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Appendix A

We are interested in evaluating the impact of PDLAs (PDLAS
it−1) on firm-level R&D in-

vestments (RDS
it), both at the semiconductor level. However, firm-specific R&D investments at

the semiconductor level are unobserved to the econometrician, and only available at the over-

all firm-level (RDit). To overcome this missing data problem, we first estimate a relationship

between overall firm-level R&D investments and PDLAs, i.e., log(RDit) = α̃1 log(RDit−1) +

α̃2 log(PDLAS
it−1). This relationship will be replaced with a similar relationship that concen-

trates on the semiconductor-specific level, i.e., log(RDS
it) = α1 log(RDS

it−1) +αS
2 log(PDLAS

it−1)

and inserted into equation (2) of our paper. This procedure eventually allows us to substitute

for (unobserved) firm-specific R&D investments in the semiconductor industry, which finally en-

ables us to explicitly evaluate the impact of PDLAs on innovation in the semiconductor industry,

as shown in equations (1) to (8) in the paper.

Turning to the relationship between overall firm-level R&D investments (RDit) and PD-

LAs (PDLAS
it−1), we specify an autoregressive model that allows for state dependency and an

inherently dynamic R&D process, as suggested by Hall et al. (1986):

log(RDit) = α̃1 log(RDit−1) + α̃2 log(PDLAS
it−1) + α̃3RJV

S
it−1 +

13∑
y=4

α̃y ∗ Y eart + eit, (1)

where the lagged dependent variable RDit−1 captures path dependency in R&D investments.

We also insert a dummy variable (PDLAS
it−1) that takes on a value of 1 if a firm participated in a

PDLA in the semiconductor industry in period t−1; otherwise it is 0. The PDLA dummy variable

provides a first insight into the correlation between PDLAs and overall firm-level investments.

Similarly, we insert an RJV dummy variable (RJV S
it−1) that takes on a value of 1 if a firm

participated in an RJV in the semiconductor industry in period t − 1; if not, it is 0. The year

dummies Y eart control for variations over time. The error term is normally and independently

distributed.

The OLS estimation results are shown in Table A, Column 1, which reports robust standard

errors. The coefficient of the lagged R&D variable is significant and explains 96 percent of the

current R&D investments. Our estimation results provide evidence that the R&D investments

are highly persistent over time. We also find a significantly negative correlation between semi-
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conductor PDLAs and overall firm-level R&D investments. Note that the parameter estimate

on the RJV dummy variable is insignificant. We also apply a further regression and lag the

impact of PDLAs and RJVs by two periods, as shown in Column 2. The main results remain

unchanged.

One drawback of this estimation result is that the negative correlation between PDLAs and

overall firm-level R&D investments is vulnerable to a potential aggregation bias. A reduction in

overall firm-level R&D investments could be misinterpreted if the reduction is caused in other

industries, but not the semiconductor industry itself. Hence, the ultimate correlation between

PDLAs and semiconductor-specific firm-level R&D investments remains unclear at this point.

We will therefore establish an empirical model (see equations (1) to (8) in the paper) to consider

the relationship between firm-specific R&D investments at the industry level and firm-specific

patents at the industry level, which eliminates this problem. Moreover, as shown in previous

studies and supported by our descriptives, firms self-select into PDLAs, and OLS regression

results give rise to a potential endogenous selection bias. We will address this issue in the

remainder of this study.

Table A: Impact of PDLAs and RJVs on Overall Firm-level R&D Investments

Variables log(RDit) log(RDit)
(1) (2)

log(RDit−1) 0.960*** 0.962***
(0.002) (0.002)

PDLAS
it−1 -0.100**

(0.049)
PDLAS

it−2 -0.223***
(0.049)

RJV S
it−1 -0.034

(0.470)
RJV S

it−2 0.358
(0.554)

Year dummies Yes*** Yes***
Adj. R-squared 0.762 0.831
Observations 38,610 34,749

Table A shows the estimation results for equation (1) shown above. The equation is estimated by OLS.
***,**, and * refers to a 1%, 5%, and 10% significance level, respectively. Sources: Thompson Financial, Inc.,
Moody’s and U.S. Patent and Trademark Office.
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Appendix B

Remember, Columns 1-3 of Table B below show our main estimation results of the outcome

equation (8). We perform several robustness checks regarding the outcome equation estimation.

First, we replace the PDLA and RJV dummy variables (PDLAS
it−x and RJV S

it−x) with counters

(NPDLAS
it−x and NRJV S

it−x) that consider in how many PDLAs and RJVs a firm was ever

engaged until period t. The results are shown in Columns 3-6 of Table B ordered by using

different time lags for the impact on patents. The results are not significantly different from the

previous results with the exception that the estimate on the RJV counter is positively signifi-

cant already one year after RJV formation. This change in the parameter estimate is reasonable

since the counter accumulates RJV activities over several periods and exerts a stronger effect

on patenting. We also ran the same three regressions as reported in Column 1-3 and eliminated

all non-producing firms. Our results on the effect of PDLAs and RJVs on patents are again

confirmed (see Column 7 of Table B). We test whether PDLAs and RJVs also exert a strategic

impact on the patenting activity of competing firms. Hence, beyond regressing the semicon-

ductor patents (PatSit) on firm i’s PDLA and RJV engagements, we control for the number of

PDLAs and RJVs formed by other firms in the industry (PDLAS
t−2 and RJV S

t−2). Our results

are reported in Column 8 and show that own PDLA activity (PDLAS
it−2) again returns a signif-

icantly negative estimate and own RJV activity (RJV S
it−2) again returns a significantly positive

estimate. The strategic effect of PDLAs formed by other firms in the industry (PDLAS
t−2) on

own patents is negative, confirming the fact that strategic effects are prevalent but of much

smaller magnitude than the own effect. This is different for RJVs since the strategic effect of

RJVs (RJV S
t−2) is not significant. We perform a further robustness check with regard to our

instrument selection. According to the transaction cost argument, the engagement in PDLAs

requires profound organizational and legal expertise, organizational, contractual, and adminis-

trative efforts which constitute high transaction costs. Previous PDLA experience lowers these

transaction costs and will serve as an instrument to engage in PDLAs. Many empirical studies

(such as Siebert (2015), Siebert and von Graevenitz (2010) and Banerjee and Siebert (2017))

have found evidence for experience exerting a highly significant impact in the selection equation.

For that reason, we performed robustness checks with regard to the other two instruments (mul-

timarket competition and absorptive capacity) and estimated the same set of equations using the
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same variables but were not declaring the two variables as instruments in the selection equation.

Our robustness check returns parameter estimates that are not significantly different from the

estimates shown in Table 5, Column 1 and Table 6, Columns 1-3 of our paper. It should also be

noted that our results are consistent with the results in Banerjee and Siebert (2017) who show

that the instruments are insignificant in the outcome equations, which supports the validity of

the chosen instruments. One might also object that the negative impact of PDLAs on patenting

does not necessarily reflect a reduction in innovation, but could be associated with the nature

of PDLAs, since innovations are shared among members in PDLAs. Wasteful innovative dupli-

cations are avoided with PDLAs, and partners are committed ex ante to using the technology

under consideration. Moreover, riskier technologies could have been developed in PDLAs, which

generated fewer patents but higher efficiencies. Therefore, we ran the same regression as those

shown in Table 6, Columns 1-3 of our paper, but we replace the patent counts (PatSit) with the

number of citations a patent received (PatciteSit). This robustness check serves to test whether

PDLAs and RJVs also affect the quality of innovations rather than the quantity; it might very

well be that PDLAs produce more drastic innovations even though they reduce the number

of patents. The results are shown in Table B, Columns 9-11. PDLAs decrease semiconductor

patent citations, and the effect becomes larger as further lags of the PDLA activity are used.

Interestingly, RJVs increase patent citations.
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Table B: Impact of PDLAs on Semiconductor Patents and Patent Citations

Variables PatSit PatSit PatSit PatSit PatSit PatSit PatSit PatSit PatciteSit PatciteSit PatciteSit
(1) (2) (3) (4) (6) (6) (7) (8) (9) (10) (11)

PDLAS
it−1 -7.790*** -51.739***

(1.273) (2.269)
PDLAS

it−2 -10.729*** -3.649*** -14.009*** -67.502***
(0.985) (1.041) (1.058) (2.480)

PDLAS
it−3 -22.217*** -103.59***

(1.462) (3.498)
NPDLAS

it−1 -1.088***
(0.113)

NPDLAS
it−2 -1.572***

(0.119)
NPDLAS

it−3 -2.835***
(0.168)

RJV S
it−1 -2.106 238.907***

(1.418) (26.855)
RJV S

it−2 28.865*** 22.327** 32.068*** 521.765***
(1.860) (11.335) (1.941) (33.862)

RJV S
it−3 37.575*** 1,403.897***

(1.749) (52.597)
NRJV S

it−1 1.355***
(1.578)

NRJV S
it−2 22.364***

(1.889)
NRJV S

it−3 60.079***
(2.619)

PDLAS
t−2 -0.483**

(0.214)
RJV S

t−2 0.091
(0.749)

PatSit−1 0.946*** 0.954*** 0.992*** 0.962*** 0.974*** 0.995*** 0.967*** 0.965***
(0.005) (0.005) (0.006) (0.004) (0.004) (0.005) (0.003) (0.005)

PatciteSit−1 0.965*** 0.927*** 0.954***
(0.005) (0.006) (0.001)

PMNOFS
it−1 0.052*** 0.053*** 0.035*** 0.025*** 0.018*** 0.035*** -0.131 -0.011 0.071 -0.294 -0.279

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.096) (0.092) (0.081) (0.084) (0.099)
GDPELS

t−1 0.255*** 0.299*** 0.260*** 0.156*** 0.138*** 0.210*** 0.664* 1.250 0.957 -0.226 0.154
(0.022) (0.022) (0.019) (0.019) (0.019) (0.019) (0.392) (0.665) (0.333) (0.344) (0.399)

PSMS
it−1 0.016*** 0.016*** 0.017*** 0.014*** 0.014*** 0.019*** 0.039*** 0.018*** 0.323*** 0.311*** 0.393***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.007) (0.001) (0.012) (0.012) (0.015)
CT1it−1 -19.137*** -24.247*** -18.047*** -10.815*** -7.028*** -12.929*** 27.228* -34.473*** 75.229*** 237.628*** 252.064***

(1.406) (1.525) (1.516) (1.449) (1.466) (1.559) (16.029) (1.820) (25.990) (27.950) (32.905)
CT0it−1 24.671*** 27.255*** 21.106*** 13.516*** 11.063*** 18.377*** -1.936 37.359*** 62.618*** -81.415*** -63.925***

(1.551) (1.386) (1.223) (1.134) (1.149) (1.226) (9.267) (1.692) (20.358) (22.130) (26.092)
Year dummies Yes*** Yes*** Yes*** Yes*** Yes*** Yes*** Yes* Yes*** Yes** Yes*** Yes***
Observations 38,610 34,749 30,888 38,610 34,749 30,888 1,413 34,749 38,610 34,749 30,888

Table B shows the estimation results for the outcome equation (8) in the paper. Robust standard errors are shown in parentheses. ** (*) refers to a 1% (5%)
significance level. Sources: Thomson Financial, Gartner, Inc., and the U.S. Patent and Trademark Office.
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