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Abstract
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proxy approach by adopting a methodology that models the skills and their prices using
an unobserved factor structure in which the factor loadings represent the latent skills and
the common factors their associated prices. Our factor model approach allows consistent
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a flexible test bed for quantifying the contribution of the proxies to the aggregate least
squares bias. The factor model estimators may also be viewed as implicitly estimating
the measurement error inherent in the proxies. Our empirical results using panel data
from the NLSY79 show that the estimated ability bias lies between 39-51% for our most
general specification. A bias decomposition analysis indicates that the commonly used
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1 Introduction

Estimating the returns to schooling has been an issue of long-standing interest in labor

economics and the economics of education. Understanding the causal relationship between

earnings and education is crucial for determining the effect of policy interventions. The

traditional workhorse in empirical analyses of earnings determination has been the so-called

Mincer regression (Mincer, 1974) that relates the log of earnings to years of schooling and

a quadratic function of labor market experience. The challenge to obtaining an unbiased

estimate of the returns to schooling arises from the fact that unobserved ability is corre-

lated with both earnings and schooling so that the ordinary least squares (OLS) estimator

is subject to an omitted variable bias. Under the assumption that the correlations are both

positive, OLS leads to an upward biased estimate of the returns to schooling. This issue of

ability bias has spawned the development of a vast literature that has employed a variety

of econometric techniques to control for this bias thereby producing a wide range of esti-

mates which are often in conflict with each other. The more commonly adopted techniques

include instrumental variables, utilizing within family variation in schooling, and the use of

observable proxies for ability [see Card (2001), Heckman et al. (2006) and Caplan (2018)

for comprehensive reviews of this literature]. This paper focuses on the third approach,

henceforth referred to as the ability proxy approach.

The ability proxy approach attempts to control for ability bias by augmenting the re-

gression model with various measures of cognitive and non-cognitive abilities. Cognitive

abilities are typically measured using IQ, GPA, scores on the Armed Forces Qualification

Test (AFQT) or individual/principal components of the Armed Services Vocational Aptitude

Battery (ASVAB) test. Non-cognitive abilities are typically measured using the Rotter Locus

of Control Scale, the Rosenberg Self-Esteem Scale or their principal components. Heckman

et al. (2018) provide a comparison of standard OLS estimates to estimates controlling for
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ability proxies using Bartlett cognitive and non-cognitive factors, and find that the latter are

about 20-50% smaller, depending on the specification. Ashworth et al. (2020) report similar

reductions in comparing the basic Mincer regressions to regressions that include ability prox-

ies and actual experience using panel data. Caplan (2018) suggests informal bounds on the

degree of ability bias based on a detailed survey of the literature that employs ability proxies:

cognitive and non-cognitive ability bias ranges between 20-30% and 5-15% respectively, with

overall ability bias between 25-45%.

The success of the ability proxy approach in delivering a reliable estimate of the returns

to schooling depends critically on the extent to which these proxies represent the underlying

true unobserved abilities. A major criticism of this approach is that the proxies, particularly

those measuring non-cognitive ability or “soft skills” such as conscientiousness, conformity,

self-esteem, etc., are far from perfect as they are likely affected by family background char-

acteristics (Carneiro et al., 2003; Heckman et al., 2006). In fact, even cognitive measures

such as AFQT scores are not without their critics; for instance, Das and Polachek (2019)

argue that AFQT scores reflect analytic academic capabilities but do not get at facets of

ability that matter with respect to real-world accomplishments. Griliches (1977) shows that

mismeasured ability variables lead to biased estimates and proposes controlling for measure-

ment error by instrumenting for schooling and test scores using family background variables.

Such an approach, however, relies on the assumption being that the family variables affect

earnings only via schooling or test scores. A further potential weakness of the proxy ap-

proach is that it is predicated on the assumption that education does not enhance ability,

i.e., no reverse causation (Hansen et al., 2004). If this assumption fails, correcting for ability

leads to misleadingly low estimates of the schooling effect and hence overstates the severity

of ability bias.1 This issue can be addressed by measuring ability and then estimating the

1See, e.g., Belzil and Hansen (2002), Hansen et al. (2004), Williams (2019).
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effect of subsequent education on earnings.2

Despite the aforementioned limitations, a rigorous assessment of the effectiveness of the

ability proxy approach in estimating the magnitude of ability bias has received little atten-

tion. Our paper attempts to fill this gap. We undertake a formal evaluation of this approach

by adopting a methodology that models the skills and their prices using an unobserved factor

structure in which the factor loadings represent the latent skills and the common factors their

associated prices. Skills and prices are both allowed to be correlated with schooling. The fac-

tor model (FM, henceforth) approach, developed by Pesaran (2006) and Bai (2009), exploits

the large panel nature of the dataset and the within individual variation in earnings and

schooling to achieve identification and thus facilitates consistent estimation of the returns to

schooling without the need to rely on test score proxies. The approach therefore provides a

flexible test bed for quantifying the contribution of the proxies to the aggregate least squares

bias. Bias decomposition methods are used to ascertain the proportion of bias that can be

explained by each of the proxies or their principal components. Using the estimated factor

loadings, we also conduct a battery of direct tests for the viability of the proxies. While

these tests have typically been used to evaluate observable proxies for the common factors

in macroeconomic/financial applications (Bai and Ng, 2006), we appear to be the first (to

our knowledge) to apply them for the purpose of evaluating proxies for the factor loadings.

Finally, we formally connect the FM and ability proxy approaches by showing that the FM

estimators may be viewed as implicitly estimating the measurement error inherent in the

proxies.

Our empirical results using panel data from the National Longitudinal Survey of Youth

(NLSY79) show that the OLS point estimate of the returns to schooling is about 8% and lies

within the range typically reported in the literature [see, e.g., Gunderson and Oreopolous

2Research on cognitive ability bias find little evidence favoring reverse causation when IQ or AFQT and
related tests are used to measure cognitive ability. With regard to non-cognitive abilities, the evidence is
mixed [see Caplan (2018) for further discussion and references].
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(2020)]. The FM estimates based on our most general specification are discernibly smaller,

between 3.9-4.9%, depending on the particular FM estimator employed so that the estimated

OLS bias lies between 39-51%. A bias decomposition analysis indicates that, conditional on

the factor structure, the commonly used ability proxies can explain very little of the estimated

bias. Tests for directly evaluating the efficacy of the proxies further confirm the inadequacy

of the proxies in capturing the underlying latent skills.

The FM approach to estimating the effect of schooling on earnings was recently employed

by Westerlund and Petrova (2018) and Kejriwal et al. (2020) (KLT, henceforth). Westerlund

and Petrova (2018) apply the FM approach to estimate the returns to schooling using data

from the NLSY79 and find smaller returns than OLS but do not provide an evaluation of

the proxy approach. KLT employ a unique panel dataset on education and earnings over

the period 1978-2011 based on respondents from the Survey of Income and Program Par-

ticipation (SIPP) linked with tax and benefit data from the Internal Revenue Service (IRS)

and Social Security Administration (SSA). Their FM estimates of the returns to schooling

are considerably smaller than the OLS estimates, a finding consistent with the results of the

current paper.3 Their analysis, however, does not consider the ability proxy approach given

that the SIPP does not provide individual measures of ability. Accordingly, the objective of

our paper is to compare and contrast the estimates obtained using the OLS, proxy and FM

approaches with data from the NLSY79 and thereby directly assess the effectiveness of the

proxies. Another important difference with the analysis in KLT is that they restrict their

sample to individuals with positive earnings in each year (i.e., a balanced panel) while we

allow for individuals with missing data in our sample. Consequently, the methods we apply

are modifications of those employed in KLT to deal with unbalanced panels.

The rest of the paper is organized as follows. Section 2 presents the empirical framework

3Their preferred specification yields a point estimate of the average marginal returns to schooling of about
2.7% relative to OLS and 2SLS estimates which lie in the range 10.7-44.4%.
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and describes the econometric methods employed. Section 3 details the data used and the

associated summary statistics. Section 4 presents the empirical results. Section 5 concludes.

Supplementary materials (not for publication) are included in Appendices A-C.

2 Empirical Framework

This section lays out the factor model framework and provides a description of the various

econometric techniques that are used in the empirical analysis. Section 2.1 details the two

FM estimators, namely, the interactive fixed effects and common correlated effects estima-

tors. It also provides a formal connection between the ability proxy and FM approaches via

a measurement error interpretation of the FM estimators. Section 2.2 presents a decompo-

sition, originally developed by Gelbach (2016) in the context of the linear regression model,

of the bias incurred by the OLS estimator into the components explained by the proxies and

the factor structure in order to assess their relative contributions. Section 2.3 describes a

set of procedures designed to test the validity of the ability proxies based on the methods

developed by Bai and Ng (2006).

2.1 The Factor Model And Related Estimators

The unbalanced panel data factor model is specified as

yit = ci + sitβ1 + s2itβ2 + eitγ1 + e2itγ2 + siteitγ3 + p′iδt + vit (1)

vit = λ′ift + uit (2)

i = 1, ..., N ; t = ti ∈ Ji ≡ {ti(1), ti(2), ..., ti(Ti)}

where yit and sit represent, respectively, the (log of) hourly wage and the years of schooling

completed for person i at period t, pi is a (k×1) vector of ability proxies with potentially time-
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varying returns δt, and eit is a measure of labor market experience.4 The set Ji includes the

time indices of the non-missing observations for person i. For each i, there are Ti observations

available at times {ti(1), ti(2), ..., ti(Ti)} and Ti can be different across i. Let T denote the

length of the complete time period, i.e., T = max
i≤N
{ti(Ti)}.

The error term vit has an interactive fixed effects structure and is composed of a common

component (λ′ift) and an idiosyncratic component (uit). Here λi represents a (r × 1) vector

of unmeasured skills (factor loadings), such as innate abilities, while ft is a (r × 1) vector

of unobserved, possibly time-varying, prices (or common factors) of the unmeasured skills.5

Both the loadings and factors are allowed to be correlated with schooling so that the same

skills and prices that influence earnings may also influence schooling.6 The number of com-

mon components r is assumed unknown. Note that while the returns to the skill components

(λ′ift) are identified, the skills and their prices are not separately identified.7 The estimated

factors and loadings thus only estimate a rotation of the underlying true parameters and so

cannot be given a direct economic interpretation.8

4As in KLT, we use age and its square to measure actual experience. An alternative measure that uses
potential experience defined as (age-schooling-6) is also common in this literature [e.g., Angrist and Newey
(1991)]. This measure is not appropriate in our context given that individuals may simultaneously work
and go to school in our sample [see also Ginther (2000) for further arguments favoring age over potential
experience].

5While we refer to the factor loadings as skills/abilities, there are other time-invariant determinants with
possibly time-varying prices, such as motivation and persistence, that can be captured by the factors loadings
as well.

6More formally, the factors and factor loadings from equation (2) may also appear in a model for the
independent variables. The two estimators we describe in sections 2.1.1 and 2.1.2 make somewhat different
assumptions about the model for the independent variables. Bai (2009) allows the loadings (λi) alone, the
factors (ft) alone, or their interaction (λ′ift) to enter the model for schooling. Pesaran (2006) allows the
same factors to enter the equation for schooling with possibly different loadings from those that enter the
equation for earnings.

7For an arbitrary (r × r) invertible matrix A, we have FΛ′ = FAA−1Λ′ = F ∗Λ∗′, so that a model with
common factors F = (f1, ..., fT )′ and loadings Λ = (λ1, ..., λN )′ is observationally equivalent to a model with
factors F ∗ = (f∗1 , ..., f

∗
T )′ and loadings Λ∗ = (λ∗1, ..., λ

∗
N )′ where F ∗ = FA and Λ∗ = ΛA−1′.

8We are following Bai (2009) and Pesaran (2006), whose FM estimators we will describe below, in referring
to skills/abilities as factor loadings and the common time shocks or prices as factors. Heckman et al. (2006)
and others in the returns to schooling literature also estimate what they refer to as a factor model, although
the methods are not the same. Importantly, they refer to the skills/abilities as the factors rather than the
factor loadings. We provide more discussion on the two methods in Section 4.5.
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A set of person fixed effects ci is included to control for time-invariant person character-

istics such as gender, race, mother’s and father’s education, and the number of siblings. We

also consider a variant of (1)-(2) that includes a set of demographics-by-year fixed effects.

Such a specification allows us to investigate the extent to which the factor structure in (2) can

be interpreted in terms of time varying returns to observable time-invariant characteristics

(see Section 4).

The quadratic schooling specification has been routinely adopted in empirical studies; see,

e.g., Lemieux (2006). The concavity of log earnings as a function of years of schooling arises

in a simple human capital investment model in which individuals have different preferences

(discount rates) but all face the same concave production function (the return to a year

of schooling declines as years of schooling increase). Mincer (1996) shows that in a model

where individuals have heterogenous preferences and earnings opportunities, average log

earnings may either be a convex or a concave function of years of schooling. The importance

of allowing for interaction between schooling and experience is underscored in Heckman

et al. (2006) who show that log earnings-experience profiles are not parallel across schooling

levels. The parameter of interest in our analysis is the marginal returns to schooling (MRTS)

evaluated at the overall mean (across individuals and time) which, from (1), is given by

MRTS = β1 + 2s̄β2 + ēγ3 (3)

s̄ = N−1
∑N

i=1T
−1
i

∑
t∈Jisit

ē = N−1
∑N

i=1T
−1
i

∑
t∈Jieit

It is important to emphasize that unlike Heckman et al. (2006), our paper does not

attempt to distinguish between the role of cognitive and non-cognitive skills in explaining

the behavior of earnings. Rather, we are interested in estimating the average rate of growth

of earnings with schooling given by (3) employing the interactive fixed effects structure as
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a device to control for the different components of ability that may affect earnings and are

potentially correlated with schooling. Further, unlike KLT, we do not consider individual-

level regressions that allow the estimation of individual-specific schooling coefficients since

our analysis includes the ability proxies which are individual-specific with possibly time-

varying returns.9 It is also useful to note that the validity of the FM estimators discussed

hereafter depends on the assumption of a common factor structure where each factor makes

a nontrivial contribution to the variance of vit.

2.1.1 The Interactive Fixed Effects (IFE) Estimator

The IFE approach to estimating the factor model (1)-(2) was originally proposed by Bai

(2009) for the balanced panel framework. In this approach, the regression coefficients and

the factor structure are jointly estimated using an iterative principal components algorithm.

The extension to unbalanced panels was considered in Bai et al. (2015). They allow for

various patterns of missing data including block missing where a group of individuals can

join or drop out of the sample at a given time period, regular missing where the missing event

occurs at the same time frequency for all the individuals, and random missing where some

of the data are randomly missing without any obvious pattern. Bai et al. (2015) develop an

estimation procedure based on adapting the EM algorithm. The algorithm consists of two

loops where the inner loop carries out the EM, while the outer loop estimates the regression

coefficients. In what follows, we first discuss the steps of their EM algorithm and then

describe the iterations of the full algorithm.

Let xit = (sit, s
2
it, eit, e

2
it, siteit, p

′
i1(t = 1), ..., p′i1(t = T ))′, α = (β1, β2, γ1, γ2, γ3, δ1, ..., δT )′.

9For instance, Altonji and Pierret (2001), Cunha et al. (2011), and Lin et al. (2018) find that returns to
cognitive skills increase with age.
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Then the model in (1)-(2) can be written as

yit = ci + x′itα + vit = ci + x′itα + λ′ift + uit (4)

First assume that {ci} and α are known and define yαit = yit− ci− x′itα. The E-step replaces

the missing observations in yαit with an estimate of λ′ift to “complete” the dataset. The

complete dataset then consists of observations {y̆αit}, where

y̆αit =


yit − ci − x′itα

λ̂′if̂t

if not missing

if missing

(5)

given some estimator λ̂′if̂t. The M-step entails conducting a standard principal components

analysis (PCA) on the complete dataset to obtain updated estimates of λ̂′if̂t. These estimates

are in turn used to update y̆αit in (5). The EM algorithm proceeds by iterating on the E and

M steps until convergence.

The full algorithm can now be described by the following set of iterations:

1. Obtain an initial estimate of λ′ift using the one-step CCEP estimator described in

Section 2.1.2.10

2. Estimate α by regressing ỹit − λ̂′if̂t on x̃it, where ỹit = yit − ȳi, x̃it = xit − x̄i with

ȳi = T−1i

∑Ti
j=1yi,ti(j) and x̄i = T−1i

∑Ti
j=1xi,ti(j). Denote this estimate α̂.

3. Apply the EM algorithm as described above to ỹit − x̃′itα̂ and update the estimate of

λ′ift.

10While it is not necessary to use the one-step CCE estimator to obtain the initial values, it is computa-
tionally convenient. An alternative method to generate initial values is to use a functional PCA algorithm
as in Bai et al. (2015).
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4. Iterate (2)-(3) until convergence.

To estimate the number of factors r, we implement the above algorithm for one to ten fac-

tors and choose as our estimate r̂ the number that minimizes
∣∣∣M̂RTS(s+ 1)− M̂RTS(s)

∣∣∣ for

s = 0, ..., 9, where M̂RTS(s) is the estimate of MRTS assuming s factors.11 The confidence

interval for the estimator is constructed using a wild cluster bootstrap procedure described

in Appendix A.

To evaluate the finite sample performance of their estimator, Bai et al. (2015) conduct

Monte Carlo simulations under block, regular and random missing patterns in the data

generating process. They show that their proposed estimator performs well in terms of both

bias and variance regardless of whether the common factors are smooth functions of time or

stochastic and non-smooth.

2.1.2 The Common Correlated Effects (CCE) Estimator

An alternative approach to estimation proposed by Pesaran (2006) treats the factors as

nuisance parameters rather than parameters of interest. In this approach, the common

factors ft are proxied for using the cross-sectional averages of the dependent and independent

variables. The regression in (1) is augmented using these cross-sectional averages (with

their coefficients allowed to be individual-specific) and estimated using OLS. This estimator,

which does not require knowledge of the number of factors, is referred to as the common

correlated effects pooled (CCEP) estimator. While Pesaran (2006)’s original proposal was

developed in the balanced panel framework, it was subsequently extended to unbalanced

panels by Zhou and Zhang (2016). To describe this estimator, let zit = (yit, sit, s
2
it, siteit)

′

and z̄t = N−1t
∑N

i=1zitIit with Nt =
∑N

i=11(t ∈ Ji) and Iit = 1(t ∈ Ji). Further, let yi,Ti =

11This approach to factor selection is adopted from Kim and Oka (2014). We consider this to be a
reasonable approach in our context since, in contrast to statistical information criteria based on overall
goodness of fit (Bai and Ng, 2002), it is tailored to the parameter of interest.
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(yiti(1), ..., yiti(Ti))
′, Xi,Ti = (xiti(1), ..., xiti(Ti))

′, Z̄Ti = (z̄1, ..., z̄Ti)
′ and H̄Ti = (1Ti , Z̄Ti) with

1Ti a (Ti × 1) vector of ones. Then the unbalanced panel one-step CCEP estimator can be

expressed as

α̂ccep =
(∑N

i=1X
′
i,Ti
MHi

Xi,Ti

)−1 (∑N
i=1X

′
i,Ti
MHi

yi,Ti

)
where MHi

= ITi − H̄Ti

(
H̄ ′TiH̄Ti

)−1
H̄ ′Ti and ITi is the identity matrix of order Ti. Assuming

that T is fixed and observations are randomly missing, Zhou and Zhang (2016) show that

α̂ccep is
√
N -consistent and asymptotically normal and derive a formula for its asymptotic

variance and the corresponding estimated standard error.

In addition to the one-step estimator, we also consider a version of the two-step estimator

proposed by Pesaran (2006) in the balanced panel case that involves combining the CCE

and principal component approaches. In the first step, we obtain the estimate α̂ccep and

construct the complete dataset in a manner similar to (5):

y̆it =


ỹit − x̃′itα̂ccep

λ̂′ift

if not missing

if missing

where λ̂′ift is an estimate of λ′ift obtained from the one-step CCE estimation procedure using

the cross-sectional averages z̄t. In the second step, the EM algorithm described in Section

2.1.1 is applied to y̆it and obtain updated estimates {λ̂i, f̂t ; i = 1, ...N, t = 1, ..., T}. The

number of factors is set to four in accordance with a rank condition that is required to

validate the CCE approach (see discussion below). The estimates f̂t are then used in the

second step as regressors instead of the cross-sectional averages:

yit = ci + x′itα + λ′if̂t + ξit (6)
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Estimating (6) by least squares yields the two-step CCE estimator α̂ccep-2. The confidence in-

terval for this estimator is estimated using a wild bootstrap procedure in a manner analogous

to that for the IFE estimator in Section 2.1.1 (See Appendix A).

Both the one-step and two-step CCE estimators can be sensitive to a particular rank

condition which requires that the total number of factors does not exceed the total number

of observed variables. While the original analysis of Pesaran (2006) suggested that the rank

condition could be relaxed, recent work by Westerlund and Urbain (2013) reinstated its

importance by showing that without this condition, the validity of the CCE approach hinges

on the assumption that the factor loadings of the dependent variable and the regressors

are uncorrelated. The relevance of this rank condition can explain potential discrepancies

between the CCE and IFE estimators in practice given that the latter does not require this

condition to be satisfied.12

2.1.3 A Measurement Error Interpretation of the Factor Model Estimators

We now provide a formal connection between the FM and ability proxy approaches. In

particular, we show that the FM estimators can be viewed as correcting the measurement

error in the proxies by implicitly estimating this error. To make this connection transparent,

suppose that the true (population) data generating process (omitting the experience terms

for simplicity) is given by,

yit = ci + sitβ1 + s2itβ2 + λ′ift + uit (7)

12The rank condition is potentially very relevant in our context, given that our empirical analysis includes
the cross-sectional averages of only four variables: yit, sit, s

2
it, siteit. Thus, the rank condition implies r ≤ 4.

Note that we only include cross-sectional averages of observables that involve earnings and schooling, given
that the age controls (our measure of experience) are equivalent to the inclusion of a deterministic time trend
(see Appendix B of KLT for details).
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Suppose the (k × 1) vector of observed proxies is generated as

pi = A′λi + ηi = p∗i + ηi (8)

where A is a (r × k) matrix of coefficients; p∗i is the true (unobserved) value of the proxies,

and ηi is a classical measurement error assumed to be uncorrelated with p∗i . From (8),

p′iA
′ = λ′iAA

′ + η′iA
′

Assuming AA′ is full rank [i.e., k ≥ r],

p′iA
′(AA′)−1 = λ′i + η′iA

′(AA′)−1

p′iB = λ′i + η′iB

where B = A′(AA′)−1, which implies

λ′i = (p′i − η′i)B (9)

Substitute (9) in (7),

yit = ci + sitβ1 + s2itβ2 + p′iBft + {uit − η′iBft}

= ci + sitβ1 + s2itβ2 + p′iδ̆t + ŭit (10)

where δ̆t = Bft and ŭit = uit − η′iBft. Estimating (10) by least squares would then lead to

biased estimates of the regression coefficients due to the correlation between pi and ηi. In

the FM approach (specifically, the IFE and 2 step CCE estimators), (p′i− η′i)B is effectively

replaced by the factor loading estimate λ̂i, i.e., the FM method implicitly estimates the
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measurement error inherent in the proxies. Thus, the FM methods estimate the regression

coefficients from

yit = ci + sitβ1 + s2itβ2 + λ̂′if̂t +
(
λ′ift − λ̂′if̂t

)
+ uit

where the sampling error involved in estimating the measurement error is reflected in the

term
(
λ′ift − λ̂′if̂t

)
. As shown in Bai (2009), this error is negligible as the cross-sectional

and time series dimensions become large, which guarantees consistent estimates for (β1, β2).

Another important implication that follows from (10) is that the coefficients β1 and β2 can

be consistently estimated from a specification that includes both proxies and the interactive

fixed effects even if the proxies are subject to measurement error since the error will simply

be controlled for by the factor structure. So this general specification allows us to directly

quantify how useful the proxies are in terms of explaining the OLS bias or, equivalently, how

large is the measurement error in each proxy (see section 2.2).

2.2 Bias Decomposition

In order to quantify the relative contribution of the proxies and the factor structure to the

aggregate OLS bias, we apply a bias decomposition due to Gelbach (2016). This decompo-

sition is useful from a practical standpoint since it does not rely on the sequence in which

covariates are added to the model. Sequence sensitivity can lead to different bias estimates

for different sequences when added covariates are intercorrelated.

To begin with, let Sit = (sit, s
2
it)
′, S̃it = Sit − S̄i, S̃i,Ti = (S̃iti(1), ..., S̃iti(Ti))

′. Then,

consider the following model (again, omitting experience terms to simplify the exposition)

estimated by least squares:

yit = ci + sitβ1 + s2itβ2 + vit = ci + S ′itβ + vit, β = (β1, β2)
′ (11)
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Denote the OLS estimate from (11) by β̂OLS. Next, estimate the following model using one

of the FM methods discussed above:

yit = ci + S ′itβ + p′iδt + λ′ift + uit

Denote the FM estimate of β by β̂FM , the estimates of λi and ft by λ̂i and f̂t, respectively,

and the estimate of δt by δ̂t. Then, following Gelbach (2016), we can write

β̂OLS =

(
N∑
i=1

∑
t∈Ji

S̃itS̃
′
it

)−1 N∑
i=1

∑
t∈Ji

S̃itỹit =

(
N∑
i=1

∑
t∈Ji

S̃itS̃
′
it

)−1 N∑
i=1

∑
t∈Ji

S̃it

(
S̃ ′itβ̂FM + p′iδ̂t + λ̂′if̂t

)

= β̂FM +

(
N∑
i=1

∑
t∈Ji

S̃itS̃
′
it

)−1 N∑
i=1

∑
t∈Ji

S̃itp
′
iδ̂t +

(
N∑
i=1

∑
t∈Ji

S̃itS̃
′
it

)−1 N∑
i=1

∑
t∈Ji

S̃itλ̂
′
if̂t (12)

Denoting the second and third term in (12) by C1 and C2, respectively, the estimated aggre-

gate OLS bias can be expressed as

C = β̂OLS − β̂FM = C1 + C2 (13)

In (13), C1 is the component of the bias explained by the proxies and C2 is the component

explained by the factor structure. Denoting pi = (pi1, ..., pik)
′, δ̂t = (δ̂t1, ..., δ̂tk)

′, we can

further decompose C1 as

C1 =

(
N∑
i=1

∑
t∈Ji

S̃itS̃
′
it

)−1 N∑
i=1

∑
t∈Ji

S̃it

(
k∑
j=1

pij δ̂tj

)
=

k∑
j=1

C1j

where

C1j =

(
N∑
i=1

∑
t∈Ji

S̃itS̃
′
it

)−1 N∑
i=1

∑
t∈Ji

S̃itpij δ̂tj

is the contribution of proxy j to the aggregate bias C. Hence, we can ascertain not only the
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proportions of the estimated OLS bias that can be explained by the ability proxies and the

factor structure, but also the proportion that can be explained by each of the proxies.

2.3 Validation Tests for Proxies

The final component of our empirical analysis entails conducting a battery of tests designed

to directly evaluate the effectiveness of the proxies at measuring the true unobserved skills.

In particular, we test if each individual proxy can be represented by a linear combination

of the factor loadings (skills) as well as if the proxies as a set are adequate for the skills.

Bai and Ng (2006) develop procedures to test if an observable macro variable is a linear

combination of the common factors and if a set of macro variables can represent the factors.

Here we modify their approach and apply it to the loadings instead of the factors. These

tests are justified by the fact that the space spanned by the common factors/factor loadings

can be consistently estimated when the sample size is large in both the cross-section and

time series dimensions [see Bai and Ng (2006)].

We first discuss the individual proxy tests. Denoting the (k × 1) vector of proxies as

pi = (pi1, ..., pik)
′, the goal is to test the null hypothesis,

H0: pij = ϕ′jλi ∀i = 1, ..., N (14)

for any given j. The construction of the test statistics involves the following steps:

1. Estimate the following model using either the IFE or the two-step CCE approach13:

yit = ci + sitβ1 + s2itβ2 + eitγ1 + e2itγ2 + siteitγ3 + λ′ift + uit
13The proxy validation tests are not constructed for the one step CCE approach since this method does

not provide an estimate of the factor loadings, given that the factor structure is controlled for using cross-
sectional averages of the observables.
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2. Save the estimates of the loadings {λ̂i}Ni=1.

3. Estimate the regression

pij = ϕ′jλ̂i + εi for each j ∈ {1, ..., k}

and compute the t-test as ti(j) =
p̂ij−pij√
v̂ar(p̂ij)

, where p̂ij = ϕ̂′jλ̂i is the fitted value and

v̂ar(p̂ij) = ϕ̂′j v̂ar(λ̂i)ϕ̂j with v̂ar(λ̂i) computed using a wild bootstrap procedure.

Once ti(j) has been obtained, various test statistics can be constructed. Let Φν be the

ν percentage point of the standard normal distribution. Then, defineA(j) = N−1
∑N

i=11(|ti(j)| >

Φν). This statistic is the frequency that ti(j) exceeds the ν percent critical value and allows

pij to deviate from p̂ij for a prespecified proportion of cross-sectional observations as specified

by ν. Thus, if ν = .025, A(j) should be close to .05.

The second statistic we compute is the coefficient of determination from a regression of

pij onto λ̂i for a given j. This statistic is computed as

R2(j) =
N−1

∑N
i=1(p̂ij − p̂j)2

N−1
∑N

i=1(pij − p̄j)2

with p̂j = N−1
∑N

i=1p̂ij and p̄j = N−1
∑N

i=1pij. This statistic should be unity if the proxy

is an exact linear combination of the factor loadings, and zero if the proxy is irrelevant.

It thus provides a direct measure of the effectiveness of the proxy in representing the true

unobserved skills. A (1− 2ν) percent confidence interval for R2(j) can be obtained as

(R2−(j), R2+(j)) =

(
R2(j)− 2Φν

R(j)[1−R2(j)]√
N

, R2(j) + 2Φν
R(j)[1−R2(j)]√

N

)

The final set of tests is designed to evaluate the adequacy of the proxies as a set by exam-

ining the canonical correlations between pi and λ̂i. To this end, let Sλλ and Spp be the sample
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variance-covariance matrices of λ̂i and pi, respectively, and Sλp(Spλ) be the r×k (k×r) sample

cross-covariance matrix between pi and λ̂i. The squared canonical correlations, denoted,

ρ̂2m, m = 1, ...,min(k, r), are the largest eigenvalues of the (r × r) matrix SλλSλpS
−1
pp Spλ. If

each proxy is an exact linear combination of the loadings, the non-zero population correla-

tions should all be unity. A (1−2ν) percent confidence interval for the population canonical

correlations ρ2m, m = 1, ...,min(k, r), can be obtained as

(ρ̂2−m , ρ̂2+m ) =

(
ρ̂2m − 2Φν

ρ̂m[1− ρ̂2m]√
N

, ρ̂2m + 2Φν
ρ̂m[1− ρ̂2m]√

N

)

3 Data

We use the National Longitudinal Survey of Youth (NLSY79) for our empirical analysis.

The information collected by the NLSY79 includes schooling choices, labor market outcomes,

cognitive and non-cognitive test scores, family background and individual characteristics, for

a nationally representative sample of 12,686 young men and women who were 14-22 years

old in 1979. These individuals were interviewed yearly through 1994 and every other year

thereafter. Importantly, the cognitive and non-cognitive tests were administered between

1979 and 1980. Therefore, we construct a panel dataset with hourly earnings, years of

schooling, and other covariates from 1981 to 2016 to mitigate the concern about reverse

causality from schooling to test scores.

To evaluate the efficacy of cognitive ability proxies, we follow the literature and exploit

the Armed Services Vocational Aptitude Battery (ASVAB) which was administered in 1980

to NLSY79 respondents and is composed of ten intelligence tests (see Heckman and Vytlacil,

2001, Table 2, for a detailed description of each subarea). A widely used measure of cognitive

ability, the Armed Forces Qualification Test (AFQT), is a composite score constructed from

four ASVAB subtests: Arithmetic Reasoning, Mathematics Knowledge, Paragraph Compre-
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hension, and Word Knowledge (e.g. Neal and Johnson 1996; Altonji et al. 2012; Deming

2017; Das and Polachek 2019; Williams 2019; Ashworth et al. 2020). In this paper, we fol-

low Koop and Tobias (2004) and make use of all ten ASVAB subtests, which include the

four in the AFQT, General Science, Coding Speed, Numeric Operations, as well as three

sections commonly referred as the technical composites: Auto and Shop Information, Elec-

tronics Information, and Mechanical Comprehension to measure mechanical ability (Prada

and Urzúa, 2017). A principal component analysis (PCA) of all ten standardized test scores

reveals that the first principal component explains 64% of the variance using individuals in

our final sample, which we denote as the cognitive factor in our PCA approach, a commonly

employed method in the literature (Cawley et al., 1997; Heckman and Vytlacil, 2001; Koop

and Tobias, 2004; Heckman et al., 2006). In addition, we also directly use the standard-

ized test scores of all ten ASVAB subtests as a robustness check, which we refer to as the

non-PCA approach.14

As for the non-cognitive ability proxies, we follow Heckman et al. (2006) and utilize

two attitudinal scales available in the NLSY79, the Rotter Locus of Control Scale and the

Rosenberg Self-Esteem Scale. The Rotter Locus of Control Scale, designed to measure

the extent to which individuals believe they have internal control (e.g. self-motivation)

over their lives as opposed to the extent that external forces (e.g. fate, luck) control their

life outcomes (Rotter, 1966), was collected as part of the initial interviews in 1979. The

Rotter scale is re-scored in the internal direction such that a high score indicates beliefs in

internal control. The Rosenberg Self-Esteem Scale, which describes a degree of approval or

disapproval toward oneself (Rosenberg, 1965), was administered during the 1980 interviews.

Higher scores indicate higher self-esteem. Following Heckman et al. (2006), we extract the

first three principal components as the non-cognitive factors in our PCA approach using

14An alternative approach that uses only AFQT and its square as the proxy variables yielded very similar
results to the two approaches shown in the paper. These results are available upon request.
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4 items from the Rotter Locus of Control Scale and 10 items from the Rosenberg Self-

Esteem Scale, after carefully adjusting the direction of individual items to ensure consistency

before applying standardization.15 Our analysis reveals that while the three components

cumulatively explain about 49% of the variance using individuals in our final sample, the

first principal component only accounts for 31% of the variance. This is consistent with the

evidence that there seems to be no single “g factor” among the non-cognitive items (Heckman

et al., 2006). For the non-PCA approach, we include the standardized scores on the Rotter

and Rosenberg composite scales as measures of non-cognitive abilities.

To remain consistent with the literature, we restrict the sample of analysis to white

males who are at least 16 years old in a given year to analyze a population that historically

is strongly attached to the labor market, and least likely to experience wage discrimination

(Ginther, 2000).16 Following Koop and Tobias (2004), we further limit the sample to individ-

uals who reported working at least 30 weeks and 800 hours in the previous year to ensure the

hourly wage variable reasonably captures individuals’ full earning potential. After carefully

removing observations with missing covariates, outlier observations in the top and bottom

1% of the wage distribution, and individuals with negative or abnormally large (years of

schooling changes by more than the number of years between interviews) schooling changes,

our final sample contains 2, 420 individuals for a total of 33, 248 person-year observations.

In this unbalanced panel dataset, the majority of individuals have more than ten years of

observations (Figure 1).17

15Specifically, the 1st-3rd items in the Rotter Locus of Control Scale are re-scored in the internal direction
such that the higher the score, the more internal the individual. Similarly, the 1st, 2nd, 4th, 6th, and 7th
items in the Rosenberg Self-Esteem Scale are recalculated such that higher score indicates higher self-esteem.
See Heckman et al., 2006, Web Appendix, Table S27 and S28, for detailed descriptions of individual items
in the Rotter and Rosenberg scales.

16Individuals in our sample are in their prime working age, ranging from 16-59 years old.
17Although there are many papers that use panel data and within individual variation to study returns

to schooling (Angrist and Newey, 1991; Ashworth et al., 2020; Kejriwal et al., 2020; Koop and Tobias, 2004;
Westerlund and Petrova, 2018), a potential concern is that it requires individuals who work before or while
they finish schooling. This raises potential concerns related to sample selection and to econometric issues
of comparing earnings before, during, and after schooling, since earnings before or during schooling could
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Table 1 presents descriptive statistics for not only the main sample of analysis, but also

how the summary statistics change as we sequentially add the selection criteria to obtain

our final sample. Column (1) shows a baseline sample of 9,224 individuals who are at

least 16 years old in a given year with no missing covariates. Focusing our attention on

white males decreases the sample by more than two thirds to 2,954 individuals in column

(2). It is worth noting that, hourly wage earning is 24% higher on average for white males

compared to the baseline sample. The AFQT score is more than a third of a standard

deviation higher for white males which is also reflected in the higher test scores of the

ASVAB individual components. As for non-cognitive abilities, the white male group appears

to have a relatively higher tendency to believe in internal control (higher Rotter locus of

control score), and higher self-esteem (higher Rosenberg self-esteem score) on average. Other

notable changes include higher mother’s and father’s education levels (+0.82 and +1.06

years, respectively), and lower number of siblings (-0.58). Column (3) imposes wages and

hours worked restrictions, but only shrinks the sample by 111 individuals, presumably due

to the aforementioned reason that white males above age 16 are strongly attached to the

labor market. After trimming the wage outliers in Column (4), we lose another person,

and the number of observations decreases to 37,452. The average wage converted to 1999

dollars drops to about 16 dollars an hour, and the standard deviation is greatly reduced to

a reasonable level. Finally, column (5) displays summary statistics of the sample of analysis

be part-time or seasonal work and not truly reflect an individual’s earning potential (Card, 1995; Lazear,
1977). Moreover, within-individual fixed effects estimators are sensitive to measurement error, which raises
concerns over whether much of our schooling variation is measurement error. We believe these concerns
are mitigated by the facts that: (1) we set minimum annual weeks and hours worked restrictions following
Koop and Tobias (2004), in order to reduce the likelihood that observed wages do not reflect an individual’s
true earning potential; (2) we carefully remove individuals with abnormal schooling changes, thus removing
obvious measurement error in schooling; (3) we extend the estimators from Bai (2009) and Pesaran (2006)
to unbalanced panels, thus allowing us to relax the requirement in Kejriwal et al. (2020) that individuals
have no gaps in earnings; (4) our OLS and ability proxy results are very similar to the literature that does
not use panel data; and (5) other research has shown that the student population that works during school
is large (Bacolod and Hotz, 2006; Bound et al., 2012; Carnevale et al., 2015; Hotz et al., 2002), and is thus
an important population itself.
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after we carefully exclude individuals with clearly misreported schooling changes. Most

covariates, especially years of schooling and age, remain fairly stable across columns (2)-(5)

and are not sensitive to additional restrictions imposed. Since ability proxies are the focus of

this paper, we compute one cognitive and three non-cognitive factors for individuals in the

final sample as shown in column (5). Appendix B shows more information on the variation

in years of schooling for the final sample.

4 Empirical Results

The empirical results of our analysis are organized into five subsections. Section 4.1 presents

the set of estimated specifications that differ according to whether ability proxies, demo-

graphics and/or interactive fixed effects are included. Section 4.2 reports the parameter

estimates from the different specifications that facilitate the estimation of the aggregate

OLS bias as well as underscore the difference between the use of ability proxies vis-a-vis

interactive fixed effects to control for the underlying unobserved skills. Section 4.3 presents

the bias decomposition results that allow us to quantify the contribution of the proxies to

the OLS bias. Section 4.4 contains the results from proxy validation tests. Finally, Section

4.5 discusses the findings of our analysis in relation to the existing literature in order to

provide further perspective on our results.

4.1 Estimated Specifications

We estimate a total of eight specifications which are summarized in Table 2. Depending on

whether demographics and/or interactive fixed effects are included, we have the following

four groups of specifications:

• Group 1 [Specifications 1-2]: These specifications do not include any demographic

controls or interactive fixed effects. Specification 1 includes only the basic age controls
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while Specification 2 appends Specification 1 with the ability proxies.

• Group 2 [Specifications 3-4]: These specifications are the counterparts of those in

Group 1 that include the demographic controls.

• Group 3 [Specifications 5-6]: These specifications are the counterparts of those in

Group 1 that include interactive fixed effects.

• Group 4 [Specifications 7-8]: These specifications include both the demographic con-

trols and interactive fixed effects.

4.2 Parameter Estimates

Table 3 reports the estimates of the MRTS (in percentage form) for the specifications pre-

sented in Table 2. We consider two alternative methods to account for proxies, namely, the

PCA approach and the non-PCA (individual proxies) approach (see Section 3). Panels A

and B present the results without and with the demographic controls, respectively. The

demographic controls employed are mother’s and father’s level of education as well as the

number of siblings.

Consider first the results without the demographic controls (Panel A). Several features

of the findings are noteworthy. First, the OLS estimate from the base specification that

only includes the age controls is about 8.3% which lies in the range typically reported in

the literature.18 Second, a comparison of the OLS estimates for the specifications in Group

1 [columns (1)-(3)] reveals that, regardless of the particular approach used to control for

the proxies, their inclusion only marginally reduces the MRTS estimate. Specifically, the

PCA and non-PCA approaches entail reductions of only 4% and 19% in the OLS estimate,

respectively. Thus, conditional on the age controls, schooling is only marginally correlated

18For instance, Gunderson and Oreopolous (2020) report a range of 6-10% for OLS estimates based on
their survey of the returns to schooling literature.
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with the proxies. Third, a comparison of the estimates for the specifications in Group 3

[columns (4)-(12)] with the OLS estimate in column (1) shows that the inclusion of interactive

effects make the MRTS estimate discernibly smaller, with the corresponding estimate of

the OLS bias ranging between 36-43% of the OLS estimate. Fourth, conditional on the

interactive fixed effects, the proxies have rather limited explanatory power as evidenced

by the very similar estimates in columns (4)-(6) for the IFE approach and columns (7)-

(12) for the CCE approach. On the other hand, conditional on the proxies, the interactive

effects retain considerable explanatory power as indicated by the comparison of estimates

in columns (2)-(3) with their counterparts that allow for interactive effects [columns (5)-(6)

for the IFE approach and (8)-(9)/(11)-(12) for the CCE approach]. Fifth, the IFE and CCE

approaches to account for interactive effects yield similar estimates ranging between 4.7-

5.3%. Hence, the particular method used to control for the factor structure matters much

less compared to using ability proxies. Finally, model fit as measured by the adjusted R2

improves considerably with the inclusion of the factor structure while the inclusion of the

proxies only has a marginal impact.

When demographic controls are included (Panel B), the OLS estimate in the base spec-

ification is slightly smaller, about 8%, though still consistent with the estimates from the

literature. As in Panel A, including the proxies only engineers a marginal reduction in the

estimate of the schooling effect. The FM estimates are noticeably smaller, ranging between

3.9-4.9% for the most general specification that also includes the proxies. The correspond-

ing estimate of the ability bias ranges between 39-51% of the OLS estimate. Importantly,

the inclusion of interactive fixed effects in a specification with demographics entails a much

larger decline in the MRTS estimate relative to the inclusion of demographics in a specifica-

tion with interactive fixed effects. For instance, the IFE estimate with demographic controls

but without proxies [column (4)] is about 3 percentage points lower than the corresponding

OLS estimate in column (1) while the difference in the IFE estimate with and without the
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demographic controls is only about 0.3 points [difference in the column (4) estimate between

Panels A and B]. This finding suggests that the factor structure cannot be interpreted in

terms of time-varying returns to time-invariant individual characteristics. Appendix C con-

tains two robustness checks on the results in Table 3. First, Table C.1 shows the sensitivity

of the MRTS estimate based on the IFE approach to the number of factors.19 The results

indicate that the estimate is fairly stable once five or more factors are included in the model.

Second, Table C.2 reports the results for specifications that include a quartic age term.20

The results are qualitatively very similar to those presented in Table 3.21

Overall, the pattern of estimates with and without the demographic controls are quali-

tatively similar and show that the factor structure contains variation independent of proxies

and/or demographics that is correlated with schooling. Moreover, when employing the fac-

tor model framework as a test bed for evaluation, the ability proxies are of little use in

controlling for ability bias.

4.3 Bias Decomposition

Tables 4 and 5 presents the results from the bias decomposition analysis described in Section

2.2 that serves to provide a robust mechanism for isolating the OLS bias components at-

tributable to the proxies vis-à-vis the factor structure. We compute the aggregate OLS bias,

the contribution of the factor loadings and proxies, as well as the cognitive/non-cognitive

principal components of the proxies in the PCA approach and the individual proxies in the

non-PCA approach.

19We also computed the number of factors using the information criteria in Bai and Ng (2002) but those
turned out to offer little guidance. In particular, two of the three criteria (ICp1, ICp2) always select the
maximum number of factors (ten) while ICp3 always selects three factors.

20See Murphy and Welch (1990) and Cho and Phillips (2018) for empirical evidence favoring a quartic
specification for experience.

21The results from the bias decomposition analysis as well as the proxy tests for the model with quartic
age have the same qualitative pattern as those reported in Tables 4-7. These results are available upon
request.
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Table 4 reports the findings based on specifications where the interactive fixed effects are

not included so that ability bias is controlled for only using the proxies. Columns (1)-(2) and

(3)-(4) present the results excluding and including the demographic controls, respectively.

In addition to point estimates, we report 95% confidence intervals constructed using the ap-

proach proposed in Gelbach (2016). For the PCA approach, the cognitive factor emerges as

the chief contributor to the aggregate bias while the contribution of each of the non-cognitive

factors is comparatively rather limited. For the individual proxies, the cognitive measures

turn out to be relatively much more important overall than their non-cognitive counterparts,

consistent with the PCA results. Among the cognitive measures, Mathematical Knowledge

appears as the leading contender for explaining the OLS bias. When demographics are in-

cluded, the aggregate contribution of the proxies diminishes slightly although the qualitative

pattern of the results remains similar. The fact that cognitive measures appear to be more

important than non-cognitive measures in explaining ability bias is consistent with prior

work using the ability proxy approach (Caplan, 2018).

Table 5 reports the results when the interactive fixed effects are included in addition to

the proxies. A comparison of these results with those in Table 4 serves to clearly delineate the

role of proxies in controlling for the OLS bias. Panels A and B report the results excluding

and including the demographic controls, respectively. Here the 95% confidence intervals are

computed using a wild cluster bootstrap procedure (Appendix A). Regardless of whether

the demographic controls are included and the particular proxy approach adopted, the main

takeaway from these results is that the contribution of the proxies to the aggregate OLS

bias is quantitatively quite small relative to the contribution of the factor structure. Thus,

conditional on the interactive fixed effects, the proxies are only marginally correlated with

earnings. Finally, it is reassuring that the overall pattern of results is remarkably similar

across the three FM approaches.

In stark contrast to the results in Table 4 where the cognitive factor accounted for the
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bulk of the bias, this factor is now almost as uninformative as its non-cognitive counterparts

once demographics are controlled for. Among the individual proxies, the non-cognitive mea-

sures again appear to contribute much less to the bias relative to the cognitive measures.

Interestingly, the relative importance of the individual proxies depends crucially on whether

demographics are included. For instance, while Auto and Shop Information appears as the

dominant bias component when demographics are excluded, its contribution is considerably

diminished by the inclusion of demographics with Mathematical Knowledge now emerging

as the leading contributor. The rather minor contribution of the proxies to the OLS bias

relative to the factor structure reflects the presence of substantial measurement error in the

proxies that is captured by the factor structure (see equation 10). On the other hand, while

the proxy approach can be potentially used to study which types of abilities contribute to

the overall bias, the skills estimated by the FM approach cannot be assigned an economic

interpretation given that the approach only identifies the space of the latent skills (see, e.g.,

Bai and Ng, 2002).

4.4 Proxy Validation Tests

As a complement to the preceding analysis, we conduct the proxy validation tests discussed in

Section 2.3 that are designed to directly assess the suitability of the proxies in representing the

latent skills. Table 6 reports the results for the A(j) and R2(j) statistics. The A(j) statistics

are computed with ν = .025 so that if proxy j was indeed a linear combination of the factor

loadings as specified by the null hypothesis, A(j) should be close to .05. However, the results

make it evident that this is not the case for any of the proxies or their principal components.

When demographic controls are excluded (Panel A), the A(j) values all exceed 89% and

93% for the IFE and CCE-2 approaches, respectively, thereby providing strong evidence

against the null hypothesis. When these controls are included (Panel B), the values are

comparatively a bit lower, though still in excess of 75% for the IFE approach and 81% for
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the CCE-2 approach.

Turning to the R2(j) statistics, the relevance of the proxies can be gauged by how close

these statistics are to unity.22 We present both point estimates and 95% confidence intervals.

These results paint a very similar picture as the A(j) statistics and offer little support to

the proxies: the point and interval estimates are all below .06 regardless of the estimation

method as well as whether demographic controls are included.

Finally, Table 7 presents the results from evaluating the adequacy of the proxies as a set

using the canonical correlations test. Both point estimates and 95% confidence intervals are

presented. For the IFE approach, the largest nine (eight) squared sample canonical corre-

lations are reported for the case without (with) demographic controls, given the estimated

number of factors in these cases (when proxies are not included). For the CCE-2 approach,

the largest four correlations are reported given that the number of factors is set at four.

The results are remarkably consistent between the two estimation approaches. The point

estimate of ρ21 is about 0.11 for both approaches when demographic controls are excluded

and between 0.38-0.42 when such controls are included. The point and interval estimates

for ρ2m, m > 1, are all less than 10% regardless of the estimation approach and the inclu-

sion/exclusion of demographic controls. Overall, these estimates fall well below the threshold

of 0.95 suggested by Bai and Ng (2006) to validate the relevance of the proxies. In summary,

the results from all three proxy tests serve to further strengthen the evidence against the

efficacy of the ability proxies in estimating the returns to schooling.

4.5 Discussion

We now provide a discussion of the results presented in the preceding subsections with par-

ticular emphasis on their relationship to the existing literature. Caplan (2018, Chapter 3)

22Bai and Ng (2006) suggest a value below 0.95 for R2(j) and ρ̂2m as indicative of non-negligible measure-
ment errors.
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surveys a large number of studies that use ability proxies to control for ability bias. He finds

that while controlling for cognitive ability and/or non-cognitive ability generally reduces the

education premium, there is considerable variation across studies on the magnitude of the

reduction depending on the specific proxies employed. Recognizing the imperfect nature of

the proxies (especially for soft skills), he suggests that ability bias ranges between 25-45%

(with 20-30% from cognitive ability bias and 5-15% from non-cognitive ability bias) with the

lower limit corresponding to a “cautious” estimate and the upper limit to a “reasonable” es-

timate. Our analysis provides a formal econometric framework for estimating the magnitude

of this bias by relying on the interactive fixed effects structure and suggests a range between

39-51% for the most general specification that includes the demographic controls.

Heckman et al. (2006) use data from the NLSY79 to demonstrate the importance of both

cognitive and non-cognitive skills in explaining schooling decisions and wages among a diverse

array of outcomes and dimensions of behavior. They are more concerned with the role of

these latent cognitive and non-cognitive skills in explaining a wide variety of outcomes and

in carefully accounting for endogeneity and simultaneity among those outcomes than they

are with estimating the average marginal returns to schooling. Yet, in a similar vein, our FM

estimates in Section 4.2 and the bias decomposition results in Section 4.3 show that the OLS

estimates are subject to a substantial upward bias thereby suggesting a rather important role

for the underlying unobserved skills that are captured by the factor structure. An important

difference between our analysis and that in Heckman et al. (2006) is that their identification

strategy is based on assuming the existence of two sets of measurements (each with at least

two elements), with one set measuring cognitive skills and the other set measuring non-

cognitive skills. Further, latent cognitive ability is only allowed to affect scores on cognitive

measures while latent non-cognitive ability is only allowed to affect scores on non-cognitive

measures. Their approach has the advantage that it leads to a direct interpretation of their

skills as being cognitive and non-cognitive because of the proxies used in the models, which
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allows them to study the impact of different types of skills on a wide variety of outcomes.

In contrast, our analysis does not rely on the measured proxies to identify the unobserved

factor structure but instead exploits the large panel nature of the dataset and the within

individual variation in earnings and schooling to achieve identification. Our approach has the

advantage of not imposing restrictions on the relationship between outcomes and different

abilities like cognitive and non-cognitive skills. It also has the advantage of not relying on

ability proxies from the NLSY79 to identify skills, which is important not only because the

proxies might be measured with substantial error, as we show, but also because we are not

limited to the type and number of abilities for which proxies exist.

More recently, Polachek et al. (2015) and Das and Polachek (2019) derive a nonlinear

earnings function based on a structural human capital life cycle model and obtain five ability

measures. Of these, three correspond directly to one’s ability to create human capital, one

to skill depreciation, and one to a person’s time discount rate. They argue that these

measures are jointly the most important determinants of individual earnings variation. In

particular, Das and Polachek (2019) find that including these five measures in a regression of

log earnings on schooling and a quadratic in experience increases the adjusted R2 by 19% and

reduces the schooling coefficient from 13.4% to 6.5%. Moreover, conditional on these ability

measures, including AFQT has little effect - the adjusted R2 only increases by 0.001 while the

schooling coefficient drops from 6.5% to 6.1%. One explanation for this finding is that while

standardized tests capture analytic academic capabilities, they do not necessarily indicate a

proficiency that translates into real-world accomplishments. The results of our reduced form

analysis can be viewed as complementary to these two studies. While their ability measures

are derived from a structural model, we control for the underlying skills using the interactive

fixed effects structure. Consistent with their results, we find that the inclusion of interactive

fixed effects leads to a substantive reduction in the estimate of the schooling effect and that

conditional on this structure, the ability proxies only have a marginal impact on returns to
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schooling and adjusted R2.

Finally, KLT also use the FM estimators from Bai (2009) and Pesaran (2006). KLT esti-

mate the average marginal return to schooling using FM estimators and a new linked survey-

administrative dataset thereby simultaneously addressing the twin issues of heterogeneity in

returns to schooling and the endogeneity of schooling. The linked SIPP-administrative data

does not contain ability proxies and thus cannot speak to the efficacy of ability proxies for

removing ability bias. However, it is informative to compare OLS and FM estimates be-

tween the results in KLT and this paper. The preferred results in KLT with heterogeneity

in returns to schooling (Table 5) show an average marginal return of 2.8-4.4% relative to

an OLS return of 7.8% for a reduction of 44-64%. Our most general specification shows

an average marginal return of 3.9-4.9% relative to an OLS return of 8% for a reduction of

39-51%. The similarity in both average marginal returns to schooling and ability bias despite

different data sources, differences in sample construction (e.g., balanced versus unbalanced

panel), and different specifications (e.g., heterogenous versus pooled models) strengthens the

credibility of our results.

5 Conclusion

A vast body of empirical work has emerged over the past few decades that adopted a variety

of econometric approaches to address the issue of ability bias when estimating the returns to

schooling. The ability proxy approach entails the inclusion of various measures of cognitive

and non-cognitive ability in the earnings-schooling regression as proxies for the unobserved

skills. Central to the viability of such an approach is whether these proxies capture the

underlying skills that matter for earnings. While it is well known that mismeasured prox-

ies render the resulting estimates biased, attempts at quantifying the magnitude of this bias

appear to be scarce. Proposed solutions in this context are sensitive to the violation of exclu-
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sion restrictions that rule out direct effects of family background variables on earnings [e.g.,

Griliches (1977)]. This paper conducts a formal assessment of this approach by adopting an

interactive fixed effects methodology in which unobserved ability is allowed to be multidi-

mensional where each component is characterized by its own contribution to earnings with

skill prices that can vary over time. The endogeneity of schooling is accounted for through

estimation of or proxying for the skill prices without the need to rely on proxies for ability

which facilitates the decomposition of the aggregate least squares bias into components that

can and cannot be explained by the proxies.

The empirical results show that while the OLS estimates lie within the range typically

reported in the literature, our preferred factor model estimators are discernibly smaller,

suggesting the presence of substantial ability bias. Bias decomposition methods find that

the performance of ability proxies in controlling for this bias is rather disappointing - the

commonly used proxies can explain very little of the estimated ability bias. We corroborate

our findings with a set of proxy validation tests that directly evaluate the relevance of the

proxies in capturing the underlying individual abilities.

While the quadratic specification for schooling adopted in our empirical analysis is com-

mon in the literature, an interesting extension is to allow for the possibility that educational

credentials (degree completion) have a direct effect on earnings, i.e., the presence of sheepskin

effects [e.g., Hungerford and Solon (1987)]. In particular, if the value of additional years of

school is partly related to the value of degree attainment rather than knowledge obtained in

each year, then returns may be larger for individuals who complete bachelor’s and graduate

degrees than for individuals who drop out of college. An extended specification that controls

for these degree effects would be useful in decomposing the returns to schooling into its

human capital and sheepskin components, thereby allowing us to at least partly speak to

the relative importance of the human capital and signaling theories within the interactive

fixed effects framework (Caplan, 2018). Further, the role of ability bias could be explored
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by comparing the contribution of the sheepskin component from the least squares and in-

teractive fixed effects specifications, given that the importance of sheepskin effects may be

overstated due to the presence of ability bias (Lange and Topel, 2006).
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Figures and Tables

Figure 1: Distribution of Number of Years in the Final Sample
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
No missing White males Weeks and No No abnormal
variables hours worked outlier schooling

and age 16+ restrictions wages changes

Hourly wage inflation-adjusted 18.80 23.28 24.00 15.94 15.82
(349.95) (363.95) (349.57) (10.18) (9.99)

Log hourly wage inflation-adjusted 2.37 2.56 2.64 2.60 2.60
(0.74) (0.76) (0.73) (0.58) (0.57)

Years of school 13.19 13.29 13.39 13.34 13.21
(2.36) (2.48) (2.47) (2.44) (2.28)

Age 32.66 32.09 33.05 32.78 32.82
(10.20) (10.11) (9.92) (9.79) (9.78)

Mother’s years of school 11.13 11.95 11.96 11.93 11.90
(3.11) (2.43) (2.40) (2.38) (2.33)

Father’s years of school 11.11 12.17 12.18 12.14 12.07
(3.90) (3.41) (3.36) (3.34) (3.28)

Number of siblings 3.60 3.02 2.99 3.00 3.01
(2.50) (2.00) (1.98) (1.98) (1.99)

AFQT standardized 0.13 0.50 0.52 0.51 0.50
(1.00) (0.99) (0.97) (0.97) (0.96)

ASVAB standardized - General Science 0.12 0.61 0.63 0.62 0.61
(0.97) (0.88) (0.87) (0.87) (0.86)

ASVAB standardized - Arithmetic Reasoning 0.12 0.57 0.60 0.59 0.58
(1.00) (0.99) (0.97) (0.97) (0.97)

ASVAB standardized - Mathematical Knowledge 0.15 0.44 0.46 0.45 0.43
(1.01) (1.04) (1.03) (1.03) (1.01)

ASVAB standardized - Paragraph Comprehension 0.13 0.31 0.33 0.33 0.32
(0.95) (0.87) (0.85) (0.85) (0.85)

ASVAB standardized - Word Knowledge 0.12 0.41 0.43 0.43 0.43
(0.93) (0.81) (0.79) (0.79) (0.79)

ASVAB standardized - Coding Speed 0.11 0.11 0.14 0.13 0.13
(0.95) (0.88) (0.87) (0.87) (0.87)

ASVAB standardized - Numeric Operations 0.14 0.25 0.27 0.26 0.27
(0.94) (0.9) (0.88) (0.88) (0.88)

ASVAB standardized - Auto and Shop Information 0.07 0.92 0.95 0.95 0.97
(0.98) (0.86) (0.85) (0.85) (0.85)

ASVAB standardized - Electronic Information 0.08 0.75 0.78 0.78 0.79
(0.98) (0.89) (0.88) (0.88) (0.87)

ASVAB standardized - Mechanical Comprehension 0.10 0.79 0.82 0.82 0.82
(0.98) (0.93) (0.91) (0.91) (0.91)

Rotter locus of control standardized 0.03 0.14 0.15 0.15 0.14
(0.98) (0.98) (0.98) (0.98) (0.97)

Rosenberg self-esteem standardized 0.04 0.10 0.11 0.11 0.12
(0.98) (0.96) (0.96) (0.96) (0.96)

Cognitive factor 0.15
(2.43)

Noncognitive factor 1 0.01
(2.09)

Noncognitive factor 2 0.00
(1.14)

Noncognitive factor 3 -0.02
(1.08)

Number of Individuals (N) 9,224 2,954 2,843 2,842 2,420
Number of Observations (N ∗T ) 145,473 45,291 38,457 37,452 33,248

Source: National Longitudinal Survey of Youth (NLSY79), 1981-2016.
Note: Each column reports averages and standard deviations (in parentheses) for the sample specified in the column. Column (1)

starts with a baseline sample. Columns (2)-(5) sequentially add additional sample criteria until the final sample is shown in column
(5). Hourly earnings are adjusted for inflation to 1999 dollars.
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Table 2: Summary of Estimated Specifications

Specification Controls (beyond the base) Estimator

1. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 + vit - OLS

2. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 + p′iδt + vit proxies OLS

3. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 +w′iφt + vit demographics OLS

4. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 +w′iφt + p′iδt + vit proxies, demographics OLS

5. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 +λ ′i ft +uit interactive fixed effects IFE, CCEP, CCEP-2

6. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 + p′iδt +λ ′i ft +uit proxies, interactive fixed effects IFE, CCEP, CCEP-2

7. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 +w′iφt +λ ′i ft +uit demographics, interactive fixed effects IFE, CCEP, CCEP-2

8. yit = ci + sitβ1 + s2
itβ2 + eitγ1 + e2

itγ2 + siteitγ3 +w′iφt + p′iδt +λ ′i ft +uit proxies, demographics, interactive fixed effects IFE, CCEP, CCEP-2
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Table 3: Estimates of the Return to Schooling (in %) for White Males

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

OLS OLS OLS IFE IFE IFE CCE CCE CCE CCE-2 CCE-2 CCE-2

A. Without demographic controls

Marginal return 8.31*** 7.94*** 6.73*** 5.32*** 5.28*** 4.95*** 5.20*** 5.17*** 4.84*** 5.12*** 5.10*** 4.74***

(6.48,10.13) (6.12,9.75) (4.90,8.56) (1.02,7.74) (1.03,7.36) (1.40,6.99) (2.28,8.12) (2.25,8.09) (1.74,7.94) (3.77,8.81) (3.82,8.86) (3.85,9.24)

Demos-by-year FE No No No No No No No No No No No No

PCA Proxies-by-year FE No Yes No No Yes No No Yes No No Yes No

Non-PCA Proxies-by-year FE No No Yes No No Yes No No Yes No No Yes

Adjusted R-squared 0.3327 0.336 0.3471 0.8529 0.8335 0.6546 0.66 0.6418 0.4702 0.6703 0.652 0.4768

B. With demographic controls

Marginal return 8.04*** 7.77*** 6.57*** 5.05*** 4.88*** 4.13*** 4.89*** 4.70*** 4.05** 4.76*** 4.59*** 3.94***

(6.18,9.91) (5.92,9.62) (4.72,8.43) (1.77,7.60) (1.87,7.45) (1.76,6.71) (1.73,8.05) (1.56,7.84) (0.87,7.23) (4.04,9.09) (3.91,8.87) (3.43,8.32)

Demos-by-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PCA Proxies-by-year FE No Yes No No Yes No No Yes No No Yes No

Non-PCA Proxies-by-year FE No No Yes No No Yes No No Yes No No Yes

Adjusted R-squared 0.338 0.341 0.3503 0.5278 0.5253 0.4084 0.3703 0.369 0.3583 0.3749 0.3735 0.3613

Source: National Longitudinal Survey of Youth (NLSY79), 1981-2016.
Note: The dependent variable is the log of hourly wage adjusted to 1999 dollars. Our final sample contains 2,420 individuals for a total of 33,248 person-year observations. 95% confidence intervals are

shown in parentheses. Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*. Person fixed-effects and age controls are controlled for in all specifications (see Table 2 for details).
Panel B presents estimates with demographic controls including mother’s and father’s education levels as well as the number of siblings. Columns (4)-(6) are based on Interactive Fixed Effects (IFE) (Bai,
2009) with the estimated number of factors to be 9 in Panel A, 8 in Panel B Columns (4)-(5), and 5 in Panel B Columns (6). Columns (7)-(9) are based on Common Correlated Effects (CCE) (Pesaran, 2006).
Columns (10)-(12) are based on the two-step CCE procedure with the number of factors set to be 4 in both panels.
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Table 4: Bias Associated with OLS Estimates, Due to Proxies Only

(1) (2) (3) (4)

OLS - Without Demographics OLS - With Demographics

PCA Proxy Non-PCA Proxy PCA Proxy Non-PCA Proxy

Total Bias from Proxies 0.37*** 1.58*** 0.27*** 1.47***

(0.25,0.49) (1.28,1.87) (0.16,0.39) (1.20,1.75)

Bias from Cognitive Factor 0.39*** 0.32***

(0.27,0.50) (0.22,0.41)

Bias from Non-Cognitive Factor 1 -0.01 -0.02

(-0.05,0.03) (-0.06,0.02)

Bias from Non-Cognitive Factor 2 0.01 0.00

(-0.03,0.04) (-0.04,0.04)

Bias from Non-Cognitive Factor 3 -0.02 -0.03

(-0.06,0.02) (-0.07,0.01)

Bias from ASVAB General Science 0.02 0.09

(-0.30,0.33) (-0.05,0.23)

Bias from ASVAB Arithmetic Reasoning -0.04 -0.03

(-0.36,0.27) (-0.18,0.13)

Bias from ASVAB Mathematical Knowledge 1.12*** 0.97***

(0.75,1.49) (0.70,1.25)

Bias from ASVAB Paragraph Comprehension 0.15 0.09

(-0.08,0.39) (-0.06,0.25)

Bias from ASVAB Word Knowledge -0.22 0.11

(-0.52,0.07) (-0.02,0.25)

Bias from ASVAB Coding Speed -0.06 -0.02

(-0.16,0.04) (-0.08,0.04)

Bias from ASVAB Numeric Operations 0.14 0.01

(-0.03,0.03) (-0.11,0.13)

Bias from ASVAB Auto and Shop Information -0.06 0.35***

(-0.32,0.19) (0.21,0.49)

Bias from ASVAB Electronic Information 0.50*** -0.12**

(0.21,0.80) (-0.21,-0.02)

Bias from ASVAB Mechanical Comprehension 0.02 0.05

(-0.25,0.30) (-0.01,0.10)

Bias from Rotter Scale -0.01 -0.04*

(-0.05,0.03) (-0.08,-0.01)

Bias from Rosenberg Scale 0.01 -0.01

(-0.05,0.07) (-0.05,0.03)
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Table 5: Bias Associated with OLS Estimates, Due to Common Factor Structure and Proxies

(1) (2) (3) (4) (5) (6)
IFE CCE CCE-2

PCA Proxy Non-PCA Proxy PCA Proxy Non-PCA Proxy PCA Proxy Non-PCA Proxy

A. Without demographic controls

Total Bias 3.02* 3.36** 3.14*** 3.47*** 3.21*** 3.56***
(-0.20,6.22) (0.46,6.26) (3.00,3.28) (3.31,3.63) (0.81,5.60) (1.26,5.86)

Bias from Factor Loadings 3.76** 3.23** 3.85*** 3.36*** 3.93*** 3.43***
(0.56,6.96) (0.53,5.93) (3.71,3.99) (3.22,3.50) (1.53,6.33) (1.03,5.83)

Bias from Proxies -0.73*** 0.13 -0.71*** 0.11*** -0.71*** 0.14
(-0.81,-0.65) (-0.48,0.74) (-0.69,-0.73) (0.07,0.15) (-0.93,-0.49) (-0.60,0.88)

Bias from Cognitive Factor -0.71*** -0.70*** -0.70***
(-0.79,-0.63) (-0.68,-0.72) (-0.92,-0.48)

Bias from Non-Cognitive Factor 1 -0.01 0.00 0.00
(-0.03,0.01) (-0.01,0.02) (-0.01,0.02)

Bias from Non-Cognitive Factor 2 -0.01 0.00 0.00
(-0.03,0.01) (-0.01,0.02) (-0.01,0.02)

Bias from Non-Cognitive Factor 3 0.00 0.00 0.00
(-0.01,0.02) (-0.01,0.02) (-0.01,0.02)

Bias from ASVAB General Science -0.15*** -0.19*** -0.16***
(-0.23,-0.07) (-0.23,-0.15) (-0.22,-0.10)

Bias from ASVAB Arithmetic Reasoning -0.11*** -0.17*** -0.14***
(-0.15,-0.07) (-0.23,-0.11) (-0.20,-0.08)

Bias from ASVAB Mathematical Knowledge -0.60*** -0.51*** -0.54***
(-0.76,-0.44) (-0.55,-0.47) (-0.86,-0.22)

Bias from ASVAB Paragraph Comprehension 0.33*** 0.36*** 0.34***
(0.29,0.37) (0.34,0.38) (0.28,0.40)

Bias from ASVAB Word Knowledge 0.30*** 0.25*** 0.27***
(0.22,0.38) (0.21,0.29) (0.11,0.43)

Bias from ASVAB Coding Speed 0.07*** 0.06*** 0.05***
(0.05,0.09) (0.04,0.08) (0.03,0.07)

Bias from ASVAB Numeric Operations -0.19*** -0.19*** -0.19***
(-0.23,-0.15) (-0.21,-0.17) (-0.25,-0.13)

Bias from ASVAB Auto and Shop Information 0.62*** 0.60*** 0.62*
(0.20,1.04) (0.56,0.64) (-0.06,1.30)

Bias from ASVAB Electronic Information -0.17*** -0.14*** -0.18***
(-0.21,-0.13) (-0.22,-0.06) (-0.26,-0.10)

Bias from ASVAB Mechanical Comprehension 0.03 0.03*** 0.04
(-0.09,0.15) (0.01,0.05) (-0.14,0.22)

Bias from Rotter Scale -0.01* -0.02*** -0.02**
(-0.03,0.01) (-0.04,-0.01) (-0.04,-0.01)

Bias from Rosenberg Scale 0.02*** 0.03*** 0.03***
(0.01,0.04) (0.01,0.05) (0.01,0.05)

Note: Bias estimates are based on the common factor estimates in Table 3 Panel A.
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Table 5 continued: Bias Associated with OLS Estimates, Due to Common Factor Structure and Proxies

(1) (2) (3) (4) (5) (6)
IFE CCE CCE-2

PCA Proxy Non-PCA Proxy PCA Proxy Non-PCA Proxy PCA Proxy Non-PCA Proxy

B. With demographic controls

Total Bias 3.16*** 3.92*** 3.35*** 4.00*** 3.46*** 4.11***
(0.42,4.10) (1.59,6.25) (3.17,3.53) (3.82,4.18) (1.17,5.75) (1.93,6.29)

Bias from Factor Loadings 3.11*** 4.43*** 3.29*** 4.44*** 3.41*** 4.59***
(0.41,5.81) (2.10,6.76) (3.11,3.40) (4.28,4.60) (1.12,5.70) (2.56,6.54)

Bias from Proxies 0.05 -0.51*** 0.05*** -0.44*** 0.05 -0.48*
(-0.05,0.15) (-0.78,-0.24) (0.03,0.07) (-0.42,-0.46) (-0.09,0.19) (-0.02,0.98)

Bias from Cognitive Factor 0.01 0.01 0.01
(-0.02,0.09) (-0.01,0.03) (-0.13,0.15)

Bias from Non-Cognitive Factor 1 0.04*** 0.03*** 0.04***
(0.02,0.06) (0.01,0.05) (0.02,0.06)

Bias from Non-Cognitive Factor 2 0.00 0.00 0.00
(-0.01,0.02) (-0.01,0.02) (-0.01,0.02)

Bias from Non-Cognitive Factor 3 0.00 0.00 0.00
(-0.01,0.02) (-0.01,0.02) (-0.01,0.02)

Bias from ASVAB General Science -0.24*** -0.20*** -0.23***
(-0.28,-0.20) (-0.22,-0.18) (-0.33,-0.13)

Bias from ASVAB Arithmetic Reasoning 0.10*** 0.10** 0.09*
(0.06,0.14) (-0.12,-0.08) (-0.01,0.19)

Bias from ASVAB Mathematical Knowledge -0.55*** -0.52** -0.53**
(-0.73,-0.37) (-0.54,-0.50) (-0.94,-0.12)

Bias from ASVAB Paragraph Comprehension -0.11*** -0.09*** -0.10***
(-0.07,-0.15) (-0.11,-0.07) (-0.14,-0.06)

Bias from ASVAB Word Knowledge 0.19*** 0.19*** 0.18***
(0.15,0.23) (0.17,0.21) (0.10,0.26)

Bias from ASVAB Coding Speed 0.01 0.01 0.01
(-0.01,0.03) (-0.01,0.03) (-0.01,0.03)

Bias from ASVAB Numeric Operations -0.01 -0.01 -0.01
(-0.03,0.01) (-0.03,0.01) (-0.15,0.13)

Bias from ASVAB Auto and Shop Information 0.01 0.04*** 0.03
(-0.09,0.11) (0.02,0.06) (-0.07,0.13)

Bias from ASVAB Electronic Information 0.08** 0.04*** 0.06
(0.02,0.14) (0.02,0.06) (-0.02,0.14)

Bias from ASVAB Mechanical Comprehension -0.02* -0.02* -0.02*
(-0.04,0.01) (-0.04,0.01) (-0.04,0.01)

Bias from Rotter Scale 0.01 0.00 0.00
(-0.01,0.03) (-0.01,0.03) (-0.01,0.03)

Bias from Rosenberg Scale 0.03*** 0.03*** 0.03
(0.01,0.05) (0.01,0.05) (-0.03,0.09)

Note: Bias estimates are based on the common factor estimates in Table 3 Panel B.
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Table 6: Validation Tests for Proxies: A( j) and R2( j) Statistics

(1) (2) (3) (4) (5) (6) (7) (8)

IFE CCE-2

A( j) R2( j) R2−( j) R2+( j) A( j) R2( j) R2−( j) R2+( j)

A. Without demographic controls

Cognitive Factor 0.8983 0.0045 0.0045 0.0046 0.9339 0.0024 0.0023 0.0024

Non-Cognitive Factor 1 0.9393 0.0027 0.0027 0.0027 0.9533 0.0014 0.0014 0.0014

Non-Cognitive Factor 2 0.8938 0.0061 0.0061 0.0062 0.9525 0.0018 0.0018 0.0019

Non-Cognitive Factor 3 0.9145 0.0038 0.0038 0.0039 0.9372 0.0022 0.0022 0.0022

ASVAB General Science 0.9417 0.0029 0.0029 0.0030 0.9595 0.0013 0.0013 0.0013

ASVAB Arithmetic Reasoning 0.9360 0.0048 0.0047 0.0048 0.9388 0.0036 0.0036 0.0036

ASVAB Mathematical Knowledge 0.8983 0.0085 0.0085 0.0086 0.9417 0.0037 0.0037 0.0037

ASVAB Paragraph Comprehension 0.9161 0.0039 0.0039 0.0039 0.9459 0.0021 0.0021 0.0021

ASVAB Word Knowledge 0.9417 0.0042 0.0042 0.0042 0.9550 0.0028 0.0028 0.0028

ASVAB Coding Speed 0.8926 0.0059 0.0059 0.0060 0.9310 0.0032 0.0031 0.0032

ASVAB Numeric Operations 0.9066 0.0052 0.0052 0.0053 0.9388 0.0030 0.0030 0.0030

ASVAB Auto and Shop Information 0.9401 0.0030 0.0029 0.0030 0.9521 0.0021 0.0021 0.0021

ASVAB Electronic Information 0.9467 0.0026 0.0026 0.0026 0.9533 0.0016 0.0016 0.0016

ASVAB Mechanical Comprehension 0.9364 0.0035 0.0035 0.0035 0.9446 0.0025 0.0025 0.0025

Rotter Scale 0.9351 0.0050 0.0049 0.0050 0.9471 0.0026 0.0026 0.0026

Rosenberg Scale 0.9545 0.0018 0.0018 0.0018 0.9669 0.0008 0.0008 0.0008

B. With demographic controls

Cognitive Factor 0.8884 0.0062 0.0062 0.0063 0.9198 0.0022 0.0022 0.0022

Non-Cognitive Factor 1 0.9318 0.0028 0.0028 0.0028 0.9488 0.0007 0.0007 0.0007

Non-Cognitive Factor 2 0.9165 0.0040 0.0040 0.0040 0.9417 0.0017 0.0017 0.0017

Non-Cognitive Factor 3 0.9140 0.0048 0.0048 0.0048 0.9236 0.0021 0.0021 0.0021

ASVAB General Science 0.7905 0.0444 0.0436 0.0451 0.8554 0.0352 0.0346 0.0357

ASVAB Arithmetic Reasoning 0.8037 0.0497 0.0488 0.0506 0.8388 0.0454 0.0446 0.0461

ASVAB Mathematical Knowledge 0.8008 0.0411 0.0405 0.0418 0.8500 0.0342 0.0337 0.0347

ASVAB Paragraph Comprehension 0.8362 0.0210 0.0208 0.0212 0.8727 0.0150 0.0149 0.0152

ASVAB Word Knowledge 0.8223 0.0401 0.0394 0.0407 0.8690 0.0311 0.0307 0.0316

ASVAB Coding Speed 0.8707 0.0093 0.0092 0.0093 0.9145 0.0049 0.0048 0.0049

ASVAB Numeric Operations 0.8442 0.0189 0.0187 0.0192 0.8694 0.0157 0.0155 0.0158

ASVAB Auto and Shop Information 0.7864 0.0577 0.0566 0.0588 0.8326 0.0503 0.0494 0.0512

ASVAB Electronic Information 0.7946 0.0510 0.0501 0.0519 0.8397 0.0459 0.0452 0.0467

ASVAB Mechanical Comprehension 0.7591 0.0572 0.0562 0.0583 0.8190 0.0517 0.0508 0.0526

Rotter Scale 0.9211 0.0077 0.0076 0.0077 0.9355 0.0049 0.0049 0.0049

Rosenberg Scale 0.9281 0.0050 0.0049 0.0050 0.9632 0.0012 0.0012 0.0012
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Table 7: Validation Tests for Proxies: Canonical Correlations

(1) (2) (3) (4) (5) (6)

IFE CCE-2

m ρ̂2
m ρ̂2−

m ρ̂2+
m ρ̂2

m ρ̂2−
m ρ̂2+

m

A. Without demographic controls

1 0.1141 0.0903 0.1380 0.1060 0.0828 0.1292

2 0.0469 0.0304 0.0633 0.0186 0.0079 0.0292

3 0.0159 0.0060 0.0258 0.0143 0.0049 0.0237

4 0.0117 0.0032 0.0202 0.0082 0.0010 0.0153

5 0.0098 0.0020 0.0176

6 0.0045 0.0000 0.0098

7 0.0042 0.0000 0.0093

8 0.0032 0.0000 0.0077

9 0.0007 0.0000 0.0029

B. With demographic controls

1 0.3844 0.3540 0.4148 0.4196 0.3897 0.4496

2 0.0577 0.0396 0.0757 0.0254 0.0130 0.0378

3 0.0161 0.0061 0.0260 0.0109 0.0027 0.0191

4 0.0122 0.0035 0.0208 0.0070 0.0004 0.0136

5 0.0095 0.0018 0.0171

6 0.0069 0.0003 0.0135

7 0.0044 0.0000 0.0097

8 0.0027 0.0000 0.0069

Note: m = 1,2, ...,min[k;r] where k is the number of ability proxies, and
r is the number of common components. ρ̂2

m is the canonical correlation
of order m between the estimated factor loadings and proxies, and ρ̂2−

m
and ρ̂2+

m define the 95% confidence interval.
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Appendix A: Wild Cluster Bootstrap Con�dence Intervals

The con�dence intervals for the IFE and CCEP-2 estimator described in Sections 2.1.1

and 2.1.2, respectively, are estimated using a wild cluster bootstrap procedure. An attractive

feature of this procedure is that it is not only robust to heteroskedasticity but also preserves

the time series dependence of the errors within clusters. Here we provide the details involved

in implementing this procedure for the IFE estimator with analogous steps applicable to the

CCEP-2 estimator.

Consider the model

yit = ci + sit�1 + s
2
it�2 + eit1 + e

2
it2 + siteit3 + p

0
i�t + �

0
ift + uit (A.1)

i = 1; :::; N ; t = ti 2 Ji � fti(1); ti(2); :::; ti(Ti)g

The steps for computing the bootstrap standard errors are enumerated as follows:

1. Obtain the IFE estimator from estimating model (A.1) using the procedure described

in Section 2.1.1 and save the residuals fûit; i = 1; :::; N; t 2 Jig:

2. Generate bootstrap errors as

u�i = wiûi; wi
iid� N(0; 1)

where ûi = (ûi;ti(1); :::; ûi;ti(Ti))
0.

3. Generate bootstrap data from

y�it = ĉi + sit�̂1 + s
2
it�̂2 + eit̂1 + e

2
it̂2 + siteit̂3 + p

0
i�̂t + �̂

0
if̂t + u

�
it

where �^�denotes the IFE estimate and u�it are the bootstrap errors obtained from

step 2.

4. Estimate (A.1) using y�it instead of yit and obtain the bootstrap estimates
�
�̂1;b; �̂2;b; ̂3;b

�
:

Use these estimates to compute the bootstrap estimate of the marginal return to school-

ing as

\MRTSb = �̂1;b + 2�s�̂2;b + �ê3;b
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5. Repeat steps (2)-(4) B times to obtain the set f \MRTSbgBb=1.

6. A 100(1 � �)% equal-tailed con�dence interval for the average marginal returns to

schooling is constructed ash
\MRTS(�=2); \MRTS(1� �=2)

i
where \MRTS(�=2) and \MRTS(1 � �=2) are the �=2 and (1 � �=2) quantiles of the
ordered collection f \MRTSbgBb=1, respectively.
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Appendix B: Schooling Variable

Table B.1: Variation in Years of Schooling for the Final Sample

A. Changes Per Person

Total Number of Changes Number of Individuals Percent (in %)

0 1591 65.74
1 467 19.30
2 206 8.51
3 87 3.60
4 44 1.82
5 17 0.70
6 3 0.12
7 3 0.12
8 2 0.08

B. Changes Per Education Level

Education Level after Schooling Change Number of Instances Percent (in %)

9 3 0.21
10 8 0.55
11 80 5.49
12 249 17.10
13 211 14.49
14 227 15.59
15 172 11.81
16 242 16.62
17 125 8.59
18 80 5.49
19 38 2.61
20 21 1.44

Source: National Longitudinal Survey of Youth (NLSY79), 1981-2016.
Note: Panel A presents the number of schooling changes per person across our final

sample. Panel B tabulates the schooling changes by education level after the change. For
example, in the first row, we observed 3 instances of an individual’s years of schooling
changing to 9th grade, and 8 instances changing to 10th grade in the second row, and so
on. Thus, Panel B indicates that most of the variation in schooling in our final sample
comes from individuals completing grades years 12-17 (i.e., completing high schooling
through 5 years of college).
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Appendix C: Robustness Checks

Table C.1: IFE Estimates in % (Robustness) of the Return to Schooling for White Males

Number of Factors (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. Without demographic controls, No proxy

Marginal return 9.58*** 4.54*** 4.10*** 5.02*** 5.28*** 5.24*** 5.39*** 5.29*** 5.32*** 5.31***
(6.69,10.39) (2.31,9.45) (2.50,8.55) (2.68,8.20) (2.23,8.29) (1.68,7.96) (1.39,8.12) (1.30,8.00) (1.02,7.74) (1.36,7.58)

B. Without demographic controls, PCA proxy

Marginal return 8.77*** 4.61*** 3.98*** 5.00*** 5.24*** 5.19*** 5.35*** 5.25*** 5.28*** 5.27***
(5.90,9.76) (2.43,8.98) (2.32,7.95) (2.48,8.19) (2.10,7.84) (1.67,7.82) (1.35,7.76) (1.21,7.66) (1.03,7.36) (1.17,7.02)

C. Without demographic controls, Non-PCA proxy

Marginal return 6.77*** 4.10*** 2.52** 4.62*** 4.95*** 4.88*** 4.99*** 4.98*** 4.95*** 4.96***
(3.97,8.77) (2.82,8.75) (0.96,7.08) (2.41,7.66) (1.90,7.35) (1.77,7.20) (1.49,7.20) (1.22,7.32) (1.40,6.99) (1.47,6.67)

D. With demographic controls, No proxy

Marginal return 6.76*** 5.09*** 4.75*** 3.00*** 4.60*** 4.92*** 4.97*** 5.05*** 5.06*** 5.09***
(5.01,10.04) (3.26,9.87) (1.09,7.75) (2.67,7.93) (2.12,7.32) (2.16,7.47) (1.96,7.77) (1.77,7.60) (1.98,7.53) (2.02,7.00)

E. With demographic controls, PCA proxy

Marginal return 6.88*** 4.51*** 2.90*** 4.45*** 4.79*** 4.80*** 4.88*** 4.88*** 4.88*** 4.94***
(5.11,10.02) (3.56,9.21) (1.07,7.23) (2.52,7.69) (2.17,7.22) (1.98,7.10) (1.91,7.64) (1.87,7.45) (1.98,6.74) (1.81,6.83)

F. With demographic controls, Non-PCA proxy

Marginal return 5.24*** 3.75*** 2.39** 3.80*** 4.13*** 4.14*** 4.23*** 4.24*** 4.23*** 4.28***
(3.96,8.67) (2.19,8.55) (0.75,6.64) (2.15,6.92) (1.76,6.71) (1.78,6.82) (1.52,6.69) (1.52,6.69) (1.71,6.69) (1.64,6.26)

Source: National Longitudinal Survey of Youth (NLSY79), 1981-2016.
Note: The dependent variable is the log of hourly wage adjusted to 1999 dollars. Our final sample contains 2,420 individuals for a total of 33,248 person-year

observations. 95% confidence intervals are shown in parentheses. Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*. Person fixed-effects
and age controls are controlled for in all specifications (see Table 2 for details). Panel D, E, and F present estimates with demographic controls including mother’s and
father’s education levels, and the number of siblings. The number of factors are chosen based on the criterion described in section 2.1.1, and the selected estimates are
highlighted in bold.
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Table C.2: Estimates of the Return to Schooling (in %) for White Males (Robustness with Age Quartic)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

OLS OLS OLS IFE IFE IFE CCE CCE CCE CCE-2 CCE-2 CCE-2

A. Without demographic controls

Marginal return 7.33*** 6.89*** 5.54*** 5.11*** 5.00*** 4.76*** 4.97*** 4.92*** 4.62*** 4.91*** 4.85*** 4.54***

(5.52,9.14) (5.08,8.70) (3.72,7.36) (0.89,6.52) (1.34,7.12) (0.99,6.58) (2.07,7.87) (2.02,7.82) (1.56,7.68) (3.23,8.36) (3.38,8.40) (3.48,8.80)

Demos-by-year FE No No No No No No No No No No No No

PCA Proxies-by-year FE No Yes No No Yes No No Yes No No Yes No

Non-PCA Proxies-by-year FE No No Yes No No Yes No No Yes No No Yes

Adjusted R-squared 0.3346 0.338 0.3497 0.8529 0.7022 0.6289 0.6604 0.6423 0.4706 0.6705 0.6519 0.4769

B. With demographic controls

Marginal return 7.06*** 6.46*** 5.52*** 5.09*** 4.87*** 4.23*** 4.92*** 4.71*** 4.04** 4.82*** 4.63*** 3.96***

(5.21,8.90) (4.63,8.30) (3.67,7.36) (1.93,7.21) (1.80,6.83) (1.50,6.37) (1.76,8.08) (1.57,7.85) (0.88,7.20) (4.15,9.16) (3.97,8.90) (3.34,8.19)

Demos-by-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PCA Proxies-by-year FE No Yes No No Yes No No Yes No No Yes No

Non-PCA Proxies-by-year FE No No Yes No No Yes No No Yes No No Yes

Adjusted R-squared 0.3406 0.3444 0.3527 0.5279 0.5254 0.5114 0.3703 0.369 0.3583 0.3749 0.3736 0.3614

Source: National Longitudinal Survey of Youth (NLSY79), 1981-2016.
Note: The dependent variable is the log of hourly wage adjusted to 1999 dollars. Our final sample contains 2,420 individuals for a total of 33,248 person-year observations. 95% confidence intervals are

shown in parentheses. Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*. Person fixed-effects and (quartic) age controls are controlled for in all specifications. Panel B presents
estimates with demographic controls including mother’s and father’s education levels as well as the number of siblings. Columns (4)-(6) are based on Interactive Fixed Effects (IFE) (Bai, 2009) with the
estimated number of factors to be 9 in Panel A, 8 in Panel B Columns (4)-(5), and 5 in Panel B Columns (6). Columns (7)-(9) are based on Common Correlated Effects (CCE) (Pesaran, 2006). Columns
(10)-(12) are based on the two-step CCE procedure with the number of factors set to be 4 in both panels.
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