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An interpretable approach for social network
formation among heterogeneous agents
Yuan Yuan 1, Ahmad Alabdulkareem2 & Alex ‘Sandy’ Pentland 3

Understanding the mechanisms of network formation is central in social network analysis.

Network formation has been studied in many research fields with their different focuses; for

example, network embedding algorithms in machine learning literature consider broad het-

erogeneity among agents while the social sciences emphasize the interpretability of link

formation mechanisms. Here we propose a social network formation model that integrates

methods in multiple disciplines and retain both heterogeneity and interpretability. We

represent each agent by an “endowment vector” that encapsulates their features and use

game-theoretical methods to model the utility of link formation. After applying machine

learning methods, we further analyze our model by examining micro- and macro- level

properties of social networks as most agent-based models do. Our work contributes to the

literature on network formation by combining the methods in game theory, agent-based

modeling, machine learning, and computational sociology.
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Social networks have attracted increasing attention from
both physical and social scientists1–4. Social networks are
essential elements in societies, serving as channels for

exchanging various benefits, such as innovation, information, and
social support5–8. Moreover, research in social networks helps
explain macro-level social phenomena, such as social polariza-
tion9 and social contagion10,11. An understanding of social net-
works has significant implications, such as improving social
welfare and political participation12,13.

Previous work on modeling social network formation has
typically employed game theory or agent-based modeling14–20.
These studies typically propose simple and tractable micro-level
rules for link formation mechanisms and show that these rules
have implications for known macro-level properties. Several
studies in statistics and econometrics have also used game theory
to model empirical networks21–23, but they typically have been
focused on estimating and identifying the effects of interest, such
as racial segregation. To date, these models have not been capable
of accounting for the effects of broad heterogeneity among
individuals; therefore, they lack predictive power for link for-
mation in complex, real-world networks.

Studies on network embedding techniques24–27 could partially
fill this gap in the network formation literature because these
techniques consider node heterogeneity and show predictability
of both link formation and individual characteristics. Network
embedding techniques are aimed at representing each node with a
fixed-length vector learned from social network data. The agents
in a network may be so diverse that representing all their char-
acteristics would require very high dimensionality for these vec-
tors. The philosophy of network embedding is aimed at reducing
the dimensionality by mapping all the characteristics of agents
onto a low-dimensional latent space. Each dimension in the latent
space, therefore, typically does not correspond to a concrete
attribute of the agents. The latent space representation of nodes
on a network provides considerable potential for measuring
heterogeneity among agents. However, because network embed-
ding methods are designed for data representation and com-
pression rather than for explaining network formation, they do
not attempt to capture micro, inter-agent effects such as social
status or macro effects such as social segregation; thus, they do
not provide social science explanations for the link formation.

There are few network formation papers that have attempted
to account for heterogeneity of agent without losing micro-level
interpretability. A study on ecological networks by McKane and
Drossel utilized a similar approach, wherein agents are repre-
sented by a small number of attributes among a large attribute
pool28. However, this work does not directly estimate the latent
variables for networks of agents. More abstractly, our method is
also reminiscent of mixed membership stochastic blockmodels
where agents respectively follow a probability distribution of
membership within several communities29. However, probabil-
istic membership models typically do not seek to uncover eco-
nomic and sociological mechanisms and the dynamics of network
formation. We extend these previous works to the estimation of
agent characteristics and network link formation using observed
network data. In addition, we want to incorporate a more com-
plex but interpretable inter-agent exchange utility function, by
modeling both exchange benefits and coordination costs arising
from the differences among agents.

Furthermore, an important question rarely studied in literature
is the trade-off between coordination costs and exchange benefits.
On the one hand, the coordination between two dissimilar agents
incurs higher coordination costs than between two similar
agents30, a relationship which encourages homophily, i.e., the
tendency to interact more with agents who have shared char-
acteristics31. On the other hand, the rationale of exchange benefits

comes from welfare economics: agents have different endow-
ments and their preferences drive different agents to interact and
exchange endowments32. The exchange nature therefore
encourages heterophily, i.e., the tendency to interact with dis-
similar individuals33. Empirical studies have found that hetero-
phily exists in various scenarios34,35, and that complimentary
heterophily between two agents sometimes bring more mutual
benefits than homophily36. However, most prior studies of social
network formation consider either only coordination costs and
homophily22,37,38 or only social exchange benefits and hetero-
phily39–41, rather than an integration of exchange and coordi-
nation as we do in this paper. The trade-off between exchange
benefits and coordination costs is also reminiscent of the identity-
diversity balance in the organizational performance literature42,43.

In this paper, inspired by the network embedding techniques,
we develop a social network formation model using representa-
tion learning methods for heterogeneous agents; to retain the
interpretability, we maintain the inter-agent micro-structure
characteristics of most agent-based models and the macro-level
structures that are the focus of sociology. In our model, agents are
characterized by vectors, called their endowment vectors; agents
maximize their utility by having link formation driven by com-
paring their own endowment vectors with those of others.
Importantly, we take an economic view of human networks,
which considers link formation to be driven by the trade-off
between the benefit of exchanges44 among individuals with dif-
ferent endowments against the coordination costs due to differ-
ences in some other dimensions of endowments. We apply
optimization methods to ascertain the endowment vectors of all
agents from empirical social networks. The effectiveness of this
method is validated by prediction tasks of link formation and
individual characteristics. Subsequently, the agent-based models
derived from empirical data are evaluated in terms of their micro-
and macro-level behavior, compared with the behavior of human
networks. Abstractly, we model link formation as a reaction-
diffusion system, a framework found in many biological systems.

Results
A game theoretical model. Endowment is a well-known and
useful concept in microeconomic theory32, for example, funda-
mental theorems of welfare economics are based on agent
exchanging endowments. In our model, an endowment vector
could potentially represent all of the features (assets, abilities,
capacities, qualities, etc.) that each agent possesses, and are
treated as fixed, invariant characteristics of the agent. We do not
consider the situation where endowments are dynamic in this
study. Since we limit the dimensionality of endowment vectors,
similar to network embedding algorithms (see Methods), each
dimension does not necessarily have a specific meaning, but may
be a combination of many attributes of an individual.

Agents establish social ties according to the comparison
between their endowments. If we assume that there are K
dimensions of endowments in a society, each agent has a K-
dimensional endowment vector w. Note that dimensions may be
mutually correlated; for example, in the Karate club network,
leaders and followers have high values in their respective
dimensions, and these two dimensions should be negatively
correlated. We constrain the first and second moments of each
dimension W:kð Þ to be zero and one, respectively, for computa-
tional simplicity.

We assume the utility function of agent i is only determined by
agent i’s neighbors’ endowment vectors. We define the utility
function Ui : 2

I=fig ! R for all i, as Eq. (1). The argument S is
the potential neighbors, denoting an arbitrary subset of all agents
except i herself, i.e., Ifig. Each agent i selects her neighbor set S
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by maximizing her utility function Ui. Ui is composed of two
terms, the benefits of exchange (Fi) and the costs of coordination
(Gi):

UiðS;W; b; cÞ ¼ FiðS;W; bÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
benefits of exchange

� GiðS;W; cÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
costs of coordination

; 8S � Ifig:

ð1Þ

Let S�i be the optimal neighbor set for i. We define the marginal
utility that j brings to i as:

ΔuiðjÞ ¼
UiðS�i ;W; bÞ � UiðS�i =fjg;W; bÞ; if j 2 S�i ;
UiðS�i ∪ fjg;W; bÞ � UiðS�i ;W; bÞ; if j =2 S�i :

�

ð2Þ

In this study, we are focused on specific forms for Fi and Gi

and, consequently, for Ui. For the costs of coordination, agent i’s
cost incurred by agent j is measured by the difference between wj

and wi.

GiðS;W; cÞ ¼
X
i2S

gðwj;wi; cÞ ¼
X
i2S

c � ðwj � wiÞ
���

���
2
: ð3Þ

“�” denotes element-wise multiplication. xk k2 denotes ‘2
norm. Note that the costs are symmetric, i.e.,

c � ðwi � wjÞ
���

���
2
¼ c � ðwj � wiÞ

���
���
2
. The costly scaling para-

meter, ck, measures the importance of k-th dimensions on the
costs. A higher ck will amplify the difference between i and j’s
endowment vectors on the k-th dimension (wjk–wik). This term
encourages homophily: dissimilar pairs have to suffer from high
coordination costs before forming a link.

For Fi, we propose the following form:

FiðS�i ;W; bÞ ¼
X
j2S�i

XK
k¼1

bk maxðwjk � wik; 0Þ: ð4Þ

Intuitively, wjk–wik measures the “advantage” of agent j on the
k-th dimension over agent i. As we do not want negative benefits,
we consider the benefit on the k-th dimension is zero if wjk–wik <
0. In deep learning, max(x, 0) is called the “ReLU” function.
TensorFlow45, a machine learning programming library, provides
methods to optimize functions that contain ReLU functions.
Similar to ck, the beneficial scaling parameter bk measures how
beneficial the k-th dimension is. This term indicates that when an
agent is high in several dimensions, she could bring high benefits
to others. Therefore, other agents are inclined to link to her.
However, she does not necessarily reciprocate every link because,
for example, when she is higher in every dimension than others,
she will not benefit from others in any dimension. Note that for
simplicity, we do not consider comparative advantages in this
paper. In addition, this term encourages heterophily: agents
whose expertises are complimentary have high potential benefits
for link formation. Therefore, in this specific form, we have

ΔuiðjÞ ¼
XK
k¼1

bkmaxðwjk � wik; 0Þ � c � ðwj � wiÞ
���

���
2

ð5Þ

There are of course many other variations for the functional form
(Eq. (1)). For example, we can let Fi non-separable in terms of the
neighbor set S, e.g., FiðSÞ ¼ 1

jSj
P

j2S�i
PK

k¼1 bk maxðwjk � wik; 0Þ.

The intuition is that when one agent has many neighbors, the
benefit brought by each neighbor decreases; Do et al. provide a good
example of a decreasing marginal utility46. However, this functional
form indicates that Δui(j) depends on the neighbor set S, which
leads to a time-consuming combinatorial optimization in the
learning process; specifically, when the learning algorithm chooses
S�i , it may need OðN2NÞ computations for the utility functions,
which is computationally infeasible for even a small-scale network.
This is thus beyond the scope of this paper. We can also change Gi

into other norms, such as ‘1 norm, or change Fi into a smoother
version of max(x, 0), but these changes do not significantly affect
the results in the later sections, as shown in Supplementary Note 9.
Therefore, we concentrate on this specific form in later sections (Eq.
(5)).

In network game theory, pairwise stability20 refers to the
situation where no increased marginal utility can be brought to
both agents of an unconnected pair, and no increased marginal
utility can be brought to any agents who want to drop their
neighbors. Following the definition, we derive the conditions
when pairwise stability in undirected networks is satisfied. The
proof is straightforward and can be found in Supplementary
Note 1.

Proposition 1. An undirected network G ¼ ðV; EÞð Þ implied by
neighbor sets S�i , i= 1,2,...,N is pairwise stable, if the following
conditions are satisfied:

1. if j 2 S�i , then i 2 S�j ;
2. 8j 2 S�i , Δui(j) ≥ 0;
3. 8j=2S�i , min(Δui(j), Δuj(i)) < 0.

Learning endowments. We have established a model for social
network formation with many parameters and latent variables.
Before we examine the proprieties of the model, we have to assign
values for the unknown variables, including the endowment
vectors (W), and scaling parameters (b and c). To equip our
model with the capability of fitting real-world networks, we learn
the endowment vectors using the observations of real-world
networks, by assuming real-world networks are at or close to
pairwise stability.

Let Lðb; c;WjDÞ be the loss function that we want to
minimize. The definition of Lðb; c;WjDÞ is reported in
Supplementary Note 3. Then we solve the optimization problem
in Eq. (6).

Minimizeb;c;W : Lðb; c;WjDÞ
Subject to : bk � 0;8k ¼ 1; 2; :::K

ck � 0;8k ¼ 1; 2; :::K
PN
i¼1

wik

N ¼ 0;8k ¼ 1; 2; :::K

jjW:kjj22 ¼ N;8k ¼ 1; 2; :::K

ð6Þ

The constraints that bk and ck should not be less than 0 are
required by the properties of our model. The constraint for the
mean of each dimension is to limit the number of equivalent
solutions, so that the optimizer could typically find a better
solution. The constraint of W:k is to guarantee that the standard
deviation of each dimension is approximately 1, so that the values
of b and c are comparable across dimensions.

As Lðb; c;WjDÞ is nonlinear and non-convex (dimensions are
interchangeable) with respect to (b, c,W), we have to approximate
the global optimum by a local optimum. By employing Adam
optimizer (an improved stochastic gradient descent method)47,
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we are able to learn the local optimum of Lðb; c;WjDÞ; Adam
optimizer is good at deriving satisfying local optima when solving
nonlinear and non-convex problems. To obtain a solution that
approximates the global optimum, we start from many randomly
selected initial points and then analyze the results of the multiple
runs to find the parameters that generate the smallest loss and
therefore the best link fitting performance. Technical details,
including the definition of L and methods that assist learning, are
presented in Supplementary Note 3.

Validation of learning. Here we show that we have learned
meaningful endowment vectors from empirical networks. In
particular, we first use a toy example—Zachary’s karate club
network48 to illustrate the learned results. We then validate the
effectiveness of our model and learning method by showing their
performance at fitting link formation and predicting individual
characteristics for a variety of large-scale social networks: a syn-
thetic network where two types of agents exchange, a Trade
network among countries, a movie collaboration network, a
Company communication network, and the Andorra network,
which is a nationwide mobile phone network (see Methods).

We start with a toy example to illustrate both the rationale of
the present model and the effectiveness of learning performance.
Because of a conflict between an instructor (Mr. Hi) and a student
officier (John), the social network of Zachary’s karate club is
polarized into two factions (Fig. 1a). We set K= 4 and the first
two dimensions as “beneficial endowments” and the last two
dimensions “costly endowments” (Methods section) because it is
more convenient for visualization if the numbers of beneficial and
costly dimensions are both even. Note that K= 4 is not
necessarily the optimal dimensionality and here we did not add a
regularization term (Supplementary Note 3) for this result;
however, we also show in Supplementary Note 8 that K= 4 is a
reasonable (almost optimal) selection.

Panels b and c in Fig. 1 plot the values of the learned
endowments of individuals in Zachary’s karate club. In panel b,
both Mr. Hi and John are high in dimension #1 and low in
dimension #2, while the rest are generally low in endowment
dimension #1 and high in dimension #2. We interpret this result
as the tendency of exchanges between instructors and students:
dimension #1 represents the professional skill of karate and
leadership in their factions; endowment #2 represents the
willingness to learn Karate. As for costly endowments (panel c),
we find that dimension #4 corresponds to the faction to which
each individual belongs: Mr. Hi and his followers (orange) have

values generally higher than 0 while John and his followers (blue)
are generally lower than 0. Dimension #4 can be explained as the
individual’s identification with the two factions. We interpret cost
endowment #3 as other unobserved characteristics that might
influence the interactions between individuals, such as the time
and frequency to participate in club activities. We also illustrate
the learning results for the Trade and Synthetic datasets
graphically in Supplementary Note 4.

Because our goal is to use the learned endowment vectors to
further analyze the micro- and macro- patterns of the network,
we learn the endowment vectors by using all the information (the
links) of the network. Therefore, rather than split the input links
into training and test sets, we use all the links as the input. A
potential concern is that we might “overfit” the network by using
a large K; we partially address this concern by introducing the
regularization term Lreg as mentioned in Supplementary Note 3.
We use Δui(j) as the predictor and AUC (area under the curve) as
the measurement for the fitting performance. AUC trades off
between true positive and false positive rates, and serves as a fair
measure when there is a strong imbalance between positive and
negative samples. By using an approach provided in Supplemen-
tary Note 3, we obtain the optimal dimensionality (K) and the
optimal number of beneficial and costly endowments (Kbnf and
Kcst, see their definitions in Methods).

As shown in Table 1, our model is able to obtain very good fits
to the input networks. For all datasets, the AUC of link fitting is
over 94%. Moreover, we demonstrate that for all datasets, it is
necessary to incorporate both the benefit and the cost terms into
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Fig. 1 Illustration of the learned endowments for karate club network. a The network structure of karate club network. Mr. Hi, the instructor, is marked red,
and other people in his faction are marked orange. John, the student leader or officer, is marked purple, and other people in his faction are marked blue. b
The first two dimensions of the learned endowment vector for each individual; these two dimensions are only related to exchange benefits so we call them
“beneficial endowments”. c The last two dimensions of the learned endowment vector for each individual; these two dimensions are only related to
coordination costs so we call them “costly endowments”

Table 1 Learning results and link fitting performance of
learned endowment vectors

Dataset jVj jEj K* K�
bnf K�

cst AUC

Karate 34 78 3 2 1 98.48%
Trade 100 703 5 3 2 96.85%
Synthetic 2500 14,453 4 2 2 99.92%
Company 1984 12,751 11 4 7 98.70%
Movie 2788 10,399 7 4 3 96.08%
Andorra 32,829 513,931 15 8 7 94.76%

jVj denotes the number of nodes and jEj denotes the number of edges. K*, K�
bnf , and K�

cst
represent the optimal number of dimensions, beneficial dimensions, and costly dimensions,
respectively
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the utility functions (i.e., Kbnf > 0 and Kcst > 0). This finding
highlights the importance of integrating both exchange effects
and coordination costs into the link formation mechanisms.
Other technical details, including learning curves and the
performance on all the dimensions, are presented in Supplemen-
tary Note 3.

Although our goal is not to design a network embedding
algorithm that outperforms the state-of-the-art algorithms, it is
interesting to examine our model’s ability to predict individual
characteristics as a network embedding algorithm. If the learned
endowments have a decent predictive power for individual
characteristics, we can then believe that we have effectively
learned the endowment vectors, which can be used for further
analysis such as agent-based modeling. We extract characteristics
that are not directly relevant to nodes’ ego network attributes (see
Supplementary Note 2 for a full list). We split the nodes and their
learned endowment vectors into training (75%) and test (25%)
sets. We use support vector machine (SVM) and k-nearest
neighbors algorithm (k-NN) to train the classifiers, and use cross-
validation to tune the classifiers’ hyperparameters.

As shown in Fig. 2, the learned endowment vectors can well
predict most individual characteristics by SVM. Note that k-NN
has similar results in Supplementary Note 5. This result shows
that our model can encapsulate the latent features of agents. It is
important to highlight that individual characteristics might not be
fully reflected in the network; therefore, neither network
embedding algorithms nor the present model can guarantee high
AUCs for all prediction tasks. However, the learned endowment
vectors in fact contain more information than the presented agent
features; therefore, they could predict agent characteristics that
are not used in this work, e.g., preferences of movie genres.

The accuracy at estimating agent characteristics beyond the input
data could be because they are important either in coordination
costs (e.g., locations) or exchange benefits (e.g., collaboration
between cast members and directors). Some characteristics may

have both exchange effects and coordination costs: for example, in a
company, subordinates mostly communicate with each other (low
coordination costs), but would also interact with their managers
occasionally (exchange benefits).

We also compare our results with a network embedding
algorithm, DeepWalk24, with the same number of dimensions
and therefore the same degree of freedom (Supplementary
Note 5). Recall that network embedding methods are designed
only for dimension reduction; they therefore do not provide
economic or sociological insights about the network. Algorithmi-
cally, DeepWalk uses an energy function that considers only
similarity and not the benefit that can flow from exchanges
between agents with very different endowments. Consequently, as
might be expected, when our model is compared to DeepWalk,
we have better performance if the predicted characteristics are
explicitly implied by exchange effects. However, for character-
istics explicitly implied by low coordination costs between similar
people, the performance of the present model is somewhat lower
than that of DeepWalk, probably because DeepWalk considers
the similarity between neighbors spanning multiple hops. In sum,
the ability to predict agent characteristics shows that our model
has learned useful information implicit in the network, and that
this implicit information can be used for further agent-based
modeling.

Agent-based modeling. We next analyze the properties of the
model as an agent-based model. Because of the high degree of
freedom of the present model, any manually input distributions
of W, b, and c may appear too arbitrary and do not reflect any
real-world situation. We therefore use the learned endowments
and parameters as the input to study both micro- and macro-
level properties of this model. Our model exhibits many complex
and well-known social phenomena, suggesting that these phe-
nomena could be caused by the simple mechanisms of exchange
benefits and coordination costs among heterogeneous agents.

At the micro level, an interesting question is how an agent’s
endowments will affect their ego networks. In particular, we
consider two variables for agents based on our model. The first
variable is a quantitative measure of social status that we call
“social power”

social powerðiÞ ¼ b � wi: ð7Þ

Social power means “the potential for social influence”49, or the
potential benefits that one could bring to the other. Recall that bk
measures how beneficial the k-th dimension is. wik is the i-th
agent’s value on the k-th dimension. As bk × wik increases, i is
more likely to benefit others on the k-th dimension. Therefore, it
is sensible to represent an agent’s social status by the dot product
of b and wi. Therefore, the definition of this variable is consistent
with the concept, social power. The utility of this social power for
social exchange leads naturally to the formation of a network
structure, which is often described as hierarchical, especially
within the surrounding homophilic group.

The second variable is “social exclusion”, which measures the
extent to which an agent is marginalized50:

social exclusion ¼ c � wik k2: ð8Þ

Recall that we have constrained the means for all dimensions to
be 0. If an agent has a large absolute value on some dimension,
she is believed to be on the margin of that dimension because a
higher cost is needed when she links to another arbitrary person.

We are interested in the correlation between the social power
or social exclusion and statistics of their ego networks (i.e., degree

Club-Karate

Location-Trade

ECI-Trade

GDP-Trade

Type-Synthetic

Continent-Synthetic

Job-Movie

Gender-Movie

Job-Company

Location-Andorra

PhoneType-Andorra

Internet-Andorra

AUC

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2 Prediction performance of the learned endowments. We use support
vector machine as the classifier. The baseline, random guess algorithm, is
indicated by the dashed line. Error bars represent the standard errors for
the average AUCs in five random splitting of training-test sets
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and clustering coefficient). The results of the Andorra dataset is
presented in Fig. 3, and similar results for other datasets are
reported in Supplementary Note 6. We find that “social power” is
strongly positively correlated with degree, while “social exclusion”
is strongly negatively correlated with degree. This finding is
consistent with the implication of the proposed model: people
with high (beneficial) endowments can potentially benefit others
to a greater degree; people on the margin of the society have fewer
opportunities to interact with others. More interestingly, we
examine the correlations between social power or exclusion and
the clustering coefficients for the nodes. A high clustering
coefficient means that the agent’s neighbors are closely connected,
and therefore indicates that the agent’s neighbors might lack
diversity. We find that people have lower clustering coefficients
on the network if they have higher social power or lower social
exclusion; that is, high status (power) people have more diverse
social networks, a well-known and important aspect of human
networks.

The proposed model can also predict macro-level dynamics of
networks. As an illustration, we are focused on the impact of the
systematic change of cost scaling parameters c (i.e., reducing c to
c′= (1− α)c, α∈[0, 1]) on the macro statistics of the social
network. Decreases in coordination costs are typically caused by
advances in information technology (e.g., the Internet) or
transportation (e.g., a new railway). We then employ agent-based
modeling according to the learned endowment vectors and utility
functions to reconstruct the empirical social networks (see
Supplementary Note 7 for the approach). Finally, we compute
density, average clustering coefficient, average shortest path in the
giant component, and interaction diversity (defined as Eq. (9)),
where E represents the edge set of the network, and c is the value
after being reduced. Note that here we do not change the relative
ratios among ck (1 ≤ k ≤K); it is therefore sensible to incorporate

the c into Eq. (9) after being normalized by ck k2.

interaction diversity ¼ 1
jEj

X
ði;jÞ2E

c � ðwi � wjÞ
���

���
2

ck k2
ð9Þ

Figure 4 shows the impact of reducing c on the macro statistics
of all networks. We find that as the cost scaling parameters c
decrease, the density significantly increases while clustering
coefficient does not increase much. This indicates that the
decrease in coordination costs (e.g., adoption of the Internet)
results in more links, and increases social cohesion or balance51,
i.e., the connectivity between one’s neighbors. The decreasing
trend of shortest paths between pairs reveals that the decrease of
the coordination cost could diminish the power of social
hierarchy. The trend of interaction diversity indicates that the
decrease of coordination costs leads to greater connections
between more dissimilar individuals. These synthetic findings
indicate that the coordination costs’ reduction, usually caused by
technology advances, results in a society with less hierarchy and
more opportunities for social connection, especially for dissimilar
people.

Discussion
Inspired by network embedding methods that represent agents by
vectors, this study also applies vector representations for het-
erogeneous agents, referred to as their “endowment vectors”. Our
model is more interpretable than network embedding algorithms
because we can economically and sociologically explain the link
formation mechanism, by the trade-off between the exchange
benefits and coordination costs among agents. We learned the
endowment vectors from empirical network data, which can be
used to predict a variety of other agent properties, and to
demonstrate inter-agent network characteristics such as social
status and diversity that are well-known from social science
literature.

In particular, we highlight the necessity of trading off between
beneficial exchange effects and coordination costs. Most link
formation models use only one or the other. We show that we can
effectively learn the representations for agents from empirical
networks by optimization methods that incorporate these trade-
offs, without explicitly modeling social status, hierarchy, or the
dynamics of social networks. This result suggests that many
characteristics that are described in the social science literature
are due to the trade-off between coordination costs and exchange
benefits, rather than being fundamental effects or biases.

There are several interesting future directions based on this
work. First, it is intriguing to consider the influence of existing
neighbors on the marginal utilities of adding one more neighbor.
For instance, the marginal utility of befriending a person should
be higher when an ego has 10 friends than when the ego has 100
friends. Incorporating this interaction effect is difficult because
this will require combinatorial optimization methods. Second, it
is a promising direction to incorporate an indirect effect: the
utility of “friends’ friends”. When we befriend a person, we do not
only benefit from this person, but also this person’s friends
because we obtain useful information from and have small
coordination costs with this person’s friends. The indirect effect is
reminiscent of several network embedding methods, including
DeepWalk, which embed nodes on randomly sampled paths to
have similar representations. Finally, we may take into account
broader interaction effects such as “reputation”: when people
reach out to an ego, the ego may reciprocate a link even if the link
does not directly benefit the ego.
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Methods
Problem setup. Let I ¼ f1; 2; :::;Ng be a group of N and potentially connected
agents indexed by i (or j, l). Let K be the dimensionality of endowments that drives
the formation of the social network of the group, indexed by k. Each agent has a
latent endowment vector wi= (wi1,...,wiK)T, with each dimension indicating an
aspect of the individual’s attributes. Let W= (w1,...,wN)T. We observe all edges
among the N agents. Let D be a set of N ×N adjacency matrices among agents in all
periods. Dij is binary ({0,1}). Dij= 1 if there is an edge from i to j, and Dij= 0
otherwise. For the convenience of showing pairwise stability, the study is restricted
to undirected graphs, i.e., Dij=Dji.

Agents make rational choices by comparing their endowment vectors with
potential friends. Agents maximize their utility functions (Ui : 2

I=fig ! R for each i)
dependent on the differences between their endowment vectors and all possible
candidates (all other agents). Ui is also parameterized by W, b, and c. Δui(j) is the
marginal utility that j brings to i. We therefore predict Dij by Δui(j).

Data description.

● Andorra. We collected the nationwide call detail records in Andorra from July
2015 to June 2016. Utilizing the country code, we filtered out all non-citizens,
leaving 32,829 citizens with at least one call interactions with another. If the (i,
j) had at least one effective call (duration greater than 0 s), we set Dij=Dji= 1;
otherwise Dij=Dji= 0. This process results in 513,931 links. To demonstrate
the effectiveness of the learned endowments, we also extracted three
characteristics of individuals: phone type, frequent city, and Internet usage.
The phone type was identified by the type allocation code, and we classified
each type into Apple, Samsung, and others (the distribution of three types is
balanced). For each phone number, we employed the last phone type that we
observed. Note that type phone is strongly correlated with important
individual characteristics such as income. The most frequent city was
identified by the cell tower id. We classified each phone number by the
location where it shows up most frequently throughout the year, this location
is thus likely the work location of the individual (some individuals’ work
location may be their home). Internet usage was computed by the total
duration of cellular data. In the prediction task, we classified Internet usage
into high (more than median) and low (less or equal than median). Details of

the datasets, such as statistics of individual characteristics and network degree
distribution, are shown in Description in detail in Supplementary Note 2.

● Movie. To highlight the exchange effects, we examine a specific type of social
network, director-cast movie collaboration network, where a node represents
either a movie director or an actor/actress, and an edge between a director i
and an actor/actress j represents a collaboration between i and j. Dij=Dji= 1
means that i and j collaborated at least once; 0 otherwise. Note that the social
network is close to a bipartite graph where nodes are partitioned into directors
and cast (some people have both cast and director experience). We extracted
3493 movies throughout 2000–2016, and retained individuals with at least five
movies within this period, resulting in 160 directors and 2628 cast members,
and 10,399 director-cast pairs. To validate the effectiveness of the learned
endowments, we extracted two individual characteristics: occupation and
gender. For occupation, we labeled an individual as a director if she functioned
as a director in more than a half of the movies in which she engaged; cast
otherwise. For gender, we collected 1840 males and 761 females and 186
unlabeled.

● Synthetic. We manually establish a network of 2500 agents. Agents are
indexed by (x,y) (i= 50x+ y), 0 ≤ x ≤ 49, 0 ≤ y ≤ 49, x; y 2 N. Each agent
therefore resides at a unique location on the 50 × 50 grid, and the agent has a
probability of 0.5 to be either type A (e.g., a buyer) or type B (e.g., a seller).
Buyers (sellers) are exploring sellers (buyers) in their neighborhood with
Manhattan distance ≤3. The network is therefore a bipartite graph where
buyers and sellers exchange goods and money. This data generating process
results in 14,453 edges. We predict the type and location (divide the plane into
four parts) for all agents.

● Company. A network of employees in a company where edges represent a call
and text communication (MobileD in52). Each employee is labeled as a
manager or a subordinate. In total, we have 420 managers and 1564 sub-
ordinates, with 12,751 edges among them. In this network, managers are
mostly connected with managers and subordinates are mostly connected with
subordinates. At the same time, subordinates also interact with their respective
managers occasionally. We believe that this dataset should show a trade-off
between coordination and exchange; for example, managers and subordinates
have exchange effects, and they have lower coordination costs to interact with
the same type.
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● Trade. We use the 2014 international trade data provided by the United
Nations Statistical Division (UN Comtrade Database: [https://comtrade.un.
org/]), specifically the cleaned version provided by the BACI team using their
own methodology of harmonization53. We created a network of countries,
where an edge indicates that the trade value between two countries is >1
billion dollars (for both directions). This process resulted in 100 countries with
at least one link, and 703 undirected edges among them. We predict the GDP,
economic complexity index (ECI)54, and the countries’ continents for this
dataset.

Details in learning. For computational simplicity and better fitting performance
(see Supplementary Note 8), we split the dimensions into “beneficial dimensions”
and “costly dimensions”. In Eq. (5), every dimension (say the k-th) can contribute
to both benefits and costs if both bk and ck are greater than zero. However, it is not
difficult to see that if we constrain some dimensions to have zero-valued beneficial
scaling parameters (bk= 0) or costly scaling parameters (ck= 0), the dimension-
ality of the model (K) will increase but the capacity of data fitting will not change.
During the learning process, a connected pair (i, j) may result in either an increase
in the difference on some beneficial dimension (with bk > 0) or a decrease in the
difference on some costly dimension (with ck > 0) between their endowment vec-
tors. Empirically, if both bk and ck are positive, these two conflicting effects (to
increase or to decrease the utility on the same dimension) would hinder an effective
convergence (shown in Supplementary Note 8); we conjecture that this is because
we are optimizing a non-linear non-convex loss function. Therefore, we separate
the K dimension into Kbnf “beneficial dimensions” and Kcst “costly dimensions”
(Kbnf+ Kcst= K). By comparing the performances of link fitting for different Kbnf

and Kcst, we select the optimal K�
bnf and K�

cst , and consequently K*. For simplicity,
we let bk= 0, for k > Kbnf; and ck= 0, for k ≤ Kbnf.
θ ¼ b1; b2; :::; bKbnf

; cKbnfþ1; cKbnfþ2; :::; cK
� �

. In Supplementary Note 8, we show
empirically that the performances of link fitting and node classifications are worse
when we do not split dimensions into beneficial and costly dimensions; and that
even when we do not split dimensions, the learning algorithm will lead most
dimensions to be either “beneficial” or “costly”, i.e., either bk or ck is very close to
zero. More details can be found in Supplementary Note 3.

Code Availability. Code is available online: https://github.com/yuany94/
endowment.

Data availability
The network data and individual attributes are available online: https://github.com/
yuany94/endowment.
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