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1. Introduction

Vogelsang (1999) discusses sources of non-monotonic power for a
wide variety of tests for a shift in the mean of a dynamic time series.
With serially correlated errors, the problem lies in the behavior of the
estimate of the long-run variance under the alternative hypothesis of a
shift in mean. In particular, if the error variance is estimated under
the null (the LM tests), non-monotonic power can result. (See also
Crainiceanu and Vogelsang, 2007). A possible solution to this problem
of non-monotonic power is to estimate the long-run variance under
the alternative hypothesis (the Wald tests). However, as documented
by Vogelsang (1999), the Wald tests can suffer from serious size
distortions in the presence of persistent errors.

This paper proposes a new hybrid estimator of the long-run
variance which is based on residuals computed under both the null
and alternative hypotheses. In particular, the estimate of the variance
and bandwidth are based on the residuals calculated under the
alternative hypothesis while the covariances are estimated under the
null hypothesis. We show both theoretically and through Monte-Carlo
experiments that modified Wald tests based on this estimator cannot
only bypass the problem of non-monotonicity and maintain power
comparable to the usual Wald tests but also retain adequate size
properties. Our analysis also suggests that the source of size distortions
feree for useful comments.
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associated with the usual Wald tests is the estimation of the
covariances under the alternative hypothesis.

The rest of the paper is organized as follows. Section 2 presents
the model and derives the main result of the paper. Section 3 offers
Monte-Carlo evidence to assess the adequacy of the proposed test in
terms of finite sample size and power. Section 4 concludes.

2. The main result

We consider the simple mean shift model

yt = μ + δI tNTc
b

� �
+ ut ð1Þ

whereTbc = [Tλc]. We make the following assumption on the errors:

Assumption A1. The errors ut satisfy an invariance principle:

T−1=2 ∑
Tr½ �

t = 1
utZσW rð Þ

whereW(.) is a standard Brownian motion, σ
2
=limT→∞T

−1E(∑t=1
T ut)2 and

⇒ denotes weak convergence under the Skorohod topology. Let SSR0
denote the sum of squared residuals under the null hypothesis of stability
and SSR(λ) denote the sum of squared residuals obtained using the break
date Tb(=[Tλ]). Let λ̂ denote the break fraction which minimizes
the sum of squared residuals, that is, λ̂ =arg minλε Λε SSR(λ) where, for
some arbitrarily small positive number ε, Λε={λ:λ≥ε, λ≤1−ε}. For a
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Table 1
Size of LM, Wald and modified Wald tests (Nominal size=5%)

AR(1) errors

ρ=0 ρ=0.5 ρ=0.7 ρ=0.9

T=120 T=240 T=120 T=240 T=120 T=240 T=120 T=240

M-LM .057 .047 .068 .056 .061 .059 .020 .042
E-LM .052 .041 .056 .050 .034 .047 .006 .013
S-LM .030 .035 .028 .035 .008 .021 .004 .000
M-Wald .075 .051 .126 .088 .171 .110 .378 .233
E-Wald .076 .054 .160 .106 .222 .135 .464 .309
S-Wald .066 .051 .140 .091 .203 .125 .440 .280
M-W⁎ .075 .053 .091 .074 .091 .073 .108 .085
E-W⁎ .068 .052 .090 .062 .084 .064 .078 .065
S-W⁎ .056 .045 .053 .046 .045 .036 .020 .018

1 It is, however, useful to note that while improved rates of divergence are
suggestive of better finite sample power, they do not necessarily imply so.
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given break fraction λ∈Λε, the LM and Wald test statistics for a mean
shift are then given by

LM λð Þ = SSR0−SSR λð Þeσ2

eσ2 = T−1 ∑
T

t−1
eu2
t + 2T−1 ∑

T−1

j = 1
w j; emð Þ ∑

T

t = j + 1
euteut−j

Wald λð Þ = SSR0−SSR λð Þ
σ̂2 λð Þ

σ̂2 λð Þ = T−1 ∑
T

t−1
û2t λð Þ + 2T−1 ∑

T−1

j = 1
w j;m̂ λð Þð Þ ∑

T

t = j + 1
ût λð Þût−j λð Þ

where eut = yt−T−1∑T
t = 1yt t = 1;…; Tð Þ, eut λð Þ = yt−T−1

b ∑Tb
t = 1yt if t≤ [Tλ]

and ût λð Þ = yt− T−Tbð Þ−1 ∑T
t = Tb + 1yt otherwise. m~ is the bandwidth

estimated using residuals under the null hypothesis and m̂(λ) is
the bandwidth estimated using residuals that are obtained assuming
a break date Tb =[Tλ]. For example, when Andrews' (1991) data
dependent method is used, we have m~=c(~αT)1/ϑ where ϑ depends
on the kernel (e.g., ϑ=3 for the Bartlett kernel and ϑ=5 for the
Quadratic Spectral) and α̃ is, say, based on an AR(1) approximation:
α̃=4ρ̃2/(1−ρ̃2)2 with ρ̃ the OLS estimate from a regression of ũt on
ũt −1. Similarly, m̂(λ) is based on α̂(λ) which is computed using residuals
ût(λ). We make the following assumption on the kernel function:

Assumption A2. We assume that the kernel functionw(j,m) satisfies
the regularity conditions stated in Andrews (1991), in particular the
fact that ∑T−1

j = 1jw j;mð Þj =O mð Þ.
We propose the following hybrid estimator of σ2:

б̂
2

M = T−1 ∑
T

t = 1
ût λ̂
� �2

+ 2T−1 ∑
T−1

j = 1
w j; m̂ λ̂

� �� �
∑
T

t = j + 1
eut eut−j ð2Þ

and the corresponding test statistic:

W⁎ λð Þ = SSR0−SSR λð Þ
б̂
2
M

ð3Þ

We consider the following three functionals:

Mean−J = ∫λɛΛɛ
J λð Þ

Exp−J = log ∫λɛΛɛ
exp

1
2
J λð Þ

� �� 	
Sup−J = supJ λð Þ

λaΛa

where J= LM, Wald, W⁎. In the following Proposition, we will show
that tests based on the hybrid estimator (2) has power that is
monotonic with respect to the magnitude of the break |δ|.
Proposition 1. Assume that yt(t=1,…,T) is generated by (1), where
δ≠0. Then the limit of the test statistic (3)is given by

T−1 + 1=ϑW⁎ λð ÞYp λc� �2 1−λð Þδ2

λ Op δ2
� �� � ð4Þ

We also have the following approximation:

T−1 + 1=ϑW⁎ λð Þf λc� �2 1−λð Þ
λ T−1=ϑδ−2σ2 +Op 1ð Þ
� � ð5Þ

Proof. It is easy to show that

T−1SSR0 = T−1 ∑
T

t = 1
u2
t + λ

c 1−λc� �
δ2 + op 1ð Þ

We also have

T−1SSR λð Þ = T−1 ∑
T

t = 1
u2
t + λ−λc� � λc

λ

� 	
δ2 + op 1ð Þ

We thus get

T−1 SSR0−SSR λð Þð Þ = λc� �2 1−λð Þδ2
λ

+ op 1ð Þ

Let γj = plimTY∞T−1∑T
t = j + 1utut−j . We can show that

T−1 ∑
T

t = j + 1
eut eut−j Yp γj + λ

c 1−λc� �
δ2 limTY∞ 1−j=Tð Þ uniformly in j.

We thus have

T−1=ϑб̂
2

M = T−1=ϑσ2 + 2T−1=ϑδ2 ∑
T−1

j = 1
w j; m̂ λ̂

� �� �
1−j=Tð Þ + op 1ð Þ ð6Þ

We have m̂ λ̂
� �

= c α̂T
� �1=ϑ

; α̂ = 4 ρ̂2
= 1−ρ̂
� �4

; ρ̂ = T−1∑T
t = 2ût

λ̂
� �

û
t−1

λ̂
� �

=T−1∑T
t = 2û

t−1
λ̂

� �2
.

Using the consistency of λ̂ for λc (see Bai, 1994), we can show that
ρ̂ p

→ γ1/γ0. We thus get α̂ =Op(1) and m̂ (λ̂)=Op(T1/ϑ). This gives

j ∑T−1
j = i

w j; m̂ λ̂
� �� �

1−j=T j =Op T1=ϑ
� ��

ð7Þ

Hence, we have from (6),

T−1=ϑ б̂
2

M
=Op δ2

� �

and the limit in (4) follows. The approximation (5) is also immediate
from (6) and (7). □

Eq. (4) shows that the proposed tests diverge at rate Op(T1−1/ϑ).
With the quadratic spectral kernel (ϑ=5), the rate of divergence is Op

(T4/5) while it is Op(T2/3) with the Bartlett kernel (ϑ=3). Hence, using
the Bartlett kernel might lead to some power loss due to the reduced
rate of divergence. While the LM tests diverge at the same rate as the
proposed tests, the Wald tests diverge at a faster rate (Op(T)) and
hence are asymptotically more efficient.1 However, as we show in the
next section, the Wald tests can be seriously oversized with strong
persistence in the errors. The approximation (5) shows that as the
magnitude of the break |δ| increases, the limit of W⁎(λ) increases so
that power is monotonic.



Fig. 2. Power Functions with AR(1) Errors: A Comparison of LM and W⁎ Tests (ρ=0.7, 0.9).

Fig. 1. Power Functions with AR(1) Errors: A Comparison of LM and W⁎ Tests (ρ=0, 0.5).
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Fig. 3. Power Functions with AR(1) Errors: A Comparison of Wald and W⁎ Tests (ρ=0, 0.5).

Fig. 4. Power Functions with AR(1) Errors: A Comparison of Wald and W⁎ Tests (ρ=0.7, 0.9).
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Remark 1 Deng and Perron (2008) show that б
~ 2=Op(δ4/ϑ+2T1/ϑ).

This implies that for the LM tests the denominator has a higher order
than the numerator thus inducing a non-monotonic power function.

3. Monte-Carlo evidence

In this section, we present Monte-Carlo evidence to assess the
adequacy of the proposed tests in finite samples as well as compare its
performance to the LM and Wald tests. We consider the following
error process2:

ut = ρut−1 + et ;u0 = 0

The innovations et are generated as i.i.d.N(0,1) random variables.
We consider 4 values of the AR(1) parameter: ρ=0,0.5,0.7,0.9. We set
μ=1. The sample sizes considered are T=120 and T=240. The level
of trimming used is ε=.15. The long-run variance estimators are
constructed using a quadratic spectral kernel with an AR(1)
approximation to the bandwidth. All experiments are based on 1000
replications.

Table 1 presents a comparison of the empirical size (δ=0) of the
proposed tests with the LM and Wald tests. Consider first the case of
AR(1) errors. For mildly persistent errors (ρ=0,0.5) and T=120, the
Wald andW⁎ are slightly oversized although doubling the sample size
results in a null rejection probability closer to the nominal size. With
strong persistence in the errors (ρ=0.7,0.9), the Wald tests suffer from
substantial size distortions. While the size improves when the sample
size is doubled, the distortions continue to persist. For example, with
ρ=0.9 and T=240, the size distortions of the exp-Wald test are in
excess of 30%. On the other hand, the modified tests perform quite
well with the size rarely exceeding 10%. The Sup-W⁎ test performs the
best among the W⁎-tests with empirical size very close to nominal
size. The LM tests also perform adequately in terms of size.

Next, we present a power comparison of the LM, Wald and W⁎-
tests. We consider a break in the middle of the sample −λc=0.5.3 The
power functions of the LM and modified tests with AR(1) errors are
plotted in Figs. 1 and 2.4 The figures clearly illustrate that the LM test
suffer from the problem of non-monotonicity irrespective of the
sample size and the degree of persistence. Among the LM tests, the
2 Results for MA(1) errors are available upon request.
3 Power experiments were also conducted for λc=0:3; 0:7. The results were

qualitatively similar to λc=0:5 and hence not reported.
4 All power functions presented are size-unadjusted.
Mean-test seems to perform the best while the Sup-test performs
most poorly. On the contrary, all the W⁎-tests exhibit monotonic
power except for the case ρ=0 which shows slight non-monotonicity.
This latter feature can be explained by the fact that the long-run
variance estimator uses residuals under the null which are con-
taminated by the break and become more so as the break becomes
larger. While the bias in the bandwidth is the primary source of non-
monotonicity, the null residuals also play a role. Among the W⁎-tests,
the Mean and Exp-tests perform better than the Sup-test especially
when there is strong persistence in the errors. Figs. 3 and 4 present a
power comparison of the Wald tests and the proposed modified tests.
The power functions of the Mean-W⁎ and Exp-W⁎ tests are only
slightly lower than those of the Wald tests. Thus, the proposed tests
offer an improvement in size over the Wald tests with little loss in
power.

4. Conclusion

This paper proposes a solution to the size–power trade-off
between the LM and Wald tests by proposing a new estimator of the
long-run variance of the errors which is based on estimated residuals
under both the null and alternative hypotheses. Our results show that
structural break tests modified with this estimator are able to bypass
both the problem of non-monotonicity of the LM tests as well as the
size distortions of the Wald tests so that the proposed tests may be
expected to provide a useful addition to the existing battery of tests.
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