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1 Introduction

Kejriwal and Perron (2010, KP henceforth) provided a comprehensive treatment of the prob-

lem of testing for multiple structural changes in cointegrated regression models. A number

of test statistics were developed, including tests against a prespeci�ed number of breaks,

an unknown number of breaks subject to an upper bound and a sequential procedure to

estimate the number of breaks. Their framework allows for both nonstationary [I(1)] and

stationary [I(0)] regressors as well as serial correlation and conditional heteroskedasticity in

the errors. A variety of models were considered depending on whether all coe¢ cients are

allowed to change [pure structural change] or a subset of coe¢ cients is held �xed [partial

structural change]. The limiting distributions of the test statistics were shown to be pivotal

under the null hypothesis of no structural change and the relevant critical values tabulated.

Partial structural change models are useful in that they allow for more powerful testing

procedures, as illustrated via simulations by Kuo (1998). In the stationary framework of

Bai and Perron (1998), tests of partial parameter stability remain asymptotically valid even

in the presence of breaks in coe¢ cients that are not under test. This invariance property

facilitates the interpretation of the outcome of these tests and serves to identify the source of

instability in the regression model. Such a property, however, no longer holds in the presence

of I(1) regressors so that the partial tests of KP can signal the presence of instability as long

as any of the coe¢ cients are unstable, including those that are not being tested.

In this paper, we �rst show that the limit distributions of the test statistics in the partial

structural change models are not invariant to changes in the coe¢ cients not being tested. In

fact, the test statistics diverge as the sample size increases. To address this issue, we propose

a simple two step procedure to test for partial parameter stability. The �rst step entails the

application of a joint test for the stability of all coe¢ cients as in KP. Upon a rejection, the

second step conducts a stability test on the subset of coe¢ cients of interest while allowing the

other coe¢ cients to change at the estimated breakpoints. Its limit distribution is standard

chi-square. The relevant asymptotic theory is provided along with simulation evidence that

illustrates the adequacy of the performance in �nite samples. In an application to US

money demand, we show how the proposed approach can be fruitfully employed to estimate

the welfare cost of in�ation. In particular, we �nd that the restriction of unitary income

elasticity commonly imposed in the literature is not supported by the data with important

implications for the trajectory of welfare cost estimates.

In a related paper, Hsu and Kuan (2001) studied the problem of distinguishing between
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intercept and slope breaks in a model with a bounded deterministic trend with a stationary

noise component. They showed that the limit distributions of partial break test statistics are

non-pivotal and depend on the magnitude of the coe¢ cient break (intercept or slope) not

under test. A similar result was demonstrated by Hsu (2008) in the context of cointegrated

regressions. In both studies, however, the asymptotic analysis was conducted in a framework

in which the break size shrinks to zero as a function of the sample size at a rate ruling out

consistent estimation of the break fractions, thereby invalidating a two step testing approach.

In contrast, our asymptotic framework allows the break fractions to be consistently estimated

ensuring the large sample validity of the two step procedure.

This paper is structured as follows. Section 2 presents the model and the test statistics.

Section 3 details the proposed two step procedure to test for partial parameter stability.

Monte Carlo simulation results are reported in Section 4 to assess the performance of the

procedure in small samples and Section 5 contains the empirical application. Section 6

provides brief concluding remarks. All proofs are provided in Appendix A and additional

Monte Carlo simulations are included in Appendix B. As a matter of notation, �
p!�denotes

convergence in probability, � d!� convergence in distribution and �)� weak convergence
under the Skorohod metric. Further, Op(:) denotes the stochastic order in its strict sense,

i.e., it is not op(:).

2 Model and Test Statistics

The dependent variable yt is generated according to the linear regression model withm breaks:

yt = cj + z
0
ft�fj + z

0
bt�bj + ut; t = Tj�1 + 1; :::; Tj (1)

for j = 1; :::;m + 1, (m + 1 being the number of regimes) where T is the sample size (by

convention T0 = 0, Tm+1 = T ), zft and zbt are (qf �1) and (qb�1) vectors of I(1) regressors,
de�ned by: zft = zf;t�1 + u

f
zt, zbt = zb;t�1 + u

b
zt, for t = 1; :::; T; with zf0 and zb0 assumed to

be �xed constants or Op(1) random variables. Equation (1), labelledModel A, represents a
pure structural change model with all regression coe¢ cients including the intercept allowed

to change. The null hypothesis of stability is H0;A: cj = c; �fj = �f ; �bj = �b for all j. We

also consider the following two partial structural change models, obtained as special cases of

(1), by restricting a subset of the parameters to be �xed across regimes; namelyModel B:
yt = c+z

0
ft�f+z

0
bt�bj+ut andModel C: yt = cj+z

0
ft�f+z

0
bt�b+ut. In Model B, the objective

is to test the stability of the coe¢ cients of zbt; i.e., H0;B: �bj = �b for all j. Similarly, the
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null hypothesis of interest in model C is the stability of the intercept: H0;C : cj = c for all

j. KP considered two additional partial break models: one with the null hypothesis of joint

stability of (cj; �bj) while holding �fj �xed across regimes; the other a special case of Model

B, which does not include the regressors zft. They also considered allowing both I(1) and

I(0) regressors and a variety of partial break submodels. For brevity, we do not consider

these extensions but note that the two step procedure we advocate remains valid in these

cases though, when the model contains no break under H0, as in H0;C , the test proposed

will be conservative, an issue discussed in more detail in Section 4. We also focus on the

single break case (m = 1) since the extension to multiple breaks is straightforward. KP

proposed sup-Wald test statistics for each of H0;A; H0;B and H0;C : For a given break fraction

� = T1=T; the Wald statistic for testing H0;i is FT;i(�) = [SSR0 � SSRi(�)]=�̂2i (�), where
SSR0 and SSRi(�) [i = A;B;C] are the sum of squared residuals under the null hypothesis

of stability and that under the alternative of model i; respectively. The scaling factor �̂2i (�) is

an estimate of the long-run variance of ut. Following KP, it is computed as

�̂2i (�) = T
�1PT

t=1 eu2t + 2PT�1
j=1 w(j=bT (�))T

�1PT
t=j+1 euteut�j

where eut are the residuals from the regression under the null hypothesis and w(�) is a con-
tinuous and even function with jw(:)j � 1; w(0) = 1 and

R1
-1w

2(x)dx < 1. KP pro-
posed using the quadratic spectral kernel with the bandwidth chosen via the rule bT (�) =

1:3221(â2(�)T )
1=5 advocated by Andrews (1991), where â2(�) = 4�̂(�)2=(1 � �̂(�))4, �̂(�) =PT

t=2 ût(�)ût�1(�)=
PT

t=2 û
2
t�1(�), with ût(�) the residuals from the regression under the al-

ternative hypothesis. This is a hybrid nonparametric estimate that employs residuals un-

der both the null and alternative hypotheses which ensures that the test statistic is ade-

quately sized while bypassing the problem of non-monotonic power that plagues the La-

grange Multiplier type tests (see KP for more details). For some arbitrary small positive

number �, de�ne the set �� = f� : � � � � 1 � �g. The sup-Wald test is then de�ned as
supFT;i(�) = sup� 2��FT;i(�). Let �t = (ut; u

f 0
zt; u

b0
zt)

0, a vector of dimension n = qf+qb+1:Our

analysis is based on the following set of assumptions, where here, and throughout, true values

are denoted with a subscript 0:

�Assumption A1: The vector �t satis�es the following multivariate Functional Central
Limit Theorem (FCLT): T�1=2

P[Tr]
t=1 �t ) B(r), with B(r) = (B1(r); Bfz (r)

0; Bbz(r)
0)0 is a n
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vector Brownian motion with symmetric covariance matrix


 =

0BBB@
�2 
f1z 
b1z


fz1 
ffzz 
fbzz


bz1 
bfzz 
bbzz

1CCCA
1

qf

qb

= lim
T!1

T�1E(STS
0
T ) = � + � + �

0

where ST =
PT

t=1 �t, � = limT!1 T
�1PT

t=1E(�t�
0
t) and � = limT!1 T

�1PT�1
j=1

PT�j
t=1 E(�t�

0
t+j).

Also �2 > 0 and p limT!1 T
�1PT

t=1 u
2
t = limT!1 T

�1PT
t=1E[u

2
t ] � �2u.

�Assumption A2: The matrix

0@
ffzz 
fbzz


bfzz 
bbzz

1A is positive de�nite.

�Assumption A3: Let 0j = (c0j ; �
00
fj; �

00
bj)

0
, j = 1; 2 and DT = diag(1; T�1=2Iqf ; T

�1=2Iqb).

Then 02 � 01 = DT�vT where � = (�c; �
0
f
; �0

b
)0 is independent of T and vT > 0 is a scalar

satisfying vT ! 0 and T 1=2vT !1.
Assumptions A1-A2 are standard in the single equation cointegration literature and the

same as in Hansen (1992) and KP. Assumption A2 rules out cointegration among the regres-

sors and implies the presence of a single cointegrating vector between the dependent variable

and the regressors. This assumption is standard in the single equation cointegration litera-

ture and made in Hansen (1992) and Kejriwal and Perron (2010). It allows us to derive the

limit distribution of the structural change tests by ensuring the invertibility of the limiting

second moment matrix of the I(1) regressors. Note, however, that our analysis allows both

I(1) and I(0) regressors which corresponds to the case where the regressors are cointegrated,

albeit trivially so. Monte Carlo evidence in Section 4 illustrates that the proposed two step

approach is adequately sized with I(1) and I(0) regressors. Further, in unreported simula-

tions with two I(1) cointegrated regressors, we also con�rmed that the two step approach is

not subject to size distortions. These results are available upon request.

Assumption A3 adopts a shrinking shifts asymptotic framework whereby the magnitude

of the break shrinks to zero as T increases with the coe¢ cients of the I(1) regressors shrink-

ing faster than the intercept break (see Kejriwal and Perron, 2008a). The speci�ed rates

ensure that the true break fraction � 0 = T 01 =T can be consistently estimated and allows the

construction of con�dence intervals for the break date. KP derived the limit null distribution

of the test statistics for models A, B and C under Assumptions A1-A2 and showed that they

are pivotal, allowing the tabulation of critical values to perform the tests. In particular,

the limit distributions pertaining to the partial break statistics are derived assuming that

all parameters are stable under the null hypothesis (i.e., � = 0 in Assumption A3), including
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the subset not under test. The following result shows that the asymptotic size of these test

statistics is not invariant to changes in the subset of parameters not being tested.

Theorem 1 Under Assumptions A1-A3, 
f1z = 

b
1z = 0 and �

0 2 ��: a) If �c 6= 0 and/or
�f 6= 0 and H0;B holds, supFT;B(�) is at least Op(b�1T (� 0)T ) if bT (� 0)�2T

p!1, and at least
Op(T�

2
T ), otherwise. (b) If �f 6= 0 and/or �b 6= 0 and H0;C holds, the same results hold for

supFT;C(�).

Theorem 1 shows that the sup-Wald statistics have 100% asymptotic size when the in-

stability comes from the set of parameters not part of the null hypothesis. Hence, the partial

break statistics can be expected to su¤er from considerable size distortions in �nite samples

so that a rejection cannot be attributed to a change in the parameters under test. Monte

Carlo simulations reported in Section 4 con�rm the relevance of this result in �nite sam-

ples. Note that a similar result holds when the break magnitude is �xed (independent of T ),

namely supFT;B(�) and supFT;C(�) are at least Op(b�1T (�
0)T ).

Theorem 1 is derived under the assumption of strictly exogenous regressors, i.e., 
f1z =


b1z = 0. This is not necessary and is only imposed to simplify the analysis. Endogenous

I(1) regressors can be accounted for using the dynamic least squares estimator (DOLS)

which entails augmenting the regression with leads and lags of the �rst-di¤erences of the

I(1) regressors (see Saikkonen, 1991) with the number selected using some information cri-

teria (Kejriwal and Perron, 2008b).

KP considered a general regression framework which allows for both I(1) and I(0) re-

gressors. It can be shown that the asymptotic size of the partial break KP statistics is again

not invariant to changes in a subset of the parameters even when testing the stability of

the I(0) coe¢ cients. This result stands in stark contrast to that in the standard stationary

framework where the limit distribution is invariant to the magnitude of local breaks in pa-

rameters not under test (see, e.g., Hsu and Kuan, 2001). The intuition for this invariance

is that the omitted break term has the same order of magnitude as the error component

and thus does not induce a change in the limit distribution. In our framework, the break

magnitude can be �xed or shrink with the sample size at a rate that allows consistent es-

timation of the break fraction. If the omitted break is on an I(1) regressor, we have the

standard spurious regression problem (the e¤ective error is I(1)). If the omitted break is on

an I(0) regressor with a non-zero mean, then the partial sums of the e¤ective error involve a

broken deterministic trend thereby again leading to a spurious regression type problem (see

Perron, 1990). In either scenario, it follows from standard results that the sum of squared
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residuals under both the null and the alternative diverge as does their di¤erence. Since the

denominator of the F -statistic is of a lower order of magnitude than the numerator, the test

statistic diverges. In contrast, the two step procedure proposed below remains valid whether

one is interested in testing the stability of the intercept, the I(1) or I(0) coe¢ cients, or any

combination of these three sets of parameters.

3 Two Step Procedure

The preceding analysis shows that the partial break KP statistics cannot be used to evaluate

the stability of a subset of parameters in the presence of changes in the set of parameters

that are not under test. Rather, a rejection by these statistics can only be interpreted as

signaling instability in any of the model parameters. Thus, if the objective is not only to

test for overall model stability but also to determine which particular subset of parameters

is unstable, an alternative approach is needed. To achieve this, we propose the following

two step procedure: 1) Conduct the test supFT;A(�) of joint stability of all parameters in

regression (1). If the null hypothesis is not rejected at the desired level of signi�cance,

stop the procedure and conclude there is no evidence of instability. Otherwise, obtain the

break date estimate �̂ by minimizing the sum of squared residuals from (1) and proceed to

the following step; 2) Conduct a F test using chi-squared critical values for the equality of

the coe¢ cients across regimes on the subset of coe¢ cients of interest allowing the others

to change at the estimated breakpoint. Upon a rejection, conclude in favor of a structural

change in the subvector of interest, otherwise the stability cannot be rejected.

The asymptotic validity of the two step procedure follows from (i) the test in the �rst

step is asymptotically pivotal under the null and consistent against alternatives involving a

change in at least one parameter and (ii) the break fraction is consistently estimated as long

as any of the parameters are subject to a break. The second fact ensures that the F test in the

second step converges to a chi-square distribution under the null hypothesis of no structural

change in the subvector of interest. This basically follows since the estimate of the break

fraction is fast enough to ensure that the limit distribution of the parameter estimate is the

same that would prevail if the break date was known. We thus have the following result

where F (2)T;i (�̂) denotes the second step test of the null hypothesis H0;i [i = B;C].

Theorem 2 Suppose Assumptions A1-A3 hold, 
f1z = 
b1z = 0 and � 0 2 ��: Under the
conditions of Theorem 1(a), resp, 1(b), a) F (2)T;B(�̂)

d! �2(qb), resp., b) F
(2)
T;C(�̂)

d! �2(1).
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Remark 1 In the �rst step, we could, in principle, replace the pure structural change test
by any partial structural change test, whether or not it involves the regressors whose coef-

�cients are subject to change. We investigate the bene�ts of this potential modi�cation via

simulations in Section 4 and conclude that using the pure structural change test is overall

preferable.

Using Theorems 1 and 2, we can show that the asymptotic size of the two step procedure

cannot exceed �; where � is the level of signi�cance used in each step. This is stated in the

following corollary.

Corollary 1 Let cvA(�) and cvi(�) denote the level � asymptotic critical values of supFT;A(�)
and F (2)T;i (�̂); respectively (i = B;C). Then, under H0;i; i 2 fB;Cg; we have

lim
T!1

P
h
fsupFT;A(�) > cvA(�)g \

n
F
(2)
T;i (�̂) > cvi(�)

oi
� �

Remark 2 The two step procedure can be applied to a model with multiple breaks where each
break a¤ects only a subset of the parameters. Such a model can be represented as a restricted

version of the pure structural change model (1). Given the consistency of the �rst step test

as well as the estimated break fractions in the presence of a change in at least one of the

parameters, the second step can be used to determine the break(s) that a¤ect a particular

parameter of interest by testing the constancy of this parameter across any two adjacent

regimes.

4 Monte Carlo Evidence

This section presents the results of Monte Carlo experiments designed to assess the �nite

sample adequacy of the theoretical results. These will show that (i) the KP partial break

test statistics are subject to substantial over-rejections when the data generating process

(DGP) involves a change in the subset of parameters outside those pertaining to the null

hypothesis, and (ii) the two step procedure proposed has good size and considerable power

in detecting deviations from stability. The design is similar to that in Kuo (1998). For the

errors ut, we consider three di¤erent cases: (a) (i.i.d. errors) ut
i:i:d:� N (0; 1); (b) (AR(1)

errors) ut = 0:5ut�1+ et, et
i:i:d:� N (0; 1); (c) (MA(1) errors) ut = et� 0:5et�1, et

i:i:d:� N (0; 1).
The trimming � is set at 15%. Each step of the two step procedure as well as the one step

partial KP test uses a 5% nominal level test. The number of replications throughout is

100,000.
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In the �rst set of simulations, the dependent variable yt is generated by: yt = ct+�tzt+ut;

zt = zt�1 + uzt; uzt
i:i:d:� N (0; 1). Four DGPs are considered: DGP-1: ct = 1; �t = 1 for

all t; DGP-2: ct = 1 for all t; �t = 1 if t � [� 0T ] and 1 + ��, otherwise; DGP-3: ct = 1 if

t � [� 0T ] and 1 +�c, otherwise, �t = 1 for all t; DGP-4: ct = �t = 1 if t � [� 0T ], otherwise,
ct = 1+�c and �t = 1+��. The breakpoint is set at � 0 = 0:5. The regressor zt is assumed

to be strictly exogenous, i.e., uzt and us are independent for all t and s. We compare the

size and power of the one step partial break KP statistics and the two step procedure for

T 2 f120; 240g. The break magnitudes are set at �c = 1;�� = 0:4:

Table 1 (Panels A,B) presents the results. Panel A reports the rejection frequencies when

testing for a break in slope (�) so that DGPs 1 and 3 pertain to size and DGPs 2 and 4 to

power. The power results are size-unadjusted. While the partial break KP test has adequate

size for DGP-1, size distortions are evident for DGP-3, irrespective of the error structure,

which increase with T , consistent with the result in Theorem 1. In contrast, the proposed

two step procedure exhibits much better size control across T and error structures, the exact

size never exceeding 8%. A seemingly counterintuitive feature of the two step approach

is that for DGP-3b [AR(1) errors], the empirical size need not approach the nominal size

monotonically as T increases. We investigate this issue in detail in Appendix B. Panel B

reports the rejection frequencies when testing the stability of the intercept c. Here DGPs 1

and 2 correspond to size and DGPs 3 and 4 to power. Similar to the results in Panel A, the

two step test has adequate size (though conservative) in all cases, while the one step KP test

is subject to substantial size distortions under DGP-2 (a change in the slope parameter). It

is instructive to look at the cases of DGP-1 and DGP-2 in more details. DGP-1 involves

no breaks. Hence, the KP test has a 5% asymptotic size and should have highest power,

while the two-step procedure is asymptotically conservative. Under the null, for the 5% of

the cases in which a rejection does occur, the second step rejects with some probability less

than one, given that the estimated break date from the �rst step is random, so that the

limit distribution in Kejriwal and Perron (2008a) does not apply. Still, the power of the

two-step procedure remains adequate. By de�nition, it is less than that of the �rst step

KP test (subject to some simulation errors), but the reduction in power is quite minor; the

biggest discrepancy is for AR(1) errors with T = 120. Notwithstanding its two step nature,

our recommended procedure retains respectable power that increases noticeably with T .

In a second set of simulations, we also consider DGPs involving both I(1) and I(0)

regressors given by: yt = �t + �txt + �tzt + ut, where xt
i:i:d:� N (1; 1), zt = zt�1 + uzt

and uzt
i:i:d:� N (0; 1). Four DGPs are considered: DGP-5: �t = �t = 1, �t = 1 if t � [� 0T ],
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otherwise �t = 1:4; DGP-6: �t = 1, �t = �t = 1, if t � [� 0T ], otherwise �t = 3, �t = 1:4;

DGP-7: �t = �t = 1 and �t = 1 if t � [� 0T ], otherwise �t = 2; DGP-8: for t � [� 0T ],

�t = �t = �t = 1, and for t > [� 0T ], �t = 2, �t = 3, �t = 1:4. For each DGP, we are

interested in testing the stability of the I(0) coe¢ cient �t. Thus DGPs 5 and 7 correspond

to size while DGPs 6 and 8 correspond to power. The same three error structures are allowed

for ut as described above. The results are presented in Panel C of Table 1. For DGPs 5

and 7, the size of the two step procedure is near the nominal 5% level, except when the

sample size is small with AR(1) errors, though the distortions reduce considerably as T

increases. For DGPs 6 and 8, the results show substantial power. The standard KP test is

again rejecting far too often, indicating its non-robustness even when testing the stability of

I(0) coe¢ cients.

The �nal set of simulations considers DGPs with a larger number of regressors. These

simulations are motivated by the observation that since the �rst step of the two step proce-

dure entails applying a structural change test on all model parameters in the �rst step, its

power may be low with a large number of regressors if only a few parameters change.1 To

investigate this possibility, two alternative designs are considered. The �rst appends DGPs

1-4 with two I(1) regressors generated as independent random walks (and independent of

the other variables) with unit coe¢ cients that remain stable throughout the sample. We

label these DGPs 10-40. The second design appends DGPs 5-8 with one I(1) regressor gener-

ated as a random walk and one I(0) regressor generated as i:i:d: N(0; 1), the variables being

independent of each other as well as the other variables. Each of the two variables have unit

coe¢ cients that remain stable throughout the sample. We label these DGPs 50-80.

In addition to the proposed two step procedure, we also consider here a modi�ed proce-

dure that replaces the pure structural change test in the �rst step with a partial structural

change test on the coe¢ cient of interest. As shown in Theorem 1, the partial test has

unit asymptotic power under the alternative hypothesis that at least one of the parameters

change. The �rst step and �nal rejection frequencies of the modi�ed procedure are denoted

by TSi1st and TS
i; respectively, while those of the proposed two step procedure are denoted

by TS1st and TS; respectively. The objective is to examine the extent of power loss involved

by conducting a pure structural change in the �rst step as opposed to a partial structural

change test on the coe¢ cient of interest. A 5% signi�cance level is used in each step of the

two procedures.

The results are reported in Table 2. The performance of the proposed and modi�ed

1We thank an anonymous referee for pointing this out.
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procedures in terms of �nite sample size are broadly similar to each other and adequate

in both cases. In terms of power, the modi�ed procedure o¤ers discernible improvements

only in the case of AR(1) errors when the sample size is small (T = 120). In other cases,

the improvements are marginal at best. On the other hand, while the proposed approach

is simple to implement in practice, the modi�ed approach is computationally costly - with

k parameters, the proposed approach only requires k + 1 tests while the modi�ed approach

requires 2k tests. This feature also makes the modi�ed approach more susceptible to multiple

testing issues. Thus, the proposed approach can serve as a simple, yet useful addition to the

practitioner�s toolkit when testing for partial structural change.

Appendix B contains additional Monte Carlo results that explore the behavior of em-

pirical size as a function of sample size/break magnitude. These simulations are motivated

by the fact that the size distortions incurred by the two step procedure for DGPs 2b-3b in

Table 1 do not decrease as the sample size increases. We show that the proposed procedure

remains adequate as the sample size/break magnitude varies and provide a discussion for

the observed evolution of the empirical size. See Appendix B for details.

5 Empirical Application

This section applies the proposed procedure to study the stability of US money demand

and the associated issue of estimating the welfare cost of in�ation. A standard approach to

measuring the welfare cost of in�ation is due to Bailey (1956), who suggests that such costs

can be measured as the area underlying the inverse money demand function that represents

the consumer surplus that could be realized from a reduction in the nominal interest rate from

a positive level to a near-zero level. The rationale is that if real money balances are treated

as a consumption good due to its ability to provide liquidity, in�ation can be viewed as a

tax on real balances through its e¤ect on nominal interest rates and hence the opportunity

cost of holding real balances. In such a framework, the speci�cation of the money demand

function naturally plays a crucial role in the estimation of the welfare cost of in�ation.

Empirical work in this context has typically relied on two alternative functional forms for

the money demand function: the log-log form (Meltzer, 1963) and the semi-log form (Cagan,

1956). The log-log form allowing for time-varying parameters is speci�ed as follows:

ln (M=P )t = at + ct ln (Y=P )t + bt ln rt + ut (2)

where M=P denotes real money balances, Y=P denotes real income and r denotes the nom-
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inal interest rate. The parameters ct and bt measure the time-varying income and interest

elasticities of money demand, respectively. The semi-log form is speci�ed as follows:

ln (M=P )t = at + ct ln (Y=P )t + btrt + ut (3)

In addition to (2) and (3); the following speci�cations that impose a unitary elasticity of

money demand are frequently estimated, where m denotes the money-income ratio M=Y :

lnmt = at + bt ln rt + ut (4)

lnmt = at + btrt + ut (5)

The application of Bailey�s method to (2) yields the following measure of the welfare cost at

a positive interest rate r (see, e.g., Calza and Zaghini, 2010):

w(r; t) = exp (at)(Y=P )
ct�1 �bt

1 + bt
r1+bt (6)

while the expression for the semi-log function (3) takes the form:

w(r; t) =
exp (at)

�bt
(Y=P )ct�1[1� (1� btr) exp(btr)] (7)

Equations (6) and (7) are typically evaluated at the average value of (Y=P ) over the sample.

The corresponding expressions for the restricted speci�cations (4) and (5) are given as follows:

w(r; t) = exp (at)
�bt
1 + bt

r1+bt (8)

w(r; t) =
exp (at)

�bt
[1� (1� btr) exp(btr)] (9)

A wide range of welfare cost estimates is available in the literature depending on whether a

log-log or semi-log form is estimated, whether instability is allowed for, as well as whether a

unitary income elasticity is imposed. We do not undertake a comprehensive review of this

literature here but rather focus on the studies that are more closely related to ours (see

Mogliani and Urga, 2018 and Miller et al., 2019, for further references and discussions).

Lucas (2000) argues in favor of a log-log form due to its consistency with inventory-

theoretic money demand models, while Ireland (2009) advocates the use of a semi-log speci-

�cation for post-1980 data due to a shift in the monetary policy regime towards low interest

rates. While the former study �nds a welfare cost of 10% in�ation to be slightly less than
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1% of GDP, the latter reports a much lower estimate of about 0.25%. The estimates in

both studies are obtained from speci�cations that assume a unit income elasticity of money

demand. Mogliani and Urga (2018) investigate the stability of the log-log form of the money

demand function using the joint KP test but again imposes a unitary income elasticity. They

�nd evidence of two breaks (1945 and 1976) and a welfare cost of about 0.1% in the post-

1976 period compared to 0.8% over 1945-75. Miller et al. (2019) adopt the time-varying

cointegration framework developed in Bierens and Martins (2010) where the coe¢ cients are

modeled as smooth functions of time. They �nd that the unitary income elasticity restriction

is rejected for the semi-log form but not for the log-log form. They report that the welfare

cost estimate of 10% in�ation lies in the range 0.025-0.75% of GDP, with an average of about

0.27% over the sample. In what follows, we will employ the proposed two step approach to

test whether the unitary restriction on income elasticity is supported by US data and obtain

estimates of the regime-dependent welfare costs accordingly. We do not make an a priori

choice between the log-log and semi-log forms and present results for both forms.

Our empirical analysis employs the same dataset as Miller et al. (2019).2 The data are

quarterly and span the period 1959:Q1-2010:Q4. The preliminary unit root analysis in Miller

et al. (2019) con�rms the presence of a unit root in ln(M=P ); ln(Y=P ) and r: The �rst step

of the two step procedure is implemented using KP�s UDmax test that entails taking the

maximum of the sup-Wald statistics which allow for one up to �ve breaks with the trimming

level set at 15%. If the UDmax test rejects, the number of breaks is determined using the

sequential procedure proposed by KP. Endogeneity of the regressors is accounted for using

four leads/lags of the �rst-di¤erenced regressors while serial correlation is accounted for

using a heteroskedasticity and autocorrelation consistent estimate of the long-run variance

based on KP�s hybrid method using a quadratic spectral kernel with Andrews�(1991) data-

dependent bandwidth choice. Given that the �rst step KP test is consistent against a purely

spurious regression, we complement our analysis by testing for the presence of cointegration

using Arai and Kurozumi�s (2007, AK henceforth) LM-type test for the null hypothesis

of cointegration with breaks against the alternative of no cointegration. While AK�s test

allowed for a single break, its multiple break extension was developed by Kejriwal (2008).

The testing results are presented in Table 3. Panel A reports the �ndings for the unre-

stricted models while Panel B reports those for the models that impose a unitary income

2The data come from the Federal Reserve Bank of St. Louis�FRED database and consists of a measure of
money supply (M1) adjusted for deposit sweep programs, nominal GDP (Y ); the three-month US Treasury
Bill rate (r) and the GDP de�ator (P ). See Miller et al. (2019) for further details.
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elasticity. The two step results indicate instability in all coe¢ cients for all models except bt in

the unrestricted semi-log model. These results therefore reject the unit elasticity restriction

that is often assumed in the literature. The AK test indicates the presence of cointegration

regardless of the maintained functional form.

Table 4 reports the results from estimating the models selected by the two step proce-

dure in Table 3. The regime-wise point estimates along with 95% con�dence intervals are

presented along with the mean welfare cost of 0%, 2% and 10% in�ation. The con�dence

intervals around the welfare cost estimates are obtained using a wild bootstrap procedure

using 999 replications. Several features of the results are worth noting. First, the unre-

stricted model selects a single break in 1993 for both functional forms. In contrast, the

restricted models select two or three breaks depending on whether the log-log or semi-log

speci�cation is adopted. For the log-log form, Mogliani and Urga (2018) also �nd evidence

of two breaks with the second break located in 1976. Second, the unit income elasticity

restriction is rejected in both regimes irrespective of the adopted functional form. Both

forms entail a reduction in income elasticity from about 0.5 to -0.3. The pre-break estimate

of the income elasticity is consistent with the Baumol-Tobin inventory theoretic approaches

to the transactions demand for money as well as empirical �ndings in Ball (2001). The

post-break negative income elasticity, on the other hand, is in conformity with the constant

target-threshold monitoring model of Akerlof and Milbourne (1980) in which money is trans-

ferred into or out of the account if the cash balance crosses a lower or upper threshold level.

The interest elasticity estimate is also lower in more recent decades, consistent with recent

�ndings in Berentsen et al. (2015) and Miller et al. (2019). Third, the imposition of unitary

income elasticity leads to upward biased estimates of the welfare cost of in�ation, regard-

less of the choice of functional form. For instance, the mean welfare cost of 10% in�ation

implied by the unrestricted model is 0.39% and 0.42% for the log-log and semi-log forms,

respectively, compared to 0.46% and 0.52% for the restricted model. Fourth, the welfare cost

estimates are lower in more recent periods, in accordance with the �ndings in Berentsen et

al. (2015) and Mogliani and Urga (2018). Fifth, compared to the log-log form, the semi-log

form tends to produce larger estimates of the welfare cost at the 10% in�ation level and

smaller estimates at the 0% and 2% levels.

To further investigate the relevance of the unitary elasticity restriction, we re-estimate the

restricted model using the break date estimate obtained from the unrestricted model. This

allows us to evaluate the impact of imposing the restriction on the estimated welfare costs

while controlling for break date misspeci�cation. The results, presented in Table 5, show
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that the mean restricted welfare cost estimates are now even higher than those reported

in Table 4 indicating that the two forms of misspeci�cation have o¤setting e¤ects on the

magnitude of the welfare cost, with elasticity misspeci�cation inducing a positive e¤ect and

break date misspeci�cation inducing a negative e¤ect.

The �nding of a break in 1993 in the unrestricted case can be explained by the advance-

ment of information technology with respect to �nancial products during the post-1993

period and its impact on the demand for money. In particular, the introduction of �sweep

technology� in 1993 allowed banks to automatically transfer funds from checking accounts

to money market deposit accounts (MMDAs) in which the holder was permitted to make

only a few withdrawals every month. This deposit-sweeping software reduced the reserve re-

quirements of banks making more funds available for lending and providing improved access

to the money market. Berentsen et al. (2015) construct a microfounded monetary model

that can be used to assess the impact of a one-time increase in the access probability to the

money market in the early 90s. When calibrated to US data, their model is able to replicate

the empirical behavior of the money demand function well suggesting an important role of

the sweep technology in explaining the observed changes in money demand.

In summary, the empirical results do not support the typically assumed restriction of

unitary income elasticity for both the log-log and semi-log functional forms. Imposing such

a restriction leads to overestimating the number of breaks in the money demand relationship

as well as the welfare cost of in�ation. The unrestricted models point to the prevalence of a

single break that can be attributed to technological innovations in the �nancial sector during

the early 90s that a¤ected the demand for money.

6 Conclusion

This paper dealt with testing for partial parameter stability in cointegrated regression mod-

els. Using an asymptotic framework for the break magnitude ensuring consistent estimates of

the break fractions, we �rst showed that existing partial break sup-Wald tests diverge with T

when the coe¢ cients not being tested are subject to change. We proposed a simple two step

procedure which �rst tests for joint parameter stability and subsequently conducts a stan-

dard chi-squared stability test on the coe¢ cients of interest allowing the other coe¢ cients

to change at the breakpoints estimated by minimizing the sum of squared residuals in the

pure structural change model. The relevant asymptotic theory is provided and simulations

showed the procedure to work well in a variety of scenarios. An application to estimating

the welfare cost of US in�ation illustrates the relevance of the procedure in practice.
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Table 1: Size and power of the one-step partial KP and two-step (TS) tests (�100), 5% nominal level

T = 120 T = 240
DGP 1 2 3 4 1 2 3 4

Panel A: Testing for a partial change in the coe¢ cient of an I(1) regressor (�t)
a (i.i.d. errors) KP 3.66 98.83 50.92 93.44 4.28 100 73.93 99.82

TS 2.29 97.06 8.02 97.39 2.63 100 7.05 100
b (AR(1) errors) KP 2.80 75.90 10.98 66.83 3.67 98.78 27.21 95.20

TS 1.42 59.27 3.96 61.27 1.79 97.10 6.86 97.48
c (MA(1) errors) KP 2.70 99.92 65.80 96.82 1.88 100 85.26 99.97

TS 3.92 99.70 4.77 99.74 2.02 100 2.97 100
Panel B: Testing for a partial change in intercept (ct) with an I(1) regressor
a (i.i.d. errors) KP 4.43 81.31 84.72 84.88 4.79 92.64 97.12 93.56

TS 2.31 8.40 59.94 66.24 2.64 6.21 81.53 82.19
b (AR(1) errors) KP 4.27 44.74 28.86 50.09 4.87 71.55 59.32 73.90

TS 1.70 8.95 11.89 27.95 2.12 9.34 33.49 52.35
c (MA(1) errors) KP 1.10 88.69 97.27 91.44 1.08 97.74 99.94 98.09

TS 2.98 3.88 81.33 82.66 1.63 2.53 94.76 94.20
Panel C: Testing for a partial change in the coe¢ cient of an I(0) regressor (�t)

DGP 5 6 7 8 5 6 7 8
a (i.i.d. errors) KP 47.25 95.36 33.82 97.92 81.10 97.11 64.79 98.78

TS 6.42 99.86 5.07 99.88 6.17 100 6.33 100
b (AR(1) errors) KP 38.51 93.27 20.31 97.16 72.86 96.8 44.14 98.08

TS 1.80 68.5 0.33 70.24 3.89 99.67 1.61 99.66
c (MA(1) errors) KP 48.32 95.73 33.7 98.24 82.59 97.53 62.76 98.84

TS 6.46 99.95 6.07 99.95 5.61 100 5.85 100
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Table 2: Size and power of two-step (TS and TSi) tests (�100), 5% nominal level, larger number of regressors

T = 120 T = 240
DGP 10 20 30 40 10 20 30 40

Panel A: Testing for a partial change in the coe¢ cient of an I(1) regressor (�t)
a (i.i.d. errors) TS1st 4.51 93.53 35.25 94.56 4.59 99.97 70.1 100

TS 2.25 89.83 6.81 90.91 2.14 99.95 7.52 99.99
TSi1st 5.29 97.53 30.8 94.97 5.73 99.99 53.15 99.92
TSi 2.38 93.17 5.39 91.25 2.38 99.97 5.83 99.91

b (AR(1) errors) TS1st 2.32 44.94 5.76 47.64 2.83 92.26 13.76 92.39
TS 1.13 38.32 2.1 39.99 1.22 90.89 3.67 91
TSi1st 5.15 72.98 9.97 68.76 5.57 98.16 17.57 96.09
TSi 2.18 60.09 3.21 56.62 2.32 96.27 4.23 94.34

c (MA(1) errors) TS1st 18.36 98.77 62.38 99.04 8.96 100 95 100
TS 12.09 97.9 11.05 98.21 5.53 100 5.8 100
TSi1st 5.72 99.83 45.72 98.34 3.47 100 71.53 100
TSi 4.00 98.87 7.36 97.47 2.08 100 4.48 100

Panel B: Testing for a partial change in intercept (ct) with an I(1) regressor
a (i.i.d. errors) TS1st 4.53 93.78 34.83 94.73 5.12 99.99 69.07 100

TS 1.95 9.64 16.8 29.7 1.95 6.96 37.22 42.98
TSi1st 5.01 77.05 54.98 80.06 5.92 93.19 82.79 94.47
TSi 1.98 7.64 24.07 24.02 2.11 6.52 41.46 39.99

b (AR(1) errors) TS1st 2.55 46.15 5.25 46.9 2.78 92.53 12.92 92.37
TS 1.33 8.26 2.82 11.7 1.29 10.73 6.89 22.35
TSi1st 5.53 41.47 15.96 44.63 5.79 68.69 31.76 70.86
TSi 2.54 6.55 7.32 10.43 2.35 7.69 13.94 16.34

c (MA(1) errors) TS1st 19.43 98.53 62.68 98.93 8.74 100 95.3 100
TS 10.61 8.81 35.11 43.87 4.64 4.62 66.73 66.33
TSi1st 3.51 85.15 82.53 87.62 2.14 97.9 98.91 98.1
TSi 1.54 7.35 42.6 38.25 0.9 4.48 68.36 64.73

Panel C: Testing for a partial change in the coe¢ cient of an I(0) regressor (�t)
DGP 50 60 70 80 50 60 70 80

a (i.i.d. errors) TS1st 81.03 99.83 36.09 99.91 99.44 100 72.09 100
TS 6.82 99.83 4.66 99.91 6.39 100 6.08 100
TSi1st 45.65 98.4 24.4 99.3 79.64 98.78 47.25 99.56
TSi 4.45 98.4 3.88 99.3 5.27 98.78 4.39 99.56

b (AR(1) errors) TS1st 10.06 69.09 2.59 68.6 36.72 99.23 5.75 99.22
TS 0.93 69.09 0.42 68.6 2.56 99.23 0.95 99.22
TSi1st 37.91 97.47 19.99 99.12 72.75 98.93 37.24 99.41
TSi 3.86 97.47 3.11 99.12 4.81 98.93 4.03 99.41

c (MA(1) errors) TS1st 82.55 99.95 40.47 99.92 99.67 100 83.49 100
TS 6.75 99.95 5.74 99.92 6.15 100 6.61 100
TSi1st 42.97 98.32 21.92 99.41 79.3 98.88 43.65 99.51
TSi 4.13 98.32 4.45 99.41 5.13 98.88 4.21 99.51

Table 3: Two-step procedure & Arai-Kurozumi (AK) test results, 5% signi�cance level

Log-Log form critical values Semi-Log form critical values
Panel A: Unrestricted model
AK Test 0.056 0.115 0.062 0.110
First 423.03 14.47 511.15 14.47
Second : at 6.86 3.84 7.33 3.84
Second : ct 7.03 3.84 7.05 3.84
Second : bt 5.02 3.84 1.25 3.84
Panel B: Restricted model
AK Test 0.090 0.147 0.068 0.095
First 613.14 12.25 674.48 12.25
Second : at 6.09 5.99 19.03 7.81
Second : bt 13.83 5.99 13.24 7.81
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Table 4: Welfare cost of in�ation estimates, with/without restriction, log-log/semi-log form, 95% con�dence interval (C.I.)

Regime Dates ât ĉt b̂t Welfare cost (%)
0% 2% 10%

C:I:(ât) C:I:(ĉt) C:I:(b̂t) C:I: C:I: C:I:
Panel A1: Unrestricted model, log-log form
1 1959:Q1-1993:Q3 1.40 .56 -.24 .20 .42 .61

[.51,2.29] [.47,.64] [-.30,-.18] [.18,.22] [.39,.46] [.57,.66]
2 1993:Q4-2010:Q4 9.96 -.33 -.11 .05 .11 .17

[8.93,10.98] [-.46,-.21] [-.15,-.07] [.04,.05] [.09,.13] [.14,.20]
mean - 5.68 .11 -.18 .12 .27 .39

- [5.36,5.99] [.07,.15] [-.19,-.16] [.11,.13] [.25,.29] [.36,.42]
Panel A2: Restricted model, log-log form
1 1959:Q1-1968:Q3 -2.51 - -.32 .34 .67 .93

[-2.57,-2.46] - [-.33,-.30] [.30,.39] [.60,.74] [.84,1.02]
2 1968:Q4-1976:Q1 -1.97 - -.11 .08 .19 .29

[-2.15,-1.79] - [-.16,-.06] [.03,.14] [.08,.31] [.13,.46]
3 1976:Q2-2010:Q4 -2.12 - -.08 .04 .10 .16

[-2.20,-2.04] - [-.11,-.05] [.04,.05] [.09,.11] [.14,.17]
mean - -2.20 - -.17 .15 .32 .46

- [-2.27,-2.13] - [-.19,-.15] [.13,.18] [.27,.37] [.40,.52]
Panel B1: Unrestricted model, semi-log form
1 1959:Q1-1993:Q2 2.58 .53 -3.73 .04 .22 .52

[2.05,3.12] [.46,.59] [-4.05,-3.42] [.03,.04] [.21,.24] [.49,.55]
2 1993:Q3-2010:Q4 9.93 -.28 -3.73 .02 .14 .32

[8.99,10.87] [-.38,-.18] [-4.05,-3.42] [.02,.02] [.13,.14] [.30,.34]
mean - 6.25 .12 -3.73 .03 .18 .42

- [5.96,6.56] [.09,.16] [-3.98,-3.50] [.03,.03] [.17,.19] [.40,.44]
Panel B2: Restricted model, semi-log form
1 1959:Q1-1968:Q2 -1.13 - -8.94 .11 .58 1.17

[-1.16,-1.09] - [-9.72,-8.15] [.10,.12] [.53,.64] [1.09,1.25]
2 1968:Q3-1975:Q4 -1.50 - -2.36 .02 .15 .36

[-1.54,-1.46] - [-3.28,-1.43] [.01,.03] [.08,.22] [.20,.51]
3 1976:Q1-1983:Q3 -1.71 - -2.24 .02 .12 .28

[-1.77,-1.65] - [-2.86,-1.63] [.01,.02] [.10,.14] [.24,.33]
4 1983:Q4-2010:Q4 -1.76 - -2.28 .02 .11 .27

[-1.78,-1.74] - [-2.57,-1.99] [.02,.02] [.10,.12] [.25,.29]
mean - -1.53 - -3.96 .04 .24 .52

- [-1.55,-1.50] - [-4.36,-3.55] [.04,.05] [.22,.26] [.47,.57]

Table 5: Welfare cost of in�ation estimates, restricted model imposed with break dates estimated from the unrestricted model,

log-log/semi-log form, 95% con�dence interval (C.I.)

Regime Dates ât ĉt b̂t Welfare cost (%)
0% 2% 10%

C:I:(ât) C:I:(ĉt) C:I:(b̂t) C:I: C:I: C:I:
Panel A: Restricted model, imposed with break dates estimated from unrestricted model, log-log form
1 1959:Q1-1993:Q3 -2.94 - -.42 .49 .88 1.16

[-3.24,-2.64] - [-.54,-.29] [.41,.60] [.76,1.02] [1.03,1.33]
2 1993:Q4-2010:Q4 -2.34 - -.14 .08 .19 .28

[-2.70,-1.98] - [-.25,-.04] [.06,.10] [.14,.23] [.22,.35]
mean - -2.64 - -.28 .29 .53 .72

- [-2.72,-2.56] - [-.31,-.26] [.25,.34] [.47,.61] [.65,.81]
Panel B: Restricted model, imposed with break dates estimated from unrestricted model, semi-log form
1 1959:Q1-1993:Q2 -1.31 - -6.87 .07 .42 .89

[-1.61,-1.00] - [-10.37,-3.36] [.06,.09] [.36,.48] [.78,.99]
2 1993:Q3-2010:Q4 -1.70 - -3.88 .03 .19 .43

[-1.75,-1.65] - [-5.33,-2.44] [.02,.04] [.15,.22] [.36,.50]
mean - -1.50 - -5.38 .05 .30 .66

- [-1.54,-1.47] - [-6.10,-4.70] [.04,.06] [.26,.34] [.59,.73]

19



Appendix A: Proofs

For any matrixWT�q = (w1; :::; wT )
0, de�ne the projection matrices PW = W (W

0
W )�1W

0
,

MW = IT�q � PW and the matrix �W that diagonally partitions W at T1, i.e., �W =
diag(W1;W2); where Wi = (wTi�1+1; :::; wTi)

0 (i = 1; 2) with T0 = 0 and T2 = T . Also, let
Y = (y1; :::; yT )

0, �T�1 = (1; :::; 1)0, u = (u1; :::; uT )0, Zf = (zf;1; :::; zf;T )0, Zb = (zb;1; :::; zb;T )0.

Proof of Theorem 1: We prove the result for case (a), as the proof of case (b) follows
using similar arguments. Throughout, the true values are denoted with a superscript 0. Let

� = (0; :::; 0| {z }
1�[�0T ]

; �c�T + z
0
f;[�0]T+1�fT

�1=2�T ; :::; �c�T + z
0
f;T�fT

�1=2�T| {z }
1�[(1��0)T ]

)0

and ��0b = (�
00
b1; �

00
b2)

0. Under H0;B, �
0
b1 = �

0
b2 = �

0
b so that the DGP is

Y = c01�+ Zf�
0
f + Zb�

0
b + u+ � = c

0
1�+ Zf�

0
f +

�Zb��
0
b + u+ �: (A.1)

Let G0 = [�; Zf ; Zb] = (G0;1; :::; G0;T )0. We �rst derive the limiting behavior of the statistic
FT;B(�

0). The restricted sum of squared residuals is

SSR0 =
PT

t=1 eu2t = (u+ �)0MG0(u+ �) = (u+ �)
0(u+ �)� (u+ �)0PG0(u+ �)

= u0u+ 2u0� + �0� � (u0PG0u+ 2u0PG0� + �0PG0�): (A.2)

De�ning JT = diag(T�1=2; T�1Iqf ; T
�1Iqb), we have

T�1=2��1T JTG
0
0� =

PT
t=1 JTG0;tT

�1=2��1T �t = T
�1PT

t=[�0T ]+1f(T 1=2JT )G0;tgf��1T �tg

) (
R 1
�0
(�c + �

0
fB

f
z (r))dr;

R 1
�0
Bf 0z (r)(�c + �

0
fB

f
z (r))dr;

R 1
�0
Bb0z (r)(�c + �

0
fB

f
z (r))dr)

0 = Op(1):

Then it follows that T�1u0u = Op(1), T�1=2��1T u
0� = T�1=2u0(��1T �) = Op(1)

T�1��2T �
0� = T�1(��1T �)

0(��1T �) = Op(1)

u0PG0u = u
0G0(G

0
0G0)

�1G00u = fu0G0JTgf(JTG00G0JT )�1gfJTG00ug = Op(1)
T�1=2��1T u

0PG0� = fu0G0JTgf(JTG00G0JT )�1gfT�1=2��1T JTG00�g = Op(1)
T�1��2T �

0PG0� = fT�1=2��1T �0G0JTgf(JTG00G0JT )�1gfT�1=2��1T JTG00�g = Op(1): (A.3)

Let G1 = [�; Zf ; �Zb]. The unrestricted sum of squared residuals evaluated at � 0 is

SSRB(�
0) =

PT
t=1 û

2
t = u

0u+ 2u0� + �0� � (u0PG1u+ 2u0PG1� + �0PG1�) (A.4)

where the orders of u0PG1u, u
0PG1� and �

0PG1� are the same as those of u
0PG0u, u

0PG0� and
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�0PG0�; respectively, stated in (A:3). Combining (A:2) and (A:4), we have:

SSR0 � SSRB(�)
= (u0PG1u+ 2u

0PG1� + �
0PG1�)� (u0PG0u+ 2u0PG0� + �0PG0�)

= [Op(1) +Op(T
1=2�T ) +Op(T�

2
T )]� [Op(1) +Op(T 1=2�T ) +Op(T�2T )] = Op(T�2T ) (A.5)

For the long-run variance estimate �̂2B(�
0), we have, denoting b0T = bT (�

0),

�̂2B(�
0) = T�1

PT
t=1 eu2t + 2PT�1

j=1 w(j=b
0
T )T

�1PT
t=j+1 euteut�j (A.6)

= [T�1
PT

t=1 u
2
t +Op(�

2
T )] + 2

PT�1
j=1 w(j=b

0
T )T

�1PT
t=j+1 utut�j +Op(b

0
T�

2
T ) (A.7)

= T�1
PT

t=1 u
2
t + 2

PT�1
j=1 w(j=b

0
T )T

�1PT
t=j+1 utut�j + op(1) +Op(b

0
T�

2
T ) (A.8)

= �2 +Op(b
0
T�

2
T )

The equality of the �rst term in (A:6) with the term within square brackets in (A:7) follows
from (A:3): For the second term in (A:6), note that, for a given j, eut�j = (ut�j + �t�j) �
G00;t�j(G

0
0G0)

�1G00(u+ �). It follows that

T�1
PT

t=j+1 euteut�j = T�1PT
t=j+1[(ut + �t)�G00;t(G00G0)�1G00(u+ �)][(ut�j + �t�j)

�G00;t�j(G00G0)�1G00(u+ �)]
= T�1

PT
t=j+1[utut�j + ut�t�j + �tut�j + �t�t�j

� (ut + �t)G00;t�j(G00G0)�1G00(u+ �)� (ut�j + �t�j)G00;t(G00G0)�1G00(u+ �)
+ (u+ �)0G0(G

0
0G0)

�1G0;tG
0
0;t�j(G

0
0G0)

�1G00(u+ �)]

= T�1
PT

t=j+1 utut�j + T
�1[Op(T

1=2�T ) +Op(T
1=2�T ) +Op(T�

2
T )

+Op(T�
2
T ) +Op(T�

2
T ) +Op(T�

2
T )]

= T�1
PT

t=j+1 utut�j +Op(�
2
T ), uniformly in j. (A.9)

Using (b0T )
�1PT�1

j=1 jw(j=b0T )j !
R +1
0
jw(x)jdx < 1 (e.g. Andrews, 1991), we have from

(A:9),

(b0T�
2
T )
�1f
PT�1

j=1 w(j=b
0
T )T

�1PT
t=j+1 euteut�j �PT�1

j=1 w(j=b
0
T )T

�1PT
t=j+1 utut�jg

� (b0T )�1
PT�1

j=1

��w(j=b0T )�� sup
j�1

jv�2T T�1
PT

t=j+1 euteut�j � v�2T T�1PT
t=j+1 utut�jj

= [(b0T )
�1PT�1

j=1 jw(j=b0T )]Op(1) = Op(1); (A.10)

which establishes (A:8).
Combining the results of the numerator (A.5) and the denominator (A.8) of the statistic

FT;B(�
0), we have: FT;B(� 0) = Op(T�2T )=[�

2+Op(b
0
T�

2
T )] = Op((b

0
T )
�1T ) if b0T�

2
T

p!1, and is
Op(T�

2
T ) otherwise. The result then follows since supFT;B(�) = sup�2��FT;B(�) � FT;B(� 0).
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This completes the proof of Theorem 1.

Proof of Theorem 2: We only prove (a), as the proof of (b) follows using similar arguments.
We �rst show that F (2)T;B(�

0) has a limiting �2(qb) distribution. For the restricted regression
under H0;B, we denote the design matrix as X0(�

0) = [��0; �Z0f ; Zb], where ��
0 [ �Z0f ] is a matrix

which diagonally partitions � [Zf ] at the true break point T 01 . For the unrestricted regression,
we similarly have X1(�

0) = [��0; �Z0f ;
�Z0b ]. For notational simplicity, we simply drop the index

� 0 in X0(�
0) and X1(�

0). First, we note that Zb = �Z0bE, where E = (Iqb ; Iqb)
0. Note that

X0 = X1H, where H = diag(I2(1+qf ); E2qb�qb). It then follows that

SSR0(�
0)� SSRB(� 0) = u0MX0u� u0MX1u = u

0(PX1 � PX0)u:

Note that PX01 = PX1�PX0 is an orthogonal projection matrix since the column space ofX0 is
included in that of X1. Hence, there exists a (T � qb) matrix X01 with rank qb that satis�es
PX01 = X01(X

0
01X01)

�1X 0
01. Then, applying a central limit theorem conditional on X01,

we have that [SSR0(� 0) � SSRB(� 0)]=�2 = u0PX01u=�2
d! �2(qb). Since the limit does not

depend on the conditioning matrixX01, it is also the unconditional distribution. Finally, since
�̂2B(�

0)
p! �2 underH0;B, it follows that F

(2)
T;B(�

0) = [SSR0(�
0)�SSR1(� 0)]=�̂2B(� 0)

d! �2(qb).

We next prove that F (2)T;B(�̂) = F
(2)
T;B(�

0) + op(1). Let T̂1 be the estimated break date,
i.e., T̂1 = [T �̂ ]. From Kejriwal and Perron (2008a, Theorem 2), �̂ is T�2T -consistent for
� 0. Thus T̂1 = T 01 + Op(�

�2
T ). Let T̂1 = T 01 + [s�

�2
T ], z1f;t = (1; z0f;t)

0, �cf = (�c; �
0
f )
0,

Dcf;T = diag(1; T�1=2Iqf ). Denote SSR as the sum of squared residuals from estimating the
model without breaks, i.e., �c = 01�1, �b = 0qb�1 and �f = 0qf�1. Following Bai (1997,
Lemma A.5), consider T̂1 � T 01 . Then we can write

SSR0(�
0)� SSR0(�̂)

= [SSR� SSR0(�̂)]� [SSR� SSR0(� 0)]
= ��0cf [�2TDcf;T (

PT 01
t=T̂1+1

z1f;tz
0
1f;t)Dcf;T ]�cf + 2�

0
cf [�TDcf;T

PT 01
t=T̂1+1

z1f;tut] + op(1)

) �jsj�0cf

0@ 1 W f
z (�

0)0(
ffzz )
1=2

(
ffzz )
1=2W f

z (�
0) (
ffzz )

1=2W f
z (�

0)W f
z (�

0)0(
ffzz )
1=2

1A�cf
+2�0cf

0@ �Wc(�s)

�Wc(�s)(
ffzz )1=2W f
z (�

0)

1A � L1(s); (A.11)

where Wc(:) and W f
z (:) (qf � 1) are independent Brownian motions on [0;1). Let G0;t =
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(1; z0f;t; z
0
b;t)

0 = (z01f;t; z
0
b;t)

0 and DT = diag(1; T
�1=2Iqf ; T

�1=2Iqb). Under H0;B, �b = 0qb, and

SSRB(�
0)� SSRB(�̂) = �[�0cf ; 00qb ](�

2
TDTf

PT 01
t=T̂1+1

G0;tG
0
0;tgDT )[�

0
cf ; 0

0
qb
]0

+ 2[�0cf ; 0
0
qb
](DT�Tf

PT 01
t=T̂1+1

G0;tutg) + op(1)) L1(s): (A.12)

Thus, from (A:11) and (A:12); we have

SSR0(�̂)� SSRB(�̂) = SSR0(� 0)� SSRB(� 0) + op(1)

which also holds for the case T̂1 > T 01 using a symmetric argument. For �̂
2
B(�̂), following

similar arguments as in the proof of Theorem 1, we can decompose �̂2B(�̂) into its variance and
covariance components and adapt the technique used in (A.11) to show that each component
converges to the corresponding component of �̂2B(�

0). The details are omitted. Combining
these results, the proof is complete since

F
(2)
T;B(�̂) =

SSR0(�̂)� SSRB(�̂)
�̂2B(�̂)

=
SSR0(�

0)� SSRB(� 0) + op(1)
�̂2B(�

0) + op(1)

= F
(2)
T;B(�

0) + op(1)
d! �2(qb)

Proof of Corollary 1: We prove the result under the null hypothesis H0;B, the proof under
H0:C being entirely analogous. De�ne the following events:

S1 = fsupFT;A(�) > cvA(�)g
S2 =

n
F
(2)
T;B(�̂) > cvB(�)

o
Then we have

P
h
fsupFT;A(�) > cvA(�)g \

n
F
(2)
T;i (�̂) > cvi(�)

oi
= P (S1 \ S2) = P (S1)P (S2jS1)

We consider the following two cases depending on whether a break exists in the coe¢ cients
not of interest under the null.

Case 1: �c 6= 0 and/or �f 6= 0: As T ! 1; we have P (S1) ! 1 (since the �rst step is
consistent), P (S2jS1)! � (by Theorem 2). Thus, P (S1 \ S2)! �.

Case 2: �c = �f = 0. As T !1; we have P (S1)! � (by Theorem 1 of Kejriwal and
Perron, 2010). Since P (S2jS1) � 1; limT!1P (S1 \ S2) � �. Note that P (S2jS1) does not
converge to � since the second step test does not have a limiting chi-squared distribution
which in turn is due to the fact that the break fraction estimate has a random limit in this
case with no break in any of the coe¢ cients.

Combining Cases 1 and 2, the result follows. The proof of Corollary 1 is complete.
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Appendix B: Additional Monte Carlo Results

This Appendix contains the results of additional Monte Carlo simulations to assess the
�nite sample performance of the proposed two step procedure. Speci�cally, this set of sim-
ulations examines the impact of the break magnitude and the sample size on test size for
DGPs 2b-3b. These simulations are motivated by the observation in Table 1 that the size
distortions incurred by the two step procedure for DGPs 2b-3b do not decrease as the sample
size increases.
Table B.1 presents the results. Panel A reports the rejection frequencies for T between

60 and 600 with the break magnitude �xed. We include the �rst step, second step and �nal
rejection frequencies for the two step procedure to investigate the contribution of each to the
�nal test outcome. The following patterns are worth noting. First, the empirical size does
not monotonically approach the nominal size (5%) as T increases, i.e., it initially increases
and then decreases. Second, while the increase in the �rst step rejection frequencies re�ects
the expected increase in power, the second step rejection frequencies decrease as T increases,
re�ecting the reduced estimation uncertainty about the break date. The evolution of the
�nal rejection rate (the product of the �rst and second stage rates) as a function of T thus
depends on the rate of increase in �rst stage power vis-a-vis the rate of reduction in the
second stage size.
Panel B explores the behavior of test size as a function of the break magnitude when

T = 120. The results resemble those in Panel A, with a hump-shaped pattern for the �nal
rejection rate, caused by an increase in the �rst-stage power accompanied by a reduction in
sampling uncertainty about the break date, as the magnitude of the break increases. Figure
1 summarizes the results in Table B.1 graphically, plotting the �rst, second and �nal stage
rejection rates as a function of T for a given break size (�c = 1;�� = 0:4) and as a function
of break size for a given sample size (T = 120).
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Table B.1: Rejection rates of the one-step partial KP and two-step (TS) tests for
DGP-2b,3b as a function of the sample size and break magnitude, 5% nominal level

Panel A: �c = 1, �� = 0.4, with di¤erent T .

T 60 120 180 240 300 360 480 600

DGP-2b KP 19.77 44.86 61.29 71.20 77.54 81.72 86.32 88.81

TS 5.77 9.12 10.03 9.29 8.44 7.77 7.27 6.92

TS1st 22.81 65.56 89.91 97.85 99.61 99.94 100 100

TS2nd 25.31 13.91 11.16 9.49 8.47 7.77 7.27 6.92

DGP-3b KP 5.87 11.14 18.85 27.10 34.55 41.29 52.32 60.16

TS 2.95 3.87 5.51 6.76 7.71 8.15 8.40 8.26

TS1st 8.54 15.75 29.72 44.54 56.91 66.55 79.63 86.87

TS2nd 34.58 24.55 18.53 15.17 13.55 12.25 10.55 9.51

Panel B: T = 120, with di¤erent break magnitude �� of the parameter not under test.

�� 0.1 0.2 0.3 0.4 0.5 1 1.5 2

DGP-2b KP 12.12 27.72 39.06 44.60 47.84 44.51 39.44 36.58

TS 3.16 5.82 7.81 9.01 9.88 8.96 8.10 7.82

TS1st 8.67 27.78 48.94 65.42 78.23 98.72 99.96 100

TS2nd 36.46 20.96 15.95 13.77 12.64 9.08 8.11 7.82

�c 0.2 0.4 0.6 0.8 1 2 3 4

DGP-3b KP 3.29 4.27 5.87 8.31 11.21 26.36 33.64 35.26

TS 1.53 1.86 2.37 3.10 3.91 7.06 7.62 7.36

TS1st 2.85 4.18 6.48 10.42 15.73 57.18 85.56 96.32

TS2nd 53.65 44.38 36.50 29.76 24.87 12.34 8.90 7.64
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Figure 1: Rejection rates of two-step test for DGP-2b and DGP-3b as a function of sample
size/break magnitude.
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