Count
Total

capacity
Mean

capacity
Median
capacity

Min
capacity

Max
capacity

Ethanol plants 14 430.74 33.13 34.07 7.41 44.44
Wet-milling
plants

5 220.40 44.10 39.40 17.0 75.00

Dry-milling
plants

5 28.50 5.7 4.0 4.00 12.10

Livestock
operators

19,276 184.19 0.01 N/A N/A N/A

Note: Capacity is measured in million bushels per year. Data sources for the ethanol plants are as follows (1) Nebraska Department of Environment &
Energy (2015), (2) the Biofuels Atlas of NREL, (3) Hurt (2012), and (4) NASS, USDA. The total count of livestock operators is composed of (1) 2,823 for hog,
(2) 14,106 for cattle, and (3) 2,347 for poultry (NASS, USDA). To estimate the mean capacity of livestock operators, we divide the total corn demand from
livestock operators by the total number of livestock operators in Indiana due to the lack of data for individual operators. Mean capacity for other sectors is based
on the actual data for individual capacities.

Table 3. Ratio of Ethanol and Wet-Milling Plants’ Corn Processing Capacity to Corn
Production in the County where the Plant Is Located

Sector Firm County Ratio Ownership

Ethanol
plants

The Andersons Clymers Ethanol, LLC Cass 2.49 Corporate
Grain Processing Corp. Daviess 0.61 Corporate
Central Indiana Ethanol, LLC Grant 1.42 Corporate
Iroquois Bio–Energy Company, LLC Jasper 0.56 Corporate
POET Bio-Refining Jay 2.41 Corporate
POET Bio-Refining Madison 1.73 Corporate
Valero Renewable Fuels Company,
LLC

Montgomery 2.08 Corporate

Abengoa Bioenergy Corp. Posey 3.59 Corporate
POET Bio-Refining Putnam 3.79 Corporate
Cardinal Ethanol Randolph 2.61 Cooperative/

Corporate
Noble Americas South Bend Ethanol
LLC

St. Joseph 3.38 Corporate

POET Bio-Refining Wabash 2.12 Corporate
Green Plains Renewable Energy Wells 3.58 Corporate

Wet millers Tate & Lyle Tippecanoe 5.43 Corporate
Cargill Lake 6.93 Corporate
Grain Processing Corp. Daviess 2.89 Corporate
Ingredion Marion 24.31 Corporate
Below 11 2
Above 12 15

Note: Data are from (1) Renewable Fuel Association (2016) and (2) the Biofuels Atlas, NREL. All counties have one ethanol plant, except for Posey County,
which has two ethanol plants. Status over the previous periods, 2004 through 2013, is available from authors. “Below 1” indicates the number of counties that
ethanol plants demand less corn than produced among counties where at least one ethanol plant is located. “Above 1” means the number of counties in which
ethanol plants demand more corn than produced among counties where at least one ethanol plant is located. Grain Processing Corp. (GPC) operates an ethanol
plant and a wet-milling plant in Daviess County.

3According to Schill (2016) hedging also reduces upside profit
potential further limiting the use of contracts.

4Ethanol plants considered in our sample are privately owned,
and, when they contract, they use forward contracts negotiated
in the Chicago Board of Trade rather than exclusive contracts with
farmers. Therefore, we are not concerned about exclusive vertical
relationships as a source of market power.
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We summarize the information on procure-
ment channels and pricing by:

Market Feature 3: Large processors
procure the majority of their corn in the
spot market by posting purchase prices
at the plant gate throughout the year.
Transportation costs are covered by the
sellers.

We now turn our attention to market condi-
tions under which oligopsonists sell their pro-
cessed products. If oligopsonist-owned plants
exerted market power downstream, the out-
put price would be a function of quantity pro-
cessed and supplied, which would itself be a
function of corn price. This would add a layer
of complexity to our analysis. Beyond a resid-
ual input supply, an additional output residual

Figure 1. Oligopsonists’ locations and corn production in Indiana counties in 2014

Notes: This is based on sources as follows: (1) Renewable Fuel Association (2017), (2) Geo Grain, and (3) Nebraska Department of Environment &
Energy (2015).
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demand function faced by each plant would
have to be estimated. However, it is unlikely
that individual oligopsonistic plants exert
market power downstream for two reasons.
There are close substitutes in the market for
the main outputs from both ethanol as well
as wet-milling firms. The price of ethanol
mostly followed the price of gasoline during
our study period according to the data stored
on the state of Nebraska’s website (http://
www.neo.ne.gov/programs/stats/inf/66.html).
Similarly, the price of high fructose corn
syrup (one of the main products from wet
millers along with starch and ethanol) was
influenced strongly by the price of raw sugar
(Oral and Bessler 1997). Moreover, capacity
utilization of both ethanol (Renewable Fuels
Association 2016) and wet-milling plants
(Porter and Spence 1982) is typically high,
which limits the role of output price on the
procurement decision. These facts determine
the following feature:

Market Feature 4: Corn buyers do not
have market power when selling their
processed products, and they often, but
not always, operate at full capacity.

Infigure 2, wemap the spatial structure of oli-
gopsonistic processing plants and county-level
corn prices in 2014, the last year in our sample.
The map shows a positive correlation between
the location and the size of processors (oligop-
sonists) and corn prices. This pattern appears
despite the fact that large processors tend to
locate in areas with high corn supply (see figure
1). This suggests that large processors substan-
tially increase local demand for corn, raising
local corn prices, which is consistent with Mar-
ket Feature 1. We note that market power exer-
tion would not preclude an increase in local
corn price, but it can limit this increase below
what it would be in a competitive setting. Other
areas without large processors also display rela-
tively high corn prices. Consistent with Market
Feature 2, these areas are located close to
exporting ports or livestock production, which
causes large shifts in corn demand.

The Empirical Model

Wedevelop and estimate a structural model to
evaluate oligopsonists’ buyer power while
accounting for spatial differentiation. Our
structural model builds on a short-term

equilibrium model and consists of a set of
equations that describes upstream firms’
(farmers) selling behaviors and downstream
firms’ (oligopsonists) buying behaviors. On
the demand side, we consider ethanol and
wet-milling plants that act as oligopsonists.
On the supply side, we consider farmers in
counties that sell corn to oligopsonists for
plant-specific prices and to the competitive
fringe. The corn buyers’ profit optimality con-
ditions characterize optimal corn prices
offered by each plant to each farmer in every
county. Prices offered by a plant and its com-
petitors in equilibrium will determine the
amount of corn purchased by each plant from
farmers in each county. The firm-level prices
and quantities are then aggregated to the
county level. Our estimation algorithm
searches over a set of parameters that matches
the firm-level predictions (aggregated to the
county level) with the observed county-level
data. Our estimation algorithm returns opti-
mally predicted corn prices and quantities at
the firm level, firm-level procurement and
capacity utilization rates, and parameter esti-
mates that characterize marginal processing
costs. On the seller side, we estimate parame-
ters that characterize how much each county
sells to each buyer. Ultimately, these parame-
ters determine the residual supply of corn
faced by each buyer. A key parameter on the
seller side is transportation cost, which reflects
spatial differentiation and competition inten-
sity among buyers.

Downstream Firms (Ethanol and Wet-Milling
Firms)

Our empirical model mirrors key features of
the trading environment documented in our
industry description. Motivated by Market
Feature 1, the corn procurement market is
characterized by an oligopsony, in which
large downstream firms (buyers) are spatially
differentiated and purchase corn from local
small upstream firms (sellers) depending on
transportation cost. In our model, oligopso-
nists compete with each other and with a com-
petitive fringe composed of dry millers,
livestock producers, and exports (as docu-
mented in Market Feature 2). As mentioned
inMarket Feature 3, we model processors that
procure their corn in the spot market. They
post corn prices at the plant gate and trans-
portation costs are covered by the farmers.
Finally, and reflecting Market Feature 4, we
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assume ethanol plants and wet millers do not
exert market power downstream and operate
under capacity constraints that may or may
not be binding depending on market
conditions.

We allow oligopsonistic firms (F) to own
multiple plants ( j). The firm determines for
every plant j the corn price pcijt ð the superscript
c refers to corn, and the subscript t refers to the
time period) that is paid to sellers (farmers)
located in county i = 1,…,92 in Indiana. We

take ownership and location of plants as given.
We allow firms to internalize negative compet-
itive externalities imposed on other plants that
are jointly owned by the firm. Because the
structure of the problem is the same in all
periods, and for notational simplicity, we drop
the time subscript t. The firm-specific vector of
corn prices pcF contains as its elements the
county-specific corn prices pcij that are offered
by every plant j owned by firm F to every
county i. The quantity of corn shipped from

Figure 2. Oligopsonists’ locations and corn prices in Indiana counties in 2014
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county i to plant j is denoted by qcij p
c
i ;xi,β

� �
,5

where pci is the vector of corn prices offered
by every plant to county i, xi is a vector of
demand shifters that captures procurement
by the competitive fringe from county i, and
β is a vector of parameters to be estimated.
An important aspect to consider in our

model is vertical integration. An oligopsonist
that is vertically integrated with corn sellers
would price corn differently from its non-
integrated competitors because it would maxi-
mize joint (sellers’ and buyer’s) profits
(Urbanchuk ; Bain 2011; Miller et al. 2012;
Boone and Özcan 2013; Grashuis 2019). All
firms, but one, in our sample are investor
owned; that is, they are not vertically inte-
grated with corn sellers. The only firm that is
owned by a farmers’ cooperative in Indiana is
Cardinal Ethanol (table 3). However, a careful
look at SEC filings from Cardinal Ethanol
reveals two facts. First, the cooperative is
largely owned by farmers that are not local
and, thus, do not sell to the plant. Second, a
significant share of the cooperative is owned
by investors that are not farmers. Both of these
facts suggest limited, if any, vertical integra-
tion between the firm and corn sellers. Hence,
we assume oligopsonists in our model are not
vertically integrated.
Oligopsonists maximize profits every period

by determining the optimal corn prices offered
by eachof their plants to farmers in every county:

max
pc
ij

πF ¼Ph*αh*
X
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X
j∈F

qc
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i ;xi,β

� �
�
X
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X
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� ��X
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�
X
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ðQh
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mc Q;wj,α,γ

� �
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ð1Þ

subject to

ð2Þ αh
X

i � INC

qcij p
c
i ;xi,β

� �
≤CAPj 8j�F

ð3Þ
X

j � INP

qcij p
c
i ;xi,β

� �
≤RSUPi 8i:

subject to.

The first term in the first line of equation (1),
Ph*αh*

P
i

P
j � Fq

c
ij p

c
i ;xi,β

� �
, is firm F’s reve-

nue from selling the processed products
denoted by h (h = eth for ethanol, or h = wm
for wet-milling products) at the corresponding
prices Ph. The scalar αh is the conversion pro-
ductivity factor that describes the quantity of
output h (ethanol or wet-milling products)
obtained per bushel of corn processed. The
conversion productivity factors are specific to
the outputs but homogeneous across plants.
The price of ethanol Peth (which varies over
time) comes from the state of Nebraska’s web-
site and the scalar αeth (constant over time and
equal to 2.7 gallons per bushel) from USDA’s
U.S. Bioenergy Statistic tables (https://www.
ers.usda.gov/data-products/us-bioenergy-
statistics/documentation/). Computing the
conversion factor and output price for wet
millers is more challenging because these
plants produce multiple outputs that sell at dif-
ferent prices. Therefore, we compute VMP
directly by dividing value of output/corn used
(Galitsky et al. 2003). We note that the VMP
for wet millers is virtually the same as that of
ethanol plants. This is partly because during
our period of analysis there was a rather strong
correlation between the price of sugar (which
drives prices of outputs from wet-milling
firms) and the price of ethanol.

The second through fourth terms in
the right-hand side of equation (1) repres-
ent cost components. The second term,P

i

P
j � Fp

c
ijq

c
ij p

c
i ;xi,β

� �
, represents firm F’s

total costs from buying corn as an input. The
third term in equation (1),

P
j � FFCj, is the

annualized cost of construction or installation,
and it is summed across plants owned by that

firm. The fourth term,
P

j

ÐQh
j

0 mc Q;wj,α,γ
� �

dQ, refers to the total processing cost of pro-
ducing ethanol and wet-milling products,
where Q is the amount of corn processed, Qh

j

refers to the corresponding production quanti-
ties, and mc denotes marginal processing cost.
We specify the marginal processing cost func-
tion as:

mc Qh
j ;wj,α,γ

� �
¼w0

jα

þγ 1�αhP
i q

c
ij p

c
i ;xi,β

� �
CAPj

( )
,

ð4Þ

wherewj is a vector of cost shifters (natural gas
and electricity prices) and a time trend to

5We assume that corn purchased is equal to corn processed
because plants have limited storage relative to production
capacity.
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capture technological and/or efficiency
change, and α is a vector of corresponding
parameters. Equation (4) allows marginal pro-
cessing cost of plant j to depend on capacity

utilization
αh
P

i
qcij pci ;xi ,βð Þ
CAPj

. If γ is positive (nega-
tive) plants display economies (diseconomies)
of capacity utilization, and if γ is zero, plants
operate under constant marginal
processing cost.

Our model also allows for binding capacity
constraints, a distinctive feature of corn pro-
cessors (Market Feature 4). Condition
(2) ensures that production by plant is not
higher than what is technologically feasible to
produce in any given year (denotes capacity
of plant j). Finally, condition (3) ensures that
corn purchased by all plants does not surpass
the available amount of corn from a county
denoted by “RSUPi”, which refers to the resid-
ual corn supply from county i (annual corn
production plus storage minus demand from
livestock and dry millers).

Our model also allows for binding capacity
constraints, a distinctive feature of corn pro-
cessors (Market Feature 4). Condition
(2) ensures that production by plant j is not
higher than what is technologically feasible
to produce in any given year (CAPj denotes
capacity of plant j). Finally, condition
(3) ensures that corn purchased by all plants
does not surpass the available amount of
corn from a county denoted by RSUPi, which
refers to the residual corn supply from
county i (annual corn production plus stor-
age minus demand from livestock and dry
millers).

The solution to the optimization problem
(1)–(4) is a system of Karush-Kuhn-Tucker
conditions fully characterized in Appendix
A. Simultaneous solution of these conditions
for all firms results in a set of equilibrium
prices. If capacity constraints are not binding,
then the solution is a Bertrand-Nash equilib-
rium in prices with spatially differentiated
products.6 If, on the other hand, capacity con-
straints are binding, then the solution is a
Bertrand-Edgeworth equilibrium in prices
with spatially differentiated products
(Benassy 1989; Canoy 1996; Somogyi 2020).

Upstream Firms (Farmers)

We consider corn supplied by farmers in each
county to processors and the competitive
fringe. Total corn supply in each period is
determined by production and inventories car-
ried over from previous years.7 Inventories are
shaped by the previous season’s weather, and
production is determined by acres planted to
corn and growing season weather. Acres
planted to corn are driven largely by world
market conditions that determine expected
corn prices relative to other crops, which are
exogenous in our model. This is in contrast to
farmers’ decisions on who to sell corn already
produced, which are likely shaped by local
prices set by oligopsonists. But even if oligop-
sonists’ pricing had an effect on local corn
acreage (e.g. Wang et al. 2020), its relation to
production (our variable of interest) is much
weaker due to the mediating role of growing
season weather. Hence, we assume total corn
supply (not destination of that supply) is inde-
pendent of oligopsonists’ pricing and focus on
a model of shipments and short-run supplies.8

Our model of shipments predicts the share
of total corn supply sold by each county to
each procurement firm. It builds on two pre-
mises. First, sellers can sell corn to one of three
sectors: oligopsonists, local competitive fringe
(dry millers and livestock producers), and
exports competitive fringe. Second, sectors
other than oligopsonists do not exert market
power. Both of these premises are motivated
by Market Feature 1. Previous studies have
documented that corn demand from the local

6Our paper follows the tradition in empirical models of discrete
choice and differentiated products and assumes a Bertrand-Nash
equilibrium (Berry 1994). In a Bertrand-Nash equilibrium, firms

set prices ignoring potential strategic reactions by other firms. This
is equivalent to Hotelling-Smithies conjectures in the standard
Hotelling (1929) set up of spatially differentiated products.

7Storage data are available only at the state level (NASS,
USDA). We calculate county-level storage by attributing a frac-
tion of state-level storage to each county, which is equal to each
county’s average share of total production.

8According to the modern agricultural markets paradigm,
buyers of agricultural products are limited in their ability to sup-
press prices for farm products when they trade through stable con-
tractual relationships. This is because suppressing prices too much
could result in substantial reductions in future input supply
(Crespi, Saitone, and Sexton 2012; Sexton 2013). In our setting,
reductions in supply would take place through a decrease in corn
acreage in the future. This paradigm does not fit the corn procure-
ment market well primarily for three reasons. First, a substantial
portion of purchases by corn ethanol plants and wet millers are
conducted in the spot market rather than through stable contrac-
tual relationships (Market Feature 3). Second, the main price sig-
nal farmers respond to when making planting decisions is the
world market price, which determines farmers’ reservation price
when trading with local oligopsonists rather than local prices set
by oligopsonists. Third, the longer term response of corn acreage
to past oligopsonists’ pricing (or price signals in general) is limited
by strong benefits of rotating corn and soybeans (Hendricks
et al. 2014).
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competitive fringe can be quite inelastic in the
short run, especially from its larger source,
livestock operators (Suh and Moss 2017).
Therefore, we simply subtract that from the
total supply. In contrast, export prices are
determined in the international market and
are not influenced by individual exporting
firms. A competitive exporting sector implies
exporting firms procure excess supply at their
marginal value product. This is consistent with
the stylized fact that exports are highly (and
positively) correlated with production, as
revealed by a relatively constant share of
exports over time (see table 1). We follow
Miller and Osborne (2014) and model the
export component of the competitive fringe
as an additional plant j = J+ 1 (where J is the
number of plants owned by oligopsonists),
but a plant that does not engage in markdown.
Sellers obtain value from selling corn to

plant j, where j = 1, …, J if the plant is owned
by an oligopsonistic firm and j = J+ 1 if the
plant is an exporting port. Because there are
eighteen oligopsonistic plants in our sample
(fourteen ethanol plants and four wet-milling
plants), then J = 18. The sellers have to pay
the transportation cost. The value function of
seller n in county i, associated with selling their
corn to plant j is given as:

ð5Þ vnij ¼ βppcijþβddijþβeejþ εnij ¼ x0iβþ εnij,

wherepcij is the corn price offered by plant j to a
farmer in county i (the corn price for exporting
ports,pciJþ1, is exogenous and determined by
the international price), dij is the distance
between the centroid of county i and the spe-
cific location of plant j, di,J+ 1 denotes the dis-
tance between the centroid of county i and
the specific location of its nearest exporting
port (there are three ports located in Clark,
Porter, and Posey counties), and ej is a dummy
variable that is set to 1 if plant j is an exporting
port (j = J+ 1). For distance we proxy driving
distance by computing the straight-line dis-
tance between plants (or exporting ports)
and country centroids, and then multiplying
this distance by a circuity factor of 1.2, which
has been used in the literature to capture road
infrastructure in Indiana (Tyner and Rismil-
ler 2012).
The negative of the ratio of the distance

coefficient to the price coefficient (�βd/βp)
captures corn sellers’ willingness to pay for
proximity to an oligopsonist. We interpret this
ratio as transportation cost, because corn

sellers save this amount per bushel-mile when
located one mile closer to a dominant firm.
Both interpretations (willingness to pay for
proximity and transportation cost) are not
necessarily equivalent. They may differ if dis-
tance affects sellers’ value for other reasons
generally associated with relational contracts
or switching costs (e.g., reduced reliability,
increased transaction costs, etc.). Having said
this, we believe transportation cost is likely
the overwhelming force governing the link
between distance to a plant and the value for
the farmer of selling to that plant. This is
because plants purchase the majority of their
corn in the spot market from a very large num-
ber of relatively small farms. Hence, with the
appropriate caveats, we interpret �βd/βp as
transportation cost.9

The error term ðεnij) captures unobservable
match characteristics, such as reputation or
relational contract considerations that are not
captured by distance, that affect county i sup-
pliers’ preference for trading with plant j.
The error term is extreme value distributed,
so we get a closed-form solution for the share
of residual corn supplied by each county to
each plant:

ð6Þ Sij pci ;xi,β
� �¼Prob Yn ¼ jð Þ

¼ exp x0iβ
� �

PJþ1
j¼1 exp x0iβ

� � ,
where x0ij ¼ pcij,dij,ej

h i
and Yn represents the

farmer’s choice to sell corn to ethanol and
wet-milling plants or to exporters. The quan-
tity sold from county i to plant j can be written
as:

ð7Þ qcij p
c
i ;xi,β

� �¼Sij pci ;xi,β
� �

*RSUPi,

where residual supply from county i in each
period, RSUPi, is determined by the sum of
production and inventories, minus demand
from livestock and dry-milling firms.

9The error term would also include an error in variable, stem-
ming from the fact that the distance between the individual seller
in some county i and plant j is imperfectly captured by dij. This is
because sellers are geographically dispersed within counties,
whereas the regressor measures distance from the plant to the
county centroid. However, notice that the seller-specific error in
distance is, by construction, orthogonal to the distance between
plant and county centroid (Miller and Osborne 2014).
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Estimation Strategy

One empirical challenge in estimating our
model is that corn prices are not available at
the individual buyer and seller level. The
prices and quantities are available only at a
more aggregate (county) level. To overcome
this challenge, we employ an estimation strat-
egy similar to that developed by Miller and
Osborne (2014). We use firms’ optimality con-
ditions and iterate over sets of candidate
parameters to find a vector of corn prices paid
by each plant to farmers in each county and
quantities shipped from each county to each
plant. We then weigh the plant-specific prices
with the plants’ share on corn purchases to cal-
culate the predicted county-level prices. The
predicted county-level prices are then com-
pared with the observed county-level prices.
The process is iteratively repeated until a set
of structural parameters is found under which
the predicted county-level prices and quanti-
ties get sufficiently close to their observed
counterparts.

For estimation of the farmers’ supply equa-
tion (6), we employ a multinomial logit system
that has been proposed previously in the agri-
cultural economics literature (Hueth andTaylor
2013) and displays several desirable properties.
First, it yields an analytical expression for the
share and quantity of corn sold by each county
to each plant (equations (6) and (7)), which
makes computation less burdensome. Second,
the logit structure produces a specification con-
sistent with heterogeneity in sellers’ responses
to prices, making the aggregate supply response
smooth to changes in corn prices. Otherwise,
small price changes would result in corner solu-
tions at the county level and generate disconti-
nuities in supply behavior. Third, it does not
artificially constrain farmers to sell corn within
a predetermined radius. This is important in
our study because plants’ actual procurement
area is ex ante unknown.

Next, we use the multinomial logit supply
(as shown in equation (6)) and the solution to
the oligopsonists’ profit maximization prob-
lem (as shown in equations (1)–(3)) to gener-
ate price predictions based on the set of
candidate parameters. Those are matched
closely with the observed prices applying a
minimum distance estimator while iterating
over parameters: 10

ð8Þ min
θ∈Θ

1
T

XT
t¼1

pct � ~pct θ;X tð Þ� �0C�1
t pct � ~pct θ;X tð Þ� �

where Θ is a compact parameter space and
C�1

t is an identity matrix, which is not only a
positive definite matrix but also uniformly
weights equations defined in the vector
pct � ~pct θ;X tð Þ. We denote the vector of
observed county-level prices in period t by pct .
We denote the predicted, county-level prices
by ~pct θ;X tð Þ, where θ = [α, β, γ]

0
is a vector of

parameter values and Xt encompasses exoge-
nous variables, including distances (from oli-
gopsonists to county centroids and from
exporting ports to county centroids) as well
as demand and cost shifters. The estimation
process involves an inner loop and an outer
loop. The inner loop computes ~pct θ;X tð Þ, and
the outer loop minimizes the distance between
~pct θ;X tð Þ and its empirical analog pct .
A technical description of the iterative esti-

mation algorithm is relegated to Appendix
B. We model this problem as a Mathematical
Programming with Equilibrium Constraints
(MPEC) as suggested by Su and Judd
(2012)11 and implement the double-loop struc-
ture in the General Algebraic Modeling Sys-
tem (GAMS) software.12 This strategy
increases ease of computation, preventing
common nonconvergence and infeasibility
issues.

Identification

We consider ninety-two counties in Indiana
over an eleven-year time horizon such that
equation (8) includes 92 � 11=1,012 aggre-
gated equilibrium predictions and their empir-
ical analogs. Identification proceeds based on
these 1,012 nonlinear conditions stacked in
equation (8). The vector θ contains parame-
ters of the farmers’ supply equation (β), along
with the parameters characterizing marginal
cost of processing corn (α,γ).
The vector of parameters θ that minimizes

the sum of squared errors is identified based
on variation in Xt and pct . The price coefficient
βp is, as revealed by Karush-Kuhn-Tucker

10For expositional clarity, we reintroduce the time subscript.

11We summarize the structure of the algorithm implemented in
MPEC in Appendix B.

12The GAMS programming code is available from the authors
upon request.
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conditions in Appendix A, achieved based
primarily on the correlation between county-
level corn prices and the joint variation of
output price (which, as shown in Figure 3, is
positively correlated with corn price) and
county-level residual supply. The latter is cap-
tured by the interaction term between these
variables, which varies across space and over
time. The parameter βd is determined by the
relationship between the spatial configuration
of large processors’ plants relative to the
county centroids (distance from all plants to
the county centroids) and county-level corn
prices. The parameter βe is identified by the
correlation between the distance to
the exporting port and corn prices. Distance
from county centroids to exporting ports var-
ies only cross sectionally, so the parameter βe

are identified based on cross-sectional
variation.
Marginal cost parameters included in vector

α are determined by the correlation between
corn price and natural gas price (αng), corn
price and electricity price (αelec), and
corn price and a time trend (αtime). As noted
in our description of the industry (figure 3),
prices of natural gas and electricity, as well as
the time trend, vary longitudinally but not
cross-sectionally. Therefore, identification of
cost parameters proceeds based on time series
variability. Figure 3 presents the evolution of
these variables over time. This figure reveals

a negative correlation between natural gas
price and corn price, no clear correlation
between electricity price and corn price, and
a positive trend for corn price until 2012, with
a reversal afterward.

Estimation Results

In this section, we present the results of the
farmers’ and the oligopsonists’ estimation
equations and compute statistics that govern
our market and surplus predictions. We focus
on estimating markdowns and evaluating the
degree of spatial competition in the market.
We validate these results based on their ability
to generate observed data and against esti-
mates from previous studies.

The Upstream Firms (Farmers)

Parameter estimates of the corn residual sup-
ply, as characterized in equation (7), are
reported in the upper panel of table 4.13 The
estimated coefficient for corn price (βp) is statis-
tically significant and positive. The coefficient
shows that the amount of corn sold to a down-
stream firm increases with the price offered by

Figure 3. Evolution of relevant prices in the corn market

13All standard errors, as shown in table 4, are bootstrapped.
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that firm. The positive effect is indicative of a
“business-stealing” effect, whereby a down-
stream firm diverts corn away from its compet-
itors by offering a higher corn price.

The negative estimate on the coefficient for
transportation distance (βd) shows that farmers
supply less corn to oligopsonistic plants that are
located farther away. This result is expected
because farmers have to pay the transportation
cost for corn, and a long-distance delivery
becomes costly. Selling corn to other more
closely located plants becomes an attractive
alternative. The transportation cost, as com-
puted by the ratio (�βd/βp), amounts to 0.5
cents per bushel per mile. It should be noted
that our estimated transportation cost is higher
than the 0.16 cents average cost estimate
(within 200 miles) as reported by GTOR. The
GTOR estimate represents an average for the
entire North Central region, whichmay explain
the deviations from our transportation costs,
which are specific to Indiana. The deviations
could be explained by road infrastructure and
diesel prices being different between the North
Central region states and Indiana.

Evaluating the transportation costs at the
average distance of corn delivery and the aver-
age corn price paid by oligopsonist-owned
plants, our model predicts an average trans-
portation cost of 11% of the corn price. The
corn price that farmers receive from plants
(after subtracting transportation costs)

declines in distance between farmers and
plants. Hence, our results show that the pres-
ence of transportation costs has an effect on
corn price received by the farmers, providing
evidence for spatial differentiation being an
important aspect to consider.
The transportation costs and the resulting

decline in the corn price received by farmers
also provide evidence that oligopsonistic firms
face upward-sloping residual corn supplies.
Our parameter estimates return a firm-level
residual inverse supply elasticity (average
across plants and time periods) of 0.097.14 This
elasticity suggests that if the average plant in
our sample doubles production (increases
corn procurement by 29 million bushels), the
price of corn would increase by about
$0.49 at the plant’s gate (it increases from $5
per bushel to about $5.49 per bushel, an equiv-
alent of 9.7%).15

The Downstream Firms (Ethanol and Wet-
Milling Firms)

We now focus on the estimation results of the
marginal processing costs of the downstream

Table 4. Parameter Estimates and Derived Statistics

Variables Parameters Parameter estimates

Residual supply
Corn price βp 9.573*** (1.053)
Distance βd �0.050*** (0.007)
Export dummy βe 0.1e�4 (0.008)

Marginal costs
Natural gas price αng 0.098** (0.062)
Electricity price αelec 0.1e�3 (0. 4e�3)
Time trend αtime �0.155*** (0.03)
Extra costs per unit of unutilized capacity γ 0. 1e�3 (1.5e�3)

Derived statistics Previous studies
Transportation cost ($ per bu-mile) 0.002 0.005*** (0.001)
Cap. utilization ratio 0.95 0.970*** (0.078)
Marg. processing cost (per gallon) 1.35 1.680*** (0.403)
Firm elasticity of residual inverse corn supply 0.097*** (0.002)

Note: Standard errors are computed by bootstrapping and reported in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted as *, **, and
***, respectively. Transportation cost from previous study is based on GTOR report by Transportation and Marketing Program (TMP) of Agricultural
Marketing Service (AMS), USDA. Dale and Tyner (2006) report capacity utilization ratio at 0.95. Marginal processing cost of 1.35 is based on average from
Perrin et al. (2009) and Irwin (2018). Firm elasticity of residual inverse corn supply is an elasticity of residual corn supply faced by individual plants. We take the
average of elasticity across plants over the whole period. This elasticity suggests that if the average plant in our sample doubles production (increases corn
procurement by 29 million bushels), the price of corn within the plant’s procurement region would increase by $.39 (from $4/bushel to about $4.39/bushel, or
9.7%). This is, of course, an oversimplification because such an increase in size would trigger an equilibrium displacement that would tend to make the price
increase higher. This value should then be interpreted as a lower bound to the price effect.

14The elasticity is significant at the 1% level.
15This is, of course, an oversimplification because such an

increase in size would trigger an equilibrium displacement that
would tend to make that price increase higher. This value should
then be interpreted as a lower bound to the price effect.

Jung, Sesmero and Siebert A Structural Estimation of Spatial Differentiation and Market Power in Input Procurement 15



firms (ethanol and wet-milling firms), as char-
acterized in equation (4). The middle panel
of table 4 reports the estimation results.
The positively estimated coefficients for

natural gas prices (αng) and electricity prices
(αelec) provide evidence that these operate as
cost shifters. An increase in input prices raises
marginal processing cost. This effect is espe-
cially large for natural gas, which is consistent
with the fact that expenditures on natural gas
greatly exceed those on electricity. The nega-
tively estimated coefficient for the time trend
(αtime) shows that plants have become more
efficient over time, which is consistent with
findings from Hettinga et al. (2009). Our esti-
mated cost parameters predict an average pro-
cessing cost of $1.68 per gallon, which is close
to the cost estimates reported in Perrin et al.
(2009) and Irwin (2018). Parameter γ is not
statistically significantly different from zero,
providing evidence that the marginal proces-
sing cost is constant, which is consistent with
widely held assumptions made in the literature
(see, for example, Gallagher et al. 2005; Perrin
et al. 2009) but differs from findings in Ses-
mero et al. (2016).16 Our estimated capacity
utilization ratio amounts to 0.97, which is close

to the ratios reported by Dale and Tyner
(2006). In general, our empirical model pre-
dictions for revenues and profits of ethanol
plants fall within the range published in previ-
ous reports (Green Plains Renewable Energy
2017; Irwin 2018).

It is important to note that our estimation
results generate predictions that closely match
anecdotal or statistical evidence, and this lends
credence to our parameter estimates. A further
important validation exercise relates to our
model’s ability to generate accurate price pre-
dictions, which is at the center of our identifica-
tion strategy. Figure 4 shows the predicted and
observed farm-gate prices across counties and
over time periods. Each dot represents a com-
bination of an observed price (in a county and
a year) and the corresponding predicted price.
The figure shows no systematic under- or over-
prediction of prices within sample. The correla-
tion between predicted and observed prices is
close to 0.97. The figure and correlation indi-
cate that our structural model does a remark-
able job of predicting observed prices.

Corn Prices and Markdowns over Time

In the following, we predict plant–county pair
prices paid by ethanol and wet-milling plants

Figure 4. Predicted versus observed farm-gate prices

16Our coefficient is positive, suggesting economies of capacity
utilization as found in Sesmero et al. (2016). However, it is not sta-
tistically significant.
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and calculate markdowns, defined as the dif-
ference between the value of marginal product
(VMP) of corn net of marginal processing cost
and the predicted prices of corn at the plant
gate. Figure 5 portrays a substantial average
price markdown. The average markdown is
around $0.67 per bushel, or 13% of the aver-
age corn price. To put this markdown in con-
text, we note that plants’ fixed costs are
typically around $0.60 per bushel (see Irwin
2018). This comparison illustrates the follow-
ing: although markdowns enabled
oligopsonist-owned plants to push the average
variable cost below the output price overall,
the plants likely experienced tight margins or
even losses in some periods.

Figure 5 shows that markdowns vary widely
over time (they drop significantly from 2006 to
2012 and then recover). Fluctuations over time
are explained mostly by macroeconomic fac-
tors affecting the price of corn, and they are
largely absorbed by RSUPis in our model. In
2006 the international price of corn was low
and, simultaneously, the price of ethanol was
high, boosted by government policies. In
2012 a historical drought pushed the residual
corn supplies from farmers (RSUPis) down
(i.e., pushed the inverse residual supplies
upward), increasing corn procurement cost
for all oligopsonist firms. The year 2012 seems
like an outlier when compared with other
years in our sample. To examine the robust-
ness of our estimates, we have re-estimated

the model excluding 2012. Our results remain
virtually unchanged. With this in mind, we
believe inclusion of 2012 in our baseline spec-
ification is preferable for two reasons. First,
there were years after 2014 where conditions
were highly unfavorable as in 2012. Second,
inclusion of the 2012 year does not affect our
model’s goodness of fit. In fact, our model is
capable of predicting 2012 prices, as well as
prices in other years as revealed in figure 4.
Conditional on residual supply, our model

also finds substantial markdown variation
across plants within a year, as suggested by
the minimum and the maximum markdown
curves in figure 5. The difference between
the largest and smallest markdowns in a year
averages $0.57 per bushel over the study
period but varies from almost no variation in
2012 to $0.79 in 2007. Between-firm variability
in markdowns stem from the fact that individ-
ual firms face different input supplies.
Our estimates in table 4 point to two forces

underlying firms’ markdowns. The first factor
relates to the spatial differentiation aspect
and the fact that oligopsonistic firms face an
upward-sloping residual input supply
(as indicated by the positive elasticity of the
inverse input supply), which creates a wedge
betweenmarginal factor cost and input supply.
The second factor relates to our finding that
many firms operate at full capacity, with an
average capacity utilization rate of 0.97. This
creates a wedge between the VMP and

Figure 5. VMP, Predicted corn prices, and markdown
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marginal factor cost. Therefore, our estima-
tion results reveal a salient feature of the corn
market—namely that spatially differentiated
oligopsonistic firms often operate in
Bertrand-Edgeworth competition.
In figure 6, we provide a graphical represen-

tation of markdown for an individual firm in
this context. A profit-maximizing oligopsonist
will operate at the level of production for
which the VMP is equal to the (residual) mar-
ginal factor cost. Markdown then is equal to
the distance between the VMP and residual
supply at the profit-maximizing procurement
quantity. However, if capacity is smaller than
the profit-maximizing quantity, then the plant
will operate at capacity and markdown is the
distance between the VMP and residual sup-
ply at capacity. By construction, this distance
is larger than the wedge between marginal fac-
tor cost and residual supply. Therefore, if the
VMP of corn is sufficiently low relative to
residual supply (for example, due to a reduc-
tion in output price or a bad corn crop), then
firms operate below their maximum capacity
limit, andmarkdown is determined exclusively
by spatial differentiation. But, if marginal
product of corn is sufficiently high relative to
residual supply (firms operate at capacity),
markdown would also be determined by
capacity constraints (above and beyond the
spatial differentiation factor).
Our results indicate that capacity con-

straints often prevail, and markdowns are
determined by the distance between the
VMP and residual supply at capacity. There-
fore, as depicted in figure 6, markdowns are
larger than they would be in the absence of
those constraints. For the average (across

firms and over time) observation in our sam-
ple, the wedge between the VMP and residual
supply at capacity is $0.67, whereas the wedge
between supply and marginal factor cost at
capacity is $0.49. These findings are consistent
with Bertrand-Edgeworth competition, a set-
ting in which binding capacity constraints
deliver a stronger degree of market power to
otherwise spatially differentiated Bertrand-
pricing buyers (Kreps and Scheinkman 1983;
Benassy 1989; Canoy 1996; Somogyi 2020).

Our finding that plants tend to operate at
high levels of capacity utilization seems hard
to reconcile with the fact that no new plants
entered the market since 2014. One possibility
is that plants do not collude on pricing condi-
tional on capacity but collude to not expand
capacity, thereby bolstering buying power.
However, there are good reasons to not
expand capacity that do not stem from collu-
sion. Construction of new plants or expansion
of existing ones are hindered by large sunk
costs, asset specificity, and uncertainty
(Schmit et al. 2011). As a result, investors tend
to require a high expected profitability (higher
than the one that would push incumbents to
operate at full capacity) before they commit.
Profitability has been inhibited since 2011 by
the “blending wall” (a technical barrier to
inclusion of ethanol in liquid fuels) and an
overall reduction in support through public
policies (removal of subsidies and tariffs pro-
tecting corn ethanol).

We should note that oligopsonists cannot
pay a price to farmers that is below their reser-
vation price; that is, the price they can get from
the competitive fringe. Our model accommo-
dates this by: (a) subtracting corn demand

Capacity

Value of 
Marginal 
Product

Optimal Procurement in the 
absence of capacity constraints

Residual Supply of CornMarginal Factor CostPrice per 
bushel

$5.70

$5.03

$5.52

Capacity 
Constraints

Spatial 
Differentiation

Figure 6. Sources of markdown for average plant in our sample
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from the local competitive fringe from local
supply, and (b) including demand from
exports (the non-local competitive fringe) as
a shifter in shares (due to its elastic nature).
Therefore, our model guarantees that even if
oligopsonists pay a price below the competi-
tive benchmark, the price they pay is above
the farmers’ reservation price.

We further explore the relationship
between spatial differentiation and procure-
ment patterns. Based on our estimated param-
eters, we compute how the quantity of corn
purchased by oligopsonistic firms depends on
the distance between their plants and farmers.
We find that plants procure most of their corn
within a distance of fifty miles. The predicted
procurement patterns coincide with previous
descriptions of procurement regions under
similar corn supply conditions (e.g. Kang
et al. 2009). This finding further validates our
estimates and lends credence to our analysis.
We also find that, all else constant, plants fac-
ing more spatial competition (there is a com-
petitor in close proximity) are forced to
travel greater distances (in the direction of
their uncontested markets) to procure corn.

Counterfactual Experiments: Mergers,
Markdowns, and Farm Surplus

We have shown that spatial differentiation
between oligopsonist-owned plants deter-
mines competition and the prices and quanti-
ties of corn purchased from farmers at
various distances. We now evaluate the effect
of different types of mergers between ethanol
plants. Mergers among corn ethanol firms
have been ubiquitous over the last few years
(FTC 2018). This is not entirely surprising
given the nature of corn ethanol production.
Large corn processors do not relocate plants
(because of prohibitively high costs) and sel-
dom expand capacity; therefore, changing the
ownership structure is a popular expansion
strategy. In fact, a wave of consolidations vir-
tually doubled the sales-based Herfindahl–
Hirschman Index from 260 to 500 in the period
2013 to 2018, as indicated in the Federal Trade
Commission’s 2018 Report on Ethanol Market
Concentration (FTC 2018). But although
mergers have been a pervasive feature of the
ethanol industry in recent years, they have
not taken place in Indiana. Hence, Indiana
offers an unconfounded marketplace for

merger simulations, which seem particularly
timely given recent trends in other states.
Understanding the efficiency and distribu-

tional effects of mergers is of key importance
for antitrust authorities. But antitrust agencies
have long recognized that mergers between
firms that purchase close substitutes (input
supplies with large cross-price elasticities)
tend to harm efficiency and concentrate sur-
plus more than those that take place between
firms that purchase weak substitutes. As
shown earlier, ethanol plants operate within
geographically localized procurement areas,
which implies they compete with plants
located nearby but not with distant ones.
Hence, spatial differentiation between ethanol
plants will presumably play a critical role in
evaluating merger effects. To attain a deeper
understanding of this, we simulate mergers
that are characterized by varying distances
between merging partners. We include a
detailed description of how a merger is techni-
cally implemented in our empirical model in
Appendix C.
We consider two mergers that differ in their

geographical proximity between the merging
ethanol plants. In the first merger, Poet pur-
chases the plant in Randolph County (26 miles
away from the nearest Poet plant), which is
located close to two of its other plants in Jay
County andMadison County. Figure 7a shows
the plants owned by Poet before the merger as
yellow dots surrounded by black circles; and
the plant purchased by Poet through the
merger is highlighted by a black dot.
The second merger describes a case in which
Poet purchases a much more distance and iso-
lated plant in St. Joseph County (90 miles
away from the nearest Poet plant). Figure 7b
shows the plants owned by Poet before the
merger as yellow dots surrounded by black cir-
cles; and the plant purchased by Poet through
the merger is highlighted by a black dot.
For the first merger case, in which Poet-

owned plants merge with a nearby competing
plant, we find substantial increases in mark-
downs. Based on our structural parameter
estimates, we predict that plants owned by
merging firms will increase markdown further,
on average by $0.20 (18% increase in mark-
down for the average plant in our sample).
Our analysis shows that under 2014 market
conditions, consolidated plants operate at
capacity before and after the merger. There-
fore, the increase in markdown is not
explained by reduced procurement but by a
downward shift in corn residual supply faced
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Figure 7. Merging and non-merging plants in counterfactual simulations

Notes: (a) Merger with a nearby competitor. (b) Merger with a distant competitor
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by each firm due to internalization of the com-
petitive externalities. For the second merger
case, in which Poet merges with a distant com-
petitor, we do not find increases in markdown.
A comparison across mergers clearly indicates
that the magnitude of the downward shift in
corn residual supplies as a result of a merger
depends upon the degree of spatial differenti-
ation between consolidating firms. In other
words, a merger is likely to increase

markdown but only if it takes place between
firms that are close spatial substitutes and,
consequently, are likely to have high cross-
price elasticities.
Although consolidation between nearby

ethanol plants increases markdown by the
consolidated firms, it may also trigger compet-
itive spillover effects to other, non-
consolidating firms. As consolidating firms
reduce corn prices due to internalization of

Figure 8. Change in producer surplus (million dollars) due to merger with nearby plant
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competition externalities, close competitors
may benefit from weakened competition and
reduce corn prices themselves. Our counter-
factual simulation uncovers evidence of spill-
over effects; that is, non-consolidating firms
also attain higher markdown due to the fact
that mergers soften competition. We find that
a non-consolidating firm located in the middle
of four plants owned by Poet (indicated in fig-
ure 7a with a black dashed circle) increases
markdown by $0.19 after the merger, and a
non-consolidating firm facing only one Poet’s
plant (indicated in figure 7a with a grey dashed
circle) increases markdown by $0.14. There-
fore, althoughmergers can also increasemark-
down of non-consolidating firms, the effect
also seems to dissipate with distance and com-
petition intensity.
Price effects of mergers have a direct corol-

lary on farm surplus. For the scenario where
merging plants are located nearby, the spatial
pattern of merger-induced changes in farm
surplus is plotted in figure 8. Darker colors
denote larger reductions in farm surplus due
to weaker competition. Some of the largest
reductions take place in close proximity to
merging firms. But adverse effects on farm sur-
plus extend well beyond the geographical con-
fines of merging plants, revealing strong
competitive spillover effects of mergers.
Reductions in farm surplus vary from $0 to
$8 million per county, amounting to roughly
a total of $230 million at the state level.
There are three key takeaways from our

merger simulations. First, modern antitrust
guidelines give increasingly more weight to
cross-price elasticities between merging firms,
as opposed to the overall level of concentration
in the industry. Results from our merger simu-
lations confirm this is the right approach in
our setting and, furthermore, that a key factor
behind cross-price elasticities is the distance
between merging firms. Second, when deciding
on which mergers to allow, antitrust authorities
tend to weigh efficiency gains against increase
in market power from the merger. Our merger
simulation contributes to computation of the
latter because it provides a quantitative assess-
ment of how the merger increases markdown
of both consolidating and non-consolidating
firms and how it decreases farm surplus
throughout the state. Finally, and perhapsmore
importantly, we find that the merger does not
result in reduction in corn procurement
because firms operate at high capacity utiliza-
tion before and after the merger. Therefore,
we show that mergers would have important

distributional implications but limited effi-
ciency implications.

Conclusion

This study conducts an empirical investigation
of the existence of spatial oligopsonistic mar-
ket power and counterfactual simulations for
consolidation in the corn procurement market.
Although the literature has devoted some
attention to models of spatial differentiation
in output markets, there is a remarkable lack
of empirical evidence on spatial differentiation
in input markets. This is particularly relevant
for agriculture since market power exertion
by processors buying from farmers—in combi-
nation with the high cost to transport products
from farms to plants—has long concerned
researchers and policy makers.

We adopt an estimation strategy recently
proposed by Miller and Osborne (2014) to
estimate firm-level structural parameters in a
model of spatial competition based on
market-level data. Our model extends this
framework to include binding capacity con-
straints. Therefore, our extended framework
can accommodate a model of Bertrand com-
petition with differentiated inputs and amodel
of Bertrand-Edgeworth competition with
binding capacities. We find evidence that spa-
tial differentiation allows corn buyers to
engage in input price markdown.

Our counterfactual simulations indicate that
the effect of mergers among corn procurement
oligopsonists (particularly in the corn ethanol
industry, wheremergers seem increasingly com-
mon) depends upon the spatial pattern of such
mergers. A merger between plants in close
proximity not only increases their markdown
but also triggers competitive spillover effects
that allow nearby non-consolidating plants to
increase markdown as well. Competitive spill-
overs amplify the negative impact of mergers
on farm surplus and result in substantial losses
for the farm sector.However, amerger between
plants located far apart is much less consequen-
tial for markdown and farm surplus. This sug-
gests that assessments of mergers between
corn-purchasing firms should explicitly consider
the locations of merging firms’ plants.

More generally, our analysis indicates that
assessment of mergers between spatial com-
petitors in agricultural procurement markets
should perhaps consider distance more explic-
itly. Previous studies have characterized
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efficiency gains associated with mergers that
would restore premerger equilibrium prices
and quantities (i.e., that would offset increased
market power effect) after the merger takes
place (e.g., Werden-Froeb Index). Our analy-
sis suggests that if such an index is developed
for agricultural procurement markets, it
should accommodate two distinct features:
(a) spatial differentiation, and possibly (b)
binding capacity constraints. The develop-
ment of a regulatory index of this nature seems
relevant for both scientists and policy makers.

Finally, previous studies of agricultural pro-
curement have argued that spatial price
discrimination–whereby buyers vary mark-
down by distance–has emerged or is likely to
emerge in fruits and vegetables (Durham, Sex-
ton, and Song 1996), livestock, dairy (Alvarez
et al. 2000; Graubner et al. 2011), and pulp-
wood (Löfgren 1985) markets to name a few.
This is consistent with theoretical predictions
of spatial price discrimination (Zhang and
Sexton 2001; Graubner et al. 2011; Fousekis
2011a). Spatial price discrimination is an
important topic that warrants further attention
in future studies.

Supplementary Material

Supplementary material are available atAmer-
ican Journal of Agricultural Economics online.
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Appendix A. Estimation Strategy

a. Solution of the game and market equilib-
rium prediction. In this appendix, we provide
detailed information on how prices offered
by each oligopsonist plant to each county are
computed. Optimal prices are characterized
by a system of Karush-Kuhn-Tucker (KKT)
conditions:

∂LF �ð Þ
∂pc

F
¼�qc pc;βð Þ

þΩ pcð Þ Γ�pc
F �Μ�Λ

� 	
≥ 0,pc

F ≥ 0,pc
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∂pc

F


 �
¼ 08i and j∈F :

ðA1Þ

ðA2Þ ∂LF �ð Þ
∂λj
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X
i∈INC

qcij p
c
i ;xi,β

� �

þCAPj ≥ 0,λj ≥ 0,λj
∂LF �ð Þ
∂λcj

( )

¼ 08j∈F ,

where Ω(pc) is a block diagonal matrix that
combines i = 1, � � � , 92 submatrices account-
ing for all the counties in Indiana, each of
dimension J� J where J is the total number
of oligopsonist plants in Indiana:

Ωi
jk pc

i ;β
� �¼
∂qc

ij p
c
i ;xi,β

� �
∂pik

if plants j andk

have the same owner

0 otherwise

8>>><
>>>:

:
ðA3Þ

The reason that Ω(pc) is a block diagonal
structure is that qcij p

c
i ;xi,β

� �
is a function of

prices offered to that county by all plants, pci ,
but independent of prices offered by those
plants to other counties pc�i. Therefore, Ω(pc)
is constructed based on two premises:
(1) farmers in one area choose among all J oli-
gopsonist plants in Indiana; and (2) corn sup-
ply in one county i is unaffected by prices
received by farmers in other counties, �i.
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Moreover, the elements of each submatrix
reflect the extent to which a plant internalizes
competition externalities imposed on another
plant in the sample. Each plant j sources corn
frommultiple counties. If firm F owns multiple
plants, then it will internalize pricing external-
ities across its plants. In other words, if plant
1 increases its corn bid to county i
(an increase in pi1), it will reduce the residual
supply of corn from that county faced by plant
2 (all else constant, it will reduce qci2)—which is
the business stealing effect. If the same firm
owns both plants, it will fully internalize this

negative externality,
∂qci2 pci ;xi,βð Þ

∂pi1
. Otherwise,

the plant would not internalize the externality,

and
∂qci2 pci ;xi,βð Þ

∂pi1
would take a value of zero.

Matrix Ω(pc) is multiplied by Γ , which is a
vector of marginal value products Ph*αhj . Μ is

a vector of αhj *mc Qh
j ;wj,α,γ

� �
, which repre-

sents the change in marginal processing
cost associated with producing below
capacity, and Λ is a vector of Lagrangian mul-
tipliers λcj .

There is no analytical solution to the sys-
tem (A1)–(A2), so we solve it numerically
using a nonlinear equation solver. The solu-
tion consists of 1,656 (18*92) Nash equilib-
rium prices—one offered by each plant to
each county—along with shadow prices for
capacity constraints. The prices offered by
all plants to a county are aggregated to a sin-
gle county-level price prediction. The aggre-
gation procedure consists of weighting
plant-specific prices by the plant’s share on
total corn purchases:

ðA4Þ ~pci β,Xtð Þ¼
X
j∈F

qc,*ij pc,*i ;xi,β
� �

P
j
qc,*ij pc,*i ;xi,β

� �
8><
>:

9>=
>;pc,*ij

2
64

3
75:

These predicted prices are compared to
observed prices, as described in the following
section.

b. Summary of the economic modeling in
MPEC structure. We now turn our attention
to the estimation of structural parameters.
Our estimation strategy consists of choosing a
set of parameters that minimize the sum of
squared errors in predictions subject to equi-
librium constraints:

min
θ∈Θ

1
T

XT
t¼1

pc
t � ~pc

t θ;X tð Þ� �0C�1
t

pc
t � ~pc

t θ;X tð Þ� �
subject to

ðA1Þ
ðA2Þ

ðA5Þ

ðA6Þ RSUPi�
X
j

qcij p
c
i ;xi,β

� �
≥ 08i:

Constraints (A1) and (A2) guarantee that
predicted prices are computed based on Nash
equilibrium plant-county prices calculated as
a mixed complementary program (MCP).
Therefore, the problem above has a Mathe-
matical Programming with Equilibrium Con-
straints (MPEC) structure. Equation (A6)
adds to the equilibrium constraints and guar-
antees that the total amount of corn purchased
by all plants from a county is not larger than
the residual supply of corn from that county.
The MPEC structure is solved in the Gen-

eral Algebraic Modeling System (GAMS)
software17 by using the algorithm solver devel-
oped by Dirkse and Ferris (1998). These prob-
lems are stated as a single problem—albeit
one that requires a hierarchical perspective
wherein the constraint set is an equilibrium
system stated as anMCP. This is a very special
sort of problem that has a highly non-convex
feasible region. However, Dirkse and Ferris
(1998) who have developed solvers for this
class of problems exploit the specific sort of
non-convexity in order to develop algorithms
that are effective for these problems.We apply
a bootstrap method to compute standard
errors of each parameter.

Appendix B. Algorithm of the Iterative
Parameter Estimation

The estimation process involves an inner loop
and an outer loop (see Figure below). The
inner loop solves for the county–plant pairs
of prices (~pcij) and quantities (~qcij) for all plants
and all counties given the candidate parame-
ters and exogenous variables. It does so in
two steps. First, it generates a vector of firm-
level Karush-Kuhn-Tucker (KKT) conditions

17The GAMS code is available from the authors upon request.

Jung, Sesmero and Siebert A Structural Estimation of Spatial Differentiation and Market Power in Input Procurement 27



in the mixed complementarity problem struc-
ture that solves problem (1)–(3). Expressions
for the KKT conditions are reported in
Appendix A. The KKT conditions constitute,
in effect, best response functions, as they char-
acterize the price offered by each plant to each
county as a function of prices offered by other

plants to that county. Therefore, the second
step consists of finding the Nash equilibrium
of the problem by simultaneously solving the
system of KKT conditions. As a result, the
inner loop generates J�N equilibrium predic-
tions of firm-county price pairs in period t,
~pcijt θ;X tð Þ, which are functions of candidate
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parameters and data. Along with these prices,
the inner loop also generates J�N equilib-
rium predictions of firm-county quantity pairs
in period t, ~qcijt θ;X tð Þ. The corn prices offered
by all plants to each county are weighted using
the corresponding procurement shares such
that an aggregate, predicted county-level
price ~pcit θ;X tð Þ is obtained: ~pcit θ;X tð Þ¼
P
j

~qcijt θ;X tð ÞP
j

~qcijt θ;X tð Þ

0
@

1
A~pcijt θ;X tð Þ. These county-level

price predictions are then stacked in vector
~pct θ;X tð Þ of equation (8). The outer loop
minimizes the distance between the
observed prices and the predicted price
equilibria by iterating over the candidate
parameters in θ. The conditions are stacked,
and the estimator (see equation (8)) com-
pares the aggregated equilibrium predictions
~pct θ;X tð Þ to the empirical analogs in the dataset
pct . These comparisons yield total annual devi-
ations between predicted market outcomes
and their empirical analogs. Theminimum dis-
tance estimator minimizes the sum of squared
errors.

Appendix C. Merger Simulation in our
Empirical Model

A merger between plants j and k allows the
merging firm to internalize competitive exter-
nalities that would not have been otherwise
internalized. Suppose plants j and k are owned
by different firms, then the firms set their

prices noncooperatively and do not account

for any cross-price effects
∂qcij pci ;xi,βð Þ

∂pik
in the

ownership matrixΩ(pc), which is a critical ele-
ment of firms’ first-order conditions (as shown
in equation (A3), Appendix A). Please see
Appendix A for a detailed description of this
matrix and its elements. Hence, the corre-
sponding element in the ownership matrix is
zero. The firm that owns plant j does not
account for the effect that a price change by
plant j has on the supply of corn to plant k.
If, on the other hand, plants j and k are

owned by the same firm via merger, then plant
j considers the fact that an increase in its corn
price to county i causes a shift in the residual
supply of corn from that county to plant k,
represented by the cross-price effect in the
corresponding element of the ownership
matrix. Therefore, in our empirical model, a
merger is captured by a change in the corre-
sponding elements of the ownership matrix
Ω(pc) from 0 to 1. As indicated in the
Karush-Kuhn-Tucker conditions in
Appendix A, this change in ownership struc-
ture will induce the firm to consider the
cross-price effect imposed upon other plants
also owned by the firm. Because cross-price

effects
∂qcij pci ;xi,βð Þ

∂pik
are larger for plants located

in close proximity, the change in equilibrium
prices and shipments will be larger when
merging plants are located in close proximity.
This is the reason why the post-merger coun-
terfactual equilibrium will vary depending on
the distance (i.e., subject to the degree of spa-
tial differentiation) between merging plants.
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