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Abstract

In response to a price change by a single seller, it is common for the density of sellers in the market to influence both the
quantity response of consumers and the price response of other sellers. Using field experiment data collected around a series of
exogenously imposed price changes we find that an individual retailer with a larger number of competitors faces a more-responsive
demand. This finding is fundamental to a predicted inverse relationship between market prices and the number of competitors. We
also examine the reaction of rival stations to exogenous price changes, and find that the magnitude of a competitor's response is
inversely related to the density of stations in the market.
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In changing a price, a seller must confront two key
questions:What will be the reaction of consumers to a price
change and what will be the reaction of competitors? A
common feature ofmanymodels that consider price-setting
is that answers to both questions depend on the number of
competitors in the market. This paper draws on a field
experiment that was conducted in three urban areas of
California to see whether the number of competitors does
indeed determine the extent of the reaction by a seller's
potential customers as well as the extent of the reaction by
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competitors. The experiment set for short time intervals
retail prices at 54 company-operated gasoline stations of a
major retailer. In particular, prices at two alternating subsets
of stations were changed and then fixed at these new levels
for one-week periods over a three-month period. The result
was to create exogenous deviations in the prices at
“treatment” stations from what they otherwise would
have been. During this period, information on the daily
volumes of gasoline sold at the treatment stations was
collected, as well as the daily prices at competitor stations
within two miles of each of the 54 treatment stations.1

Barron et al. (2004) considered the effect of the num-
ber of sellers (“seller density”) on aggregate price levels and
on price dispersion across markets using single-day
1 We thank the owner of these stations for recently granting
permission to use these data.

mailto:waddell@uoregon.edu
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6 There are a number of laboratory experiments that have empirically
examined strategic behavior. Recent examples of experiments adopting a
Cournot framework are Rassenti et al. (2000), Cox andWalker (1998), and
Deck andWilson (2003).Other experiments have focusedmore on pricing
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comparisons of prices across stations. The current paper is
distinguished from this paper and related literature in its use
of unique firm-level data on volume and prices over time in
conjunction with exogenous variations in prices over time
to provide evidence concerning the effect of the number of
sellers on the responsiveness of both consumers and
competitors to a price change by a single seller.2 Although
the number of treatment stations is somewhat small (54)
and the time period over which price movements were
tracked is short (80 days), our experimental field data
created exogenous price changes that provides an oppor-
tunity to identify the effect of the number of alternative
sellers in a market on an individual seller's price elasticity.3

As prices at competing stations within two miles of each
treatment stationwere also surveyed, analysis of competitor
reactions to exogenous price changes is also possible with
these data. Namely, to the extent instituted prices at
treatment stations differ from what relevant competitors
expect prices to be at these stations, we can quantify rivals'
reactions to an exogenous price change, including potential
differences in the extent of reaction based on the direction
of the price change and the number of rivals in the market.

A great deal of empirical work has focused on retail
gasoline markets as a suitable proving ground for theories
of price wars, dynamic pricing patterns and collusive
behavior. For example, building on the earlier price war
studies of Porter (1983) and Bresnahan (1987), Slade
(1992) collects price war data on ten competing service
stations in Vancouver over an apparent punishment phase
to assess firm's responses to price-shocks “of an unusual
magnitude.”4 Also analyzing dynamic pricing behavior,
Noel (2007) considers a panel of 22 competing stations in
Toronto, identifying Edgeworth Cycles similar to those of
Maskin and Tirole (1988), where, in a dynamic Bertrand
duopoly model, focal prices and cyclical prices are both
Markov perfect Nash equilibria.5 Our analysis adds to this
2 Such evidence could not be provided in Barron et al. (2004) since
it was based on single-day census data of gasoline station prices
across different markets that varied in the number of sellers.
3 Our analysis of the price elasticities of individual sellers is distinct from

the more common estimates of market demand elasticities (e.g., Kayser,
2000; Graham and Glaister, 2002; Nicol, 2003; Oladosu, 2003). While not
directly applicable to the questions addressed in this paper, these estimates do
highlight a common issue in estimating responses of consumer to price
changes, specifically the importance of identifying exogenous price changes.
4 Slade (1992) also finds that firms respond asymmetrically to rival-

price increases and decreases— sellers respondingmore quickly to price
increases by “major” firms than to price decreases. This asymmetry is in
the opposite direction for responses to independent firms' price changes.
5 Eckert (2003) also provides evidence of retail price cycles across

many Canadian markets. Among other topics considered in the literature
concerning gasoline markets are the wholesale-price response to crude-
price fluctuation (e.g. Borenstein and Shepard, 2002; Bachmeier and
Griffin, 2003) and vertical relationships (e.g. Hastings, 2002).
literature by providing new evidence on empirical
regularities in responses to exogenously imposed price
shocks at individual stations.6

The paper is divided into four sections. Section 1 pro-
vides an example of the potential role that the number of
sellers can have on an individual seller's price elasticity of
demand. We do this in the context of the well-known
Salop–Perloff monopolistic competition model, a model
that predicts an inverse relationship between the number of
sellers in a market and an individual seller's price elasticity
of demand. While one might expect such a result, and a
resulting inverse relationship between prices and the
number of sellers, there are models that suggest the
opposite. For instance, Varian (1980, 1981) considers a
symmetric randomized-pricing equilibrium in a market
where some consumers are captive buyers and others
purchase from the seller with the lowest price. In Varian's
setting, sellers in markets with a higher number of sellers,
due to either a larger number of consumers or lower fixed
costs, can face the same price elasticity of demand. A
second example is Stiglitz (1987). One of the cases Stiglitz
considers assumes convex search costs and search without
replacement. In this setting, he finds that an increase in the
number of sellers does not change a sellers' price elasticity
of demand for a price increase, but reduces the price
elasticity of demand for a price-decrease, suggesting, on
average, a decrease in a seller's price elasticity of demand in
markets with a higher number of sellers.7

Section 2 presents the results of an empirical analysis
that links seller density to individual sellers' price elasticity
of demand based on the field experiment data, with
identification achieved through the use of our treatments as
behavior, such as those examining the implications of the Bertrand–
Edgeworth model (e.g., Kruse et al., 1982) and the use of a posted-offer
pricing mechanism (e.g., Ketcham et al., 1984).
7 The key factor behind the Varian result is the proposed mixed strategy

equilibrium in prices, an equilibrium that requires that all prices within the
set of admissible prices generate the same expected profits, such that the
change in profits arising from a price change is zero. Given a constant
marginal cost, this implies that the price elasticity of demand equals the
ratio of price to the markup of price over marginal cost. Thus, the price
elasticity of demand at a specific price is predicted to be identical across
markets that differ in the number of sellers, with differences in the number
of sellers arising due to either differences in fixed costs or differences in the
aggregate number of consumers. The key factor behind the Stiglitz result is
that consumers know the price distribution, but not the location of indi-
vidual prices. The location of prices can only be ascertained through costly
sequential search. In this setting, an increase in the number of sellers reduces
the elasticity of demand for a price-decrease because, with a larger number
of sellers, consumers face a higher cost to finding a low-price store, and this
limits consumers' response to a price decrease by a single seller.



519J.M. Barron et al. / Int. J. Ind. Organ 26 (2008) 517–531
instrumental variables. We find consistent evidence that
individual sellers face a higher price elasticity of demand in
markets where consumers have a higher number of
alternative sellers. We then illustrate how our results
could be extrapolated to explain, in part, price differences
across locations that have different seller densities.8

Section 3 examines how seller density can also affect
the extent of the reaction of competitors to an exogenous
price change by one seller. Here, we again exploit our
treatments as the foundation for instrumental variables in a
two-stage specification of retail prices. Our analysis
indicates that the reactions of stations to a competitor's
price change are partial, and larger in magnitude in lower-
density markets. Section 4 contains concluding remarks.

1. A simple theoretical framework

This section reviews the theoretical framework of
monopolistic competition models to provide an example
of a case where seller density can be linked to consumer
and competitor reactions. To do so, consider a market
for a good that involves L consumers, each purchasing
one unit of the good. Let N be the total number of sellers
in the market (N≥2), such that sales of the represen-
tative seller equal L/N. For seller i, the production of
units of output qi has a common fixed cost component,
K, and a constant marginal cost component, α. That is,

CðqiÞ ¼ K þ aqi; ð1Þ
where K N 0 and α N 0.

In general, the demand function faced by seller i will
depend on the number of consumers and sellers in the
market (L andN, respectively), the price charged by seller i,
pi, and the vector of prices charged by the other sellers, p−i.
In addition, the demand function depends on consumers'
common consumption value of the good, r, and consumers'
costs to visiting sellers. Let ν denote the cost to a consumer
of visiting a particular seller, the realization of a random
variable drawn from the continuous distribution F(ν) with
lower and upper bounds a and b, respectively.9
8 Note that our focus here is on price differences acrossmarkets, not price
differences at different sellers in the samemarket. A number of studies have
considered price dispersion within particular markets. For instance, for
gasoline and related markets, see Marvel (1976), Png and Reitman (1994),
Borenstein and Shepard (1996), Adams (1997), and Coloma (1999). For
empirical studies of other industries that have investigated the link bet-
ween search costs or market structure and the resulting price distribution
consult Sorensen (2000),Walsh andWhelan (1999),Giulietti andWaterson
(1997), Borenstein and Rose (1994), Dahlby and West (1986).
9 This leads to realized product differentiation, the key assumption that

provides a rationale for a finite price elasticity of demand, as illustrated by
Perloff and Salop (1985) andAnderson andRenault (1999), among others.
If a consumer knows the prices and visiting costs of all
sellers at the time of their decision to purchase, then the
consumer with realized visiting costs νi, i=1,…, N pur-
chases from seller i only if pi+νi≤mink≠ i[pk+νk] and
r≥pi+νi. In such a case, given the second condition holds,
the probability that consumer j buys from seller i is given by

q j
i ¼

Z b

a
Ckpi½1� Fðpi þ m� pkÞ�dFðmÞ: ð2Þ

Summing across L consumers who each purchase one
unit of the good, the expected demand for seller i becomes

qi
XL
j¼1

qj
i : ð3Þ

Each period, each seller chooses a pricing strategy that
maximizes expected profit taking as given the pricing
strategies of other sellers. Specifically, each seller sets a
unique price that maximizes profits given the resulting
level of expected demand. Such a pure-strategy equilib-
rium means that for seller i, the maximization problem is:

max
pi

pi ¼ piqi � CðqiÞ; ð4Þ

where (1) and (3) define the cost and demand functions,
respectively. Seller i's profit-maximizing price satisfies the
standard first-order condition:

pi ¼ mia; ð5Þ
where mi=ei / (ei−1) N 1 and ei=−(∂qi /∂pi)(pi /qi). Eq.
(5) is the familiar expression stating that the optimal price
equals the firm's marginal cost multiplied by a markup
factor, mi, which, in turn, is decreasing in the firm's price
elasticity of demand, ei.

Given identical marginal costs and demands for each
seller, market equilibrium has all firms charging the
same price, with expected sales by each seller equal to
L/N, (Perloff and Salop, 1985). This common price in
the market is simply

p ¼ ma: ð6Þ
The zero-return condition then determines the number

of sellers, with the resulting equilibrium characterized by a
price set by all sellers that is equal to the commonmarginal
cost α plus average fixed cost K /(L/N ).10

For the above model of price-setting, either a larger
market size (L) or lower fixed costs (K ) can lead to a
10 We assume in equilibrium that the consumption value of the good,
r, exceeds the upper bound of the distribution of visiting costs plus
equilibrium price, such that all consumers purchase from one of the N
sellers.



12 Our goal is to define each station's market in such a way as to include
most of the station's competitors. While a two-mile radius circle around a
station likely defines the station's rivals in most cases, we note that even
where two stations are across the street from each other, traffic patterns
may impede effective competition. For example, a consumer's access to
both stations may depend on which side of the road the consumer is
traveling on.Unfortunately, such data on traffic patterns are unavailable for
our sample of stations and we rely on our two simple measures of density,
acknowledging their potential imperfections.
13 The stations recorded in each census from these three companies were
matched using a variety of matching algorithms based on street address,
intersection, city, and brand. Substantial care was taken in the matching
process to make sure that the same station identified by two different
sources would not be counted as two separate stations. The time-
consuming process of matching stations across the three censuses was
done for a variety of reasons. First, all three censuses contain some stations
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market with a higher number of sellers (N). From (3) and
(6), it can be shown that accompanying this increase in
the number of sellers in the market will be an increase in
the price elasticity of demand for each individual seller
and a lower equilibrium price.11 This effect of the
number of sellers, or what we term seller density, on an
individual seller's price elasticity of demand arises
because an increase in the number of sellers introduces
more “close substitutes” for buyers. As we discuss later
in Section 3, the model also can be used to illustrate a
potential link between the reaction of other sellers to a
price change by one seller in the market and the number
of sellers in the market.

2. Seller density and the responsiveness of
consumers to price changes

The focus in this section is an examination of the rela-
tionship between a seller's price elasticity of demand and
the density of sellers. We then illustrate one potential
implication of the analysis by showing how the combine the
estimated price elasticity results and information on station
density across different areas could be used to make out-of-
sample predicted differences in price levels across areas.

Our empirical analysis requires a measure of the
number of other sellers in a station's market. To create
such a measure, we adopt the convention of identifying
other sellers in a station's market by their proximity to
the station. In particular, we count as other sellers those
stations within a two-mile radius of each station. The
density of competitors faced by a particular seller is then
simply the number of surrounding stations that meet this
proximity requirement. In a densely populated urban
area, some researchers have used a one mile radii
market, however, because the data were available, we
chose to go out two miles. We note that one to two-mile
radii markets are often assumed in the literature even in
the absence of data availability issues and that the results
reported are generally robust to permutations of this
two-mile radius. An alternative measure of density that
also includes information on the average distance to a
treatment station's competitor is discussed following
11 Note that in the limiting case price approaches marginal cost. Of
course, the reason for the larger number of sellers has implications for
the ratio of buyers to sellers. If the increase in number of sellers is due
to an increase in market size, then the zero-return constraint suggests
that there will not only be a lower equilibrium price but also an
increase in the number of consumers per seller. On the other hand, if
the increase in the number of sellers is due to lower fixed costs, then
the number of consumers per seller will fall.
our presentation of empirical results and the results are
robust to using this alternative measure.12

To determine the density of sellers for stations
located in the three geographic areas in California
containing treatment stations (the Los Angeles, San
Diego, and San Francisco areas), three data sources were
used. From Lundberg, Inc., we obtained a census of
stations in San Diego and the Los Angeles areas taken in
1996. Lundberg also provided 1997 census data for the
San Francisco and San Diego areas. From Whitney–
Leigh, we obtained an annual census of stations for the
San Diego, Los Angeles, and San Francisco areas for the
years 1995 to 1998. A third company, MPSI, provided a
census of specific areas in the Los Angeles and San
Diego areas taken in 1999.13 This information allowed
us to stratify the sample of stations chosen as treatment
stations in these three areas to assure differences in seller
density across the treatment stations.

2.1. The field data

Our field experiment involved a large gasoline retailer,
who allowed us to change the price, and then hold it
constant for a week, at some of its company-operated
stations. The company permitted us to control and survey
prices at 54 stations of our choosing over a three-month
period from February 8, 1999 to April 27, 1999. The 54
in areas not included in the other two censuses, so each census provides
additional observations. Second, while the Lundberg census provides key
information on location (latitude and longitude) not contained in the
Whitney–Leigh census, the 1998 Whitney–Leigh census provides more
current information on existing stations than the Lundberg 1996 census.
Finally, matching stations from different censuses allows us to check the
validity of key data, in particular the latitude and longitude data provided in
theMPSI and Lundberg censuses. Additional data checks were also made
as described in a supplement available on request. The resulting merged
dataset provides a simple way to calculate the number of alternative
stations within a two-mile radius of each station in the Los Angeles, San
Diego, and San Francisco areas in early 1999.



15 Note that prices at competitor stations were often missing during
weekends. For our elasticity analysis only, missing prices during
weekends at competitor stations were interpolated linearly from the
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stations involved in this field experiment consisted of 9
stations from the San Francisco area, 25 stations from the
Los Angeles area, and 20 stations from the San Diego area.
The stations in the sample were stratified, for each geo-
graphic area, by volume and by the number of competitors.

Once the sample of stations was identified, a procedure
for instituting price changes at the individual stations was
devised. The sample of 54 stations was divided into two
groups. At the start of each week, the prices at stations in
one of these two groups were increased or decreased by
two cents from their respective prices on the prior day. To
assure that company personnel would not know ahead of
time the direction of a price change, the exact identity of
the stations in terms of the direction of its price change was
known only to us until the price change was implemented.
This new price was then maintained for one week, after
which control of the price at the station would revert to the
company for a week and standard company procedures
determined the price. The process would then be repeated.
Thus, for each station, a week of price control would be
followed by a week of “normalizing.”14

There was one important exception to the above pattern.
A major explosion at a San Francisco area refinery, fol-
lowed by lesser problems at other refineries, resulted in a
substantial supply disruption in the middle of the experi-
ment period. When this occurred, the company requested
that control of station prices be suspended, and this sus-
pension lasted for approximately three weeks. We con-
tinued to collect the relevant market data from our survey
during this period. Thus, there are in our sample four
potential sources of exogenous variation in relative prices,
variation that is required to estimate changes in purchases
by consumers. These four potential sources are: a) at the
start of the treatment period when prices at the treated
stationswere increased or decreased by two cents; b) during
the treatment periodwhen prices at the treated stationswere
held fixed (assumes changes in other stations' prices); c) at
the end of the treatment period, when the treated stations'
prices were allowed to vary; and, d) relative price changes
induced by potential differences in the timing of marginal
cost changes across stations following the refinery explosion.

During the three-month period of the experiment, daily
volumes sold at each of the 54 stations were collected as
14 This random assignment of price change direction, as well as the
alternating pattern of a week of fixed prices and a week of prices being
freely chosen by the station, makes it less likely for competing stations to
recognize intervals when prices at the station were fixed. As the
experiment only lasted three months, and as noted below was interrupted
by a period when all stations were free to set prices following a refinery
accident, it is reasonable to assume that other stations were unlikely to be
aware of the restrictions the experiment placed on the pricing behavior of
the station at certain times.
well as prices. To obtain prices of competitor stations, we
use two sources. First, from Oil Price Information Service
(OPIS) we obtained daily retail prices for many of the
stations within a two-mile radius of the treatment stations.
OPIS retail price data are derived from actual credit card
usage associated with retail sales of gasoline, but they were
only collected for days when sales using a specific set of
credit cards occurred at a particular station. To supplement
the OPIS retail price data on competitors, we also obtained
company-generated surveys of prices charged by stations
within a two-mile radius of any treatment station each
weekday.15

We thus have a dataset that includes daily prices and
quantities of 54 treatment stations as well as the prices at
stations surrounding each treatment station over a period of
80 days. After dropping observations with missing values,
the dataset consists of 4188 observations for regular-grade
gasoline.

2.2. A raw-variation approach

An important feature of this dataset is that the price
changes at treatment stations are largely the result of
exogenous “supply-side” factors rather than due to
changes in factors affecting demand. While we ultimately
focus on the results of an instrumental variable approach to
estimating elasticities, we begin our analysis by providing
the results of a simple model of volume— estimating the
price elasticity of demand at a station by specifying a log-
linear form for the demand equation of a particular station
in a market of density d, such that

lnðSitÞ ¼ d� bd lnðPitÞ þ gdlnðP̄ itÞ
þk Xit þ vi þ eit:

ð7Þ

In (7), Sit denotes the volume of gasoline sold at
treatment station i during the period (day) t, Pit denotes the
price of the ith treatment station, and P̄it denotes an average
of the prices of the other sellers in the market of treatment
station i.16 The parameters βd and γd are therefore the own-

(7)
prices charged on Friday and Monday.
16 This paper suggests that geographic proximity may influence the
extent to which customers will switch to other stations given a change in
the relative price. In particular, changes in prices at the closer competitors
may have a greater effect. Accepting that more weight should be placed on
prices of sellers closer to the treatment stations and assuming the
importance of the price change is approximated by a linear function of
distance, one canweight the price of each competitor by a variable equal to
two minus the distance in miles the competitor is from the treatment
station. We then sum these weighted prices and divide by the sum of the
weights to obtain the alternative index of the prices of competitors.
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and cross-price elasticities of demand respectively for a
station in a market of density d. Note that we are unable to
measure cross-price elasticities at a similar level of analysis.
That is, these estimated cross-price elasticities are with
respect to changes in the mean price of competitors and not
with respect to changes in the price of a single competitor
(as is the case with our estimates of own-price elasticities).
While we report our results using a simple average of prices
at other sellers, the results reported are robust to the
specification of a weighted average of prices of competitor
stations constructed along the lines suggested by Pinkse et
al. (2002).17 In (7), Xit denotes a set of controls for day-of-
week and a time trend variable and vi are station-specific
residuals representing the extent to which the intercept of
the ith cross-sectional unit differs from the overall intercept,
and εit is the traditional error term, unique to each
observation.

The fixed effects estimation results representing this
initial methodology are reported in the first three columns
of Table 1. In Column (1), we show the results of a
specification that restricts elasticities to be common across
market densities, which reveals an estimate of the average
price-elasticity for our sample of treatment stations. Like-
wise, we restrict cross-price elasticities to be common
across market densities. Here we see own- and cross-price
elasticity estimates in the neighborhood of −3.3 and 2.9,
respectively.18 In allowing for seller density, we take two
approaches — one discrete classification and the other
exploiting the underlying continuous measure of station
density. These results are reported in Columns (2) and (3),
respectively.

In the discrete classification of density, we divide
stations in our sample into three equally sized groups,
those with low station density (less than 18 other stations
within a two-mile radius, d= l), those with mid-level
17 Note that it is important to control for average market prices, as our
subsequent analysis of price reactions suggests that a given change in price
by the treatment station will result in less of a change in its price relative to
competitors in markets with lower seller density, as competitors react more
in such markets. A key point, however, is that these reactions are partial, so
that our analysis can still capture the change in purchases by consumers in
response to changes in relative prices initiated by exogenous price changes
(from the consumer's perspective) at the treatment stations. In fact, even the
refinery explosions noted earlier turned out to be fortuitous for our study
because the resulting large relative price increases are attributable to
individual stations' different reactions to supply shocks. Having defined
markets as two-mile circles around each treatment station, treatment
stations are within two miles of each other in ten instances and therefore
appear in eachother'smarket.Wedonot use these stations in the calculation
of average market prices. However, estimates are robust to their inclusion.
18 Although, recall that cross-price elasticities have the interpretation
of quantity responses to changes in the market-average price, not to
changes in the price of a single competitor's price.
density (at least 18 and less than 27 other stations within a
two-mile radius, d=m), and stations with high density (27
or more other stations within a two-mile radius, d=h). Our
discussion of the role of density as directly influencing the
price elasticity of demand leads to the predictions that in
estimating separate price coefficients for each group, (in
absolute value) we expect β̂h N β̂m N β̂l and γ̂hN γ̂mN γ̂l.
That is, we expect these estimated elasticities to be greater
at stations in markets with a higher density of alternative
sellers.

Column (3) provides an estimate of the general effect of
seller density on elasticity by including log-price and log-
price interacted with the log of the number of sellers in the
market. While results are comparable across specification,
we report three specifications to aid in interpretation, es-
pecially given the potential for the positive point estimate
on own-price variable alone in Column (3) to be mis-
leading. All specifications clearly support the empirical
regularity that the density of sellers in a market affects the
price elasticity of demand faced by individual sellers, with
differentials implying elasticities of β̂l=−1.6, β̂m=−3.2
and β̂h=−4.5, respectively.

2.3. An IV approach

While suggestive, these initial results should be con-
sidered with some caution. Specifically, while our experi-
mental design introduced known exogenous variation in
prices in treated weeks, this does not mean that prices are
exogenous in all weeks. In fact, the experiment design
adjusted price only every other week, on average, and
allowed pricing decisions to revert back to being market
driven (i.e., endogenous) between the treated weeks.
Fortunately, our experimental design affords an alternative
to the specifications of Columns (1) through (3). In the
remaining columns of Table 1, we exploit this design by
using our known treatments as instruments in an
instrumental variable approach. These columns report
the same series of three specifications, but derive
coefficient estimates from an instrumental procedure that
exploits our own treatments as instruments for endogenous
prices in the first-stage regression. Specifically, Columns
(4) through (6) employ indicator variables for “price
increased at treatment station” and “price decreased at
treatment station” as instruments forPit and P̄it. Employing
our experimental treatments as instruments yields some-
what larger own- and cross-price elasticity estimates— in
the neighborhood of −5.5 and 7.1, respectively.

While the Tosco refinery explosion that occurred within
our sample period also affords a convenient instrument for
prices, note that the length of time over which we might
allow the explosion to speak to variation in prices is



20 Specifically, we used an index of competition for each treatment
station defined as the ratio of the number of stations within two miles
of the respective treatment station to the average distance to stations
within two miles of the respective treatment station.
21
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subjective. That is, while our own periods of experimental
treatment are well defined (i.e., we know exactly when
down- and up-treated weeks begin and end), we are
somewhat less confident in the timing of the Tosco refinery
explosion—with the end of this episode, in particular. The
explosion itself (occurring on 23 February) can certainly be
justified as an instrumental variable. Only in our third series
of results (Columns (7) through (9) of Table 1) do we
encompass the full set of available instruments, including
the refinery explosion.19

Overall, these tests provide support for the hypothesis
that the density of sellers in a market directly affects the
price elasticity of demand faced by individual sellers. For
instance, according to Column (5) of Table 1, a one percent
increase in a station's regular-grade price, other things
equal, reduces the volume of sales by 2.4% at stations with
low density of rivals (i.e., small number of other sellers in
the market), 6.3% at stations with mid-level density and
8.4% at stations with a high density. Considering the
continuous densitymeasure, we see an inner-quartile range
in the estimated elasticity of 3.5 (14 stations within two
miles) to 7.5 (30 stations within twomiles). Employing the
refinery explosion as additional instruments does little to
change these comparative-static results, yielding only a
slightly larger an inner-quartile range of 3.3 to 7.5.
Similarly, cross-price elasticities also vary systematically
across market density. As cross-price elasticities are with
respect to changes in the average price at competitor
stations, the quantity response to such changes, not to
changes in the price of a single competitor's price, are
larger in markets with higher seller density.

2.4. Sensitivity tests and discussion

While theory suggests that the number of rivals is an
appropriatemeasure of the extent of substitutability among
differentiated-products in the market, it may be argued that
such a measure could result in a miss-classification of
markets according to their true extent of product
differentiation. For example, consider two stations, one
with a single competitor located immediately across the
street and the other with two competitors, each located one
mile down the street. A simple station-count would
suggest that the second station (the one with more
19 In particular, in this third set, the first-stage price models include a
control for the day of the explosion itself (i.e., 23 February), and,
separately, controls for 24 February, 25 February and 26 February.We thus
restrict the instruments to be the four-day period following the explosion
but refrain from restricting any price response (to the explosion, that is) to
be common across these four days. In alternative specifications, the
inclusion of any additional days (e.g., 27 February, 28 February, etc.)
yields no significant predictive power in the first-stage.
competitors) is in a market with less product differentia-
tion. Yet this may not be the case. As such, we adopt an
alternative representation of density to that reported in
Table 1, going beyond this simple station-count to include
information on the distance of each competitor from the
treatment station. Results indicate the robustness of our
findings to this alternative specification.20

In specifying our stratified sample of treatment stations
by seller density, an effort was made to obtain a similar set
of treatment stations across markets that differed in seller
density. However, some differences remain for our sample
of treatment stores. In particular, treatment stations in
markets with high seller density tend to sell lower volume
and are less likely to have non-gasoline sales. To see if these
differences in treatment stations affect our results, we
created two new variables, the first identifying large treat-
ment stations in terms of gasoline volume and the second
identifying those treatment stations by their non-gasoline
sales. Results (not reported) that include interactions of
these variables with prices indicate similar price elasticity
across stations that differ in sales volume. With respect to
non-gasoline sales, we find no significant difference in
elasticity for stations that also operate a convenience store.
While point estimates would suggest a tendency toward
less-elastic demand at stations that have non-gasoline sales,
even when we take into account the extent to which sales
events include a non-gasoline sale, we find no significant
evidence of differentials in elasticity. In all cases, the
inclusion of these additional variables does not alter our key
finding of higher individual seller price elasticity of demand
in markets with greater seller density.21

It is important to recognize that the estimated price
elasticities of demand derive from customers' responses to
a price change over relatively short periods of time. Thus,
while suggestive, these estimated magnitudes are likely to
reflect less of a reaction than would be exhibited were
reactionsmeasured over lengthier intervals.22 However, for
our purposes, it is not so much the levels of individual
Note also that for the three categories of markets distinguished by
seller density, there is no statistically significant difference in the
likelihood a competitor station sells either a major brand of gasoline
in general, or sells the specific major brand of the treatment station in
particular. Thus, our characterization of product differentiation based
on the number of competitors is not correlated with product
differentiation arising from the brand identification of the competitors.
22 Of course, these estimates are not comparable to the standard
market demand elasticities that are common in the literature, which
are typically below one.



Table 1
Station-level elasticity estimates of gasoline sales across seller densities

Independent variable FE FE-IV
(instruments from

experimental design) a

FE-IV
(instruments from experimental design

and Tosco Refinery explosion) b

Discrete
densities

Continuous
density

Discrete
densities

Continuous
density

Discrete
densities

Continuous
density

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log of self-serve price −3.313⁎⁎⁎ −1.628⁎⁎⁎ 3.511⁎⁎⁎ −5.559⁎⁎⁎ −2.424⁎⁎⁎ 10.229⁎⁎⁎ −5.444⁎⁎⁎ −2.055⁎⁎ 10.943⁎⁎⁎

[0.122] [0.212] [0.621] [0.450] [0.820] [2.981] [0.439] [0.798] [2.927]
Log of self-serve price
interacted with: c

Mid-level density
indicator

−1.618⁎⁎⁎ −3.907⁎⁎⁎ −4.092⁎⁎⁎
[0.299] [1.140] [1.115]

High-level density
indicator

−2.909⁎⁎⁎ −6.093⁎⁎⁎ −6.482⁎⁎⁎
[0.292] [1.052] [1.026]

Log of number of
stations within two miles

−2.282⁎⁎⁎ −5.217⁎⁎⁎ −5.414⁎⁎⁎
[0.206] [0.973] [0.956]

Log of market-mean self-
serve price

2.935⁎⁎⁎ 1.261⁎⁎⁎ −3.806⁎⁎⁎ 7.136⁎⁎⁎ 3.761⁎⁎⁎ −9.967⁎⁎⁎ 6.895⁎⁎⁎ 3.292⁎⁎⁎ −10.846⁎⁎⁎
[0.137] [0.226] [0.663] [0.629] [0.931] [3.511] [0.608] [0.902] [3.446]

Log market-mean price
interacted with: c

Mid-level density
indicator

1.791⁎⁎⁎ 4.506⁎⁎⁎ 4.638⁎⁎⁎

[0.321] [1.307] [1.278]
High-level density
indicator

2.852⁎⁎⁎ 6.560⁎⁎⁎ 6.928⁎⁎⁎

[0.317] [1.147] [1.120]
Log of number of
stations within two miles

2.274⁎⁎⁎ 5.666⁎⁎⁎ 5.880⁎⁎⁎

[0.222] [1.148] [1.128]
Trend (day) 0.004⁎⁎⁎ 0.004⁎⁎⁎ 0.004⁎⁎⁎ −0.007⁎⁎⁎ −0.008⁎⁎⁎ −0.007⁎⁎⁎ −0.006⁎⁎⁎ −0.007⁎⁎⁎ −0.006⁎⁎⁎

[0.000] [0.000] [0.000] [0.002] [0.002] [0.002] [0.001] [0.002] [0.001]
Individual-station fixed
effect

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Day-of-Week Indicator Yes Yes Yes Yes Yes Yes Yes Yes Yes
Constant 8.308⁎⁎⁎ 8.313⁎⁎⁎ 8.306⁎⁎⁎ 8.141⁎⁎⁎ 8.122⁎⁎⁎ 8.147⁎⁎⁎ 8.151⁎⁎⁎ 8.134⁎⁎⁎ 8.156⁎⁎⁎

[0.010] [0.010] [0.010] [0.029] [0.032] [0.029] [0.029] [0.031] [0.028]
Observations/treatment
stations

4188/54 4188/54 4188/54 4188/54 4188/54 4188/54 4188/54 4188/54 4188/54

R-squared 0.24 0.27 0.26

⁎ significant at 10% level. ⁎⁎ significant at 5% level. ⁎⁎⁎ significant at 1% level.
All equations are fixed effects models that absorb unobserved heterogeneity specific to individual treatment stations. Standard errors are in brackets.
Coefficients are not reported for six day-of-week indicator variables that were included in the estimation of all equations. The mean value of the
dependent variable is 8.383, which is roughly equivalent to $4372. Other summary statistics are reported in a supplement available on request.
a Instruments for own self-serve price and market prices include indicators for “price increased at treatment station” and “price decreased at

treatment station.” Where appropriate, these treatment variables interacted with density are also included as instruments in the first-stage.
b Instruments for own self-serve price and market prices include indicators for “price increased at treatment station,” “price decreased at treatment

station”, and separate indicators for February 23, February 24, February 25, and February 26. Again, these treatment variables interacted with
density are also included as instruments in the first-stage, where appropriate.
c Mid-level density corresponds to markets of at least 18 and less than 27 stations, while high-level density corresponds to markets of 27 or more stations.
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sellers' price elasticities of demand as it is the differences in
the price elasticities of demand across stations in different
market settings that are important for the analysis to follow.

2.5. An example of the potential effect of seller density
on prices

A substantial price difference emerged between retail
gasoline prices in the Los Angeles area compared to prices
in the San Diego and San Francisco areas during the latter
part of the 1990s. We can combine our estimates of the
sellers' price elasticities in markets that vary in the number
of sellers (as reported in Table 1) with the average number
of competitors per station for the three areas to provide an
example of how our analysis can provide insight on one
potential source of these price differences. In particular,
Table 2 reports the predicted price elasticity of demand for
the typical station in each of the three areas based on our



Table 2
Differences in price elasticity, predicted prices, and actual prices across areas (regular unleaded)

Area Predicted average price
elasticity of demand a

Predicted price/marginal
cost ratio (m)

Predicted percentage
difference from LA area price

Actual percentage difference from
LA area price (Lundberg 1995–99)

San Francisco 5.06 1.25 4.3% higher 7.7% higher
San Diego 4.84 1.26 4.1% higher 6.3% higher
Los Angeles 6.11 1.20 – –
a Calculated from the own-price coefficients estimated in Table 1, Column 6, and the average number of stations within 2 miles of stations in each

of the three geographic areas based on census data. The average number of stations within a 2-mile radius is 22.4 for stations in the LA area; 17.4 for
stations in the San Diego area, and 18.2 for stations in the San Francisco area.
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elasticity results. Note that the predicted average price
elasticity of demand is higher in Los Angeles than in San
Diego or San Francisco areas due to higher station density.

Given these average prices elasticities, Eq. (6) provides
us with the predicted ratios of price to marginal cost for
each area. The second column in Table 2 reports this
calculation. From these predicted price-marginal cost
ratios, the third column in Table 2 shows the predicted
prices in the San Francisco and San Diego areas relative to
the Los Angeles area under the assumption of common
marginal costs. These predictions illustrate that differences
in demand conditions arising from differences in the
density of stations, and thus predicted differences in
individual sellers' price elasticities of demand, may be one
source of the observed higher prices of regular-grade
gasoline in San Diego and the San Francisco areas relative
to the Los Angeles area. Note, however, that the predicted
differences are below the actual price differences.23

Eq. (6) identifies two types of asymmetry across
markets that can result in differences in prices between
markets. Our discussion has focused on heterogeneity
across markets in markups arising from differences in
price elasticities of demand due to differences in the
average number of competitors in local gasoline markets.
The second type of asymmetry across markets that can
result in differences in prices arises from differences in
marginal production costs. Given actual price differences
in excess of our simple projections based on different
demand conditions, higher marginal costs of gasoline in
the San Diego or San Francisco areas relative to the Los
23 The actual prices are taken from Lundberg, Inc. bi-monthly price
surveys (through the end ofMay 1999). One reason for the large predicted
differences could be that our short-run estimates of price elasticity of
demand vary systematically with density from the true long-run price
elasticity of demand. For instance, if one postulated that consumers
respond more quickly to price changes in markets with higher seller
density, then this would imply less of a difference in long-run price
elasticities between L.A. and San Diego than is implied by our elasticity
estimates, and thus a lower predicted price difference.
Angeles area could also contribute to the observed price
differences.24

To the extent higher prices in San Diego and the San
Francisco areas relative to the Los Angeles area reflect
lower price elasticities of demand arising from lower
station density, then such price differences should translate
into a lower return to stations in the Los Angeles area
relative to the other two areas, other things equal. Theory
suggests that in the long-run these differences in returns
will be dissipated. There are several potential avenues
through which this could occur. One way would be a
decrease in the number of stations in the Los Angeles area
relative to the San Francisco and San Diego areas. Fig. 1
indicates that this in fact did occur. Using Whitney–Leigh
annual censuses of the three areas, evidence indicates a
decrease in the number of stations in the Los Angeles area
between 1995 and 1998 relative to the number in both the
San Francisco or San Diego areas.

There also exists evidence of entry restrictions in the
San Diego and San Francisco areas. Note that if entry
into these two areas were restricted we would expect to
see existing stations being utilized more intensively than
stations in the LA area. From theWhitney–Leigh census
data we can construct a measure of the capacity
utilization of gasoline stations. This capacity measure
uses information on hours of operation, monthly
gasoline volume and number of fueling position to
calculate the capacity utilization of a station in terms of
the quantity of gasoline pumped per hour per fueling
position.
24 Note that there were no refineries in the San Diego area; San Diego
County received about 92% of its gasoline from a pipeline that runs from
the Los Angeles refining center to distribution terminals located in the
Mission Valley and SanDiego Harbor. The rest of the gasoline (about 8%)
was delivered to the area by tanker trucks. The shipping cost by pipeline
from the Los Angeles refineries to the San Diego terminals was about 1
centmore per gallon than the cost to ship to the LosAngeles area terminals
from the same refineries. Shipping gasoline to the San Diego region by
tanker truck cost 2 to 4 cents per gallon (Rohy, 1996).



Fig. 1. Relative number of station in Los Angeles relative to San Diego and Bay Areas, 1994–1998.
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Table 3 indicates the average capacity utilization of
stations across the three areas. As the numbers reported
in Table 3 make clear, stations in the San Diego and San
Francisco areas were more heavily utilized relative to
stations in Los Angeles during the 1995 to 1998 period.
This observation is consistent with there being factors in
the San Diego and San Francisco areas that limit the
entry of new stations relative to the Los Angeles area. If
there are such restrictions to entry in the San Francisco
and San Diego areas, then competition for the relatively
restricted number of prime service station locations in
the San Diego and San Francisco areas will result in
higher utilization rates and higher “fixed” costs for the
station operators. Zero profits occur at a higher equi-
librium price and a reduced number of sellers in the
market.

3. Seller density and competitor reactions to
exogenous price changes

The unique character of the data set, with the price of
one seller in each of a number of markets being
exogenously changed, allows us not only to examine
how seller density can affect the reaction of consumers to
a price change by a seller, but also to examine the
reaction of sellers to an exogenous change in price by
one of its competitors. In the following discussion, we
motivate our empirics by first reconsidering the simple
differentiated-product model of ''Section 1 which
suggests factors that could be important in considering
the reaction of other competitors in a market to an
exogenous price change by one seller. We then present
our instrumental variables approach to empirically
identifying reactions.

3.1. Competitor reaction

Denote pT as the price at the treatment station. For a
competitor station i, we obtain from (2) and (3) the
following expected market demand across the L
consumers given the treatment station's price pT and
the common price p⁎ for the other N−2 sellers:

qi ¼ ðL=NÞ
Z b

a
Nð1� Fð pi þ m� p⁎ÞÞN�2

� ð1� Fð pi þ m� pT ÞÞdFðmÞ:
ð8Þ

Rewriting (5), the resulting optimal price at compet-
itor station i will satisfy:

pi⁎ ¼ a� qi=ð∂qi=∂piÞ; ð9Þ

where (8) determines the magnitude of qi / (∂qi /∂pi).
Assume initially that all sellers (including seller i and

the treatment station) set the common price p⁎, with p⁎

set such that (9) is satisfied for all sellers. Now consider
station i's reaction to a change in the price at the treatment
station. In particular, let the new treatment station price be,
instead, pT=p⁎+x with x N 0, such that treatment station
T sets its price above the original market price.

To provide some structure to our discussion of the
reaction of seller i, consider the change in its price from
p⁎ that satisfies (9) given the deviation in the treatment
station's price and the correct anticipation of similar



Table 3
Capacity utilization by area

Year San Francisco Area average gasoline sales
per fueling position per hour

Los Angeles Area average gasoline sales
per fueling position per hour

San Diego Area average gasoline sales
per fueling position per hour

1995 29.4 24.6 28.3
1996 29.1 26.7 25.5
1997 30.0 26.4 27.5
1998 31.4 26.8 30.8

Source: Whitney–Leigh census.
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reactions by the other N−2 sellers. In other words,
consider the change from the original price p⁎ such that
(9) remains satisfied for the other N−1 sellers at the new
exogenous price for the treatment station. In this setting, at
the original price p⁎ for the N−1 sellers, a change in the
price at the treatment station induces each of the other
sellers to change their prices in the same direction.25

Were the untreated stations to match the increase
(decrease) in the price of the treatment station, then demand
would be identical to before the price changes, but the price
elasticity would be higher (lower).26 However, (9) would
not be satisfied if the prices at the N−1 untreated stations
were to increase (decrease) by x. This implies that while an
exogenous deviation in price by one ofN sellers in amarket
may result in a deviation in the prices of the other N−1
sellers in the same direction, it would be by a lesser absolute
amount.

A natural question that arises is whether the price
increase of competitors in response to an exogenous
increase in the price of a single seller in themarket will be
affected by seller density. Table 4 presents simulations of
the analysis under the assumption of a uniform
distribution for visiting costs, F(ν). For illustrative
purposes, we consider markets with 2, 4, and 6 sellers,
with the number of sellers reflecting either differences in
market size (Panel A) or differences in the fixed costs of
entry (Panel B). Note that, consistent with the above
intuition, the equilibrium price is lower in markets with
higher seller density. More relevant for the current
discussion, however, are the final two columns of the
25 Note that for the case when

pi ¼ pT ¼ p⁎;� �qi
∂qi=∂pi

� �⁎¼
R ð1� FðmÞÞN�1dFðmÞR ðN � 1Þð1� FðmÞÞN�2f ðmÞdFðmÞ. On

the other hand, if pi=p⁎ but pT−p⁎=x N 0, we have: � �qi
∂qi=∂pi

� �
¼

R ð1� FðmÞÞN�2ð1� Fðm� xÞÞdFðmÞR ððN � 2Þð1� FðmÞÞN�3ð1� Fðm� xÞÞf ðmÞ þ ð1� FðmÞÞN�2f ðm� xÞÞdFðmÞ. Comparing

these two equations, it follows that −qi / (∂qi /∂pi)′ N −(qi / (∂qi /∂pi))⁎,
and thus the reacting station's optimal price increaseswith an increase in the

treatment station's price.
26 The identical demand follows fromour assumptions of unit demands by
consumers and sufficiently high reservation value for gasoline such that the
number of consumers in the market remains constant.
table, which indicate that for an identical price deviation
by the treatment station, the magnitude of the reaction of
the N−1 sellers falls with an increase in seller density.

For instance, for the 4-seller case, if one of the four
sellers increases its price by two cents, the deviation in
price for the other three sellers is 0.15 cents. Note that the
same deviation from the initial equilibrium price by the
treatment station leads to a larger deviation in other sellers'
priceswhen the total number of sellers is two, but a smaller
deviation when the total number of sellers is six. Such
results are robust to a variety of parameter values and are
similar in magnitude for a price-decrease by the treatment
station. In short, as the number of sellers in a market
increases, the effect of an exogenous change in price by
any one seller on the other sellers' demands is less. As
such, their reactions to exogenous price changes by rivals
are increasingly muted as seller density increases.

3.2. Empirical specification of competitor reactions

The prior discussion provides insight into the direction
and extent of price adjustment by a station to an exogenous
price deviation by another station in its market (in our case,
this is the treatment station). However, the analysis is not
dynamic, and so provides no explicit guidance as to the
timing of this adjustment to a price deviation. Assuming
gasoline stations react quickly to price changes of compe-
titors, we focus our analysis on the reaction one day later.
One advantage of doing so is that it allows us toworkwith a
more extensive data set by limiting the number of conse-
cutive periods required to consider reactions. In addition,
because stations tend tomove prices across different grades
in lockstep, we focus only on reactions for regular-grade
gasoline prices. Note that our data for regular-grade
gasoline combines competitor prices from OPIS-collected
retail prices supplemented with company price surveys.27
27 Of course, one could consider more complex dynamic reactions in
which the responses to a price shock introduced in one period are spread
out over multiple periods. While we would not rule such patterns in
responses, our data set is best suited to analyzing the single-period
reaction, in that there are substantial reductions in the sample if wewere to
consider lengthier reaction periods.



Table 4
Simulations of reaction deviation to treatment station deviation, by station density

Panel A: Differences in market size

Parameter Values (zero profits, markets differ by number of buyers) Initial
Equilibrium
price

Treatment station's
deviation (increase)
from initial
equilibrium price

Reacting sellers'
(N−1) deviation in
price from initial
equilibrium price

Number of
sellers
(N )

Number of
buyers
(L)

Fixed
costs
(K )

Marginal
cost
(α)

Lower bound on
uniform
distribution of
visiting costs

Upper bound on
uniform distribution
of visiting costs

2 5000 50,000 100 0 40 120.0 2.0 1.0
4 20,000 50,000 100 0 40 110.0 2.0 .15
6 45,000 50,000 100 0 40 106.7 2.0 .06

Panel B: Differences in Fixed Entry Costs

Parameter Values (zero profits, markets differ by size of fixed cost) Initial
Equilibrium
price

Treatment station's
deviation (increase)
from initial
equilibrium price

Reacting sellers'
(N−1) deviation
in price from initial
equilibrium price

Number of
sellers
(N )

Number of
buyers
(L)

Fixed
costs
(K )

Marginal
cost
(α)

Lower bound on
uniform
distribution of
visiting costs

Upper bound on
uniform distribution
of visiting costs

2 20,000 2,000,000 100 0 40 120.0 2.0 1.0
4 20,000 50,000 100 0 40 110.0 2.0 .15
6 20,000 22,222 100 0 40 106.7 2.0 .06
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In Table 5, we report results that reveal systematic
patterns by which competitors react to exogenously
imposed changes to treatment station prices. In terms of
empirical methodology, we regress the competing sta-
tions' price on the price of the treated stations while
exploiting the experimental design for instruments.
Specifically, then, we employ an instrumental proce-
dure that exploits our own treatments as instruments for
endogenous prices in a first-stage regression using
indicator variables for “price increased at treatment
station” and “price decreased at treatment station.” In all
specifications, we also control for station-specific time-
invariant factors by fixed effects which addresses
the endogeneity problem that may arise from any
unobserved time-varying demand factors within each
market.

3.3. Empirical results

Estimated coefficients from the second-stage regres-
sions are provided in Column 1 of Table 5, where we see
that the regularities in the data support our anticipated
patterns. First, we find that sellers do respond to the
exogenously imposed changes by changing their own-
prices, and by amounts less than the imposed changes.
Second, we find that in markets with higher seller
density, sellers respond less to the imposed change in the
treatment station's price.
Column 2 of Table 5 introduces an interaction term to
investigate the possibility that reactions differ at major
brand stations. Slade (1992), for example, finds that
rivals can respond differently in a period of price war
based on major brandedness. As our analysis considers
only reactions of rivals to price changes by one type of
station (treatment stations are all major brand and
company-operated), we include an indicator variable
equal to one if the competitor is a major brand. The point
estimate suggests that observed reactions at major brand
retailers are indeed dampened.

Column 3 in Table 5 introduces two additional
interaction terms to investigate whether station owner-
ship type or distance from the treatment station affect
the extent of reaction to imposed deviations. Recall that
the theory has characterized differences across markets
solely in terms of the number of competitors in the
market, which implies that the reaction to a price
change by one of the N−1 other sellers in the market is
the same regardless of which of the other sellers
changes price. However, if higher density merely
signifies a higher proportion of stations that are close,
but not close enough to react to our imposed changes,
reactions might be less, on average, where reacting-
stations are in more-densely competitive markets.
Including the interaction of lagged treatment station
price and the distance the station is from the
corresponding treatment station where the shock was



Table 5
Competitor station reactions to changes in treatment station prices

Independent variable Regular-grade, self-serve price

(1) (2) (3)

Lagged treatment station price 1.049⁎⁎⁎ 1.103⁎⁎⁎ 1.106⁎⁎⁎

[0.056] [0.056] [0.057]
Lagged treatment station price interacted with:

Log of number of stations within two miles −0.083⁎⁎⁎ −0.067⁎⁎⁎ −0.064⁎⁎⁎
[0.017] [0.017] [0.017]

Major brand indicator a −0.132⁎⁎⁎ −0.130⁎⁎⁎
[0.016] [0.017]

Distance from treatment station −0.013
[0.012]

Ownership indicator (Company-operated=1) −0.018
[0.024]

Day-of-week indicators Yes Yes Yes
Trend (day) 0.001⁎⁎⁎ 0.002⁎⁎⁎ 0.002⁎⁎⁎

[0.000] [0.000] [0.000]
Constant 0.272⁎⁎⁎ 0.281⁎⁎⁎ 0.282⁎⁎⁎

[0.012] [0.012] [0.012]
Wald ψ2 (6)=2.95e+07 ψ2 (7)=2.93e+07 ψ2 (6)=2.92e+07
Observations/treatment stations 28,917/724 28,917/724 28,917/724

⁎ significant at 10% level, ⁎⁎ significant at 5% level, ⁎⁎⁎ significant at 1% level.
In all specifications, we exploit our own treatments as instruments for endogenous prices (i.e., for lagged treatment station price) in a first-stage
regression using indicator variables for “price increased at treatment station” and “price decreased at treatment station.”As interaction terms are added
to the model in Columns (2) and (3), corresponding instrumental variables are also included in the first-stage regression. All specifications include
station fixed effects. Standard errors in brackets.
a Our sample includes nine major brands: 76, ARCO, BP, Chevron, Exxon, Mobil, Shell, Texaco and Unocal. All other sellers are considered

independent, or non-major, retailers.
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introduced reveals no such patterns of response. As
Noel (2007) finds some evidence of differences in
response rates across station types, we also include a
measure of the reacting-stations' ownership type.28

This too is not predicted to have a significant effect on
responsiveness.

4. Conclusion and remarks

A key feature of this paper is a dataset that collected
prices and volumes over time for a sample of retail
gasoline stations stratified by the number of rivals within
two miles, where prices at a sub-sample of “treatment”
stations were intermittently determined exogenously.
Although there are notable limitations (e.g., a small
number of treatment stations, a short period of time for
price collection, restricted data collection during week-
ends, and the existence of other shocks in the retail
gasoline market during this period), our analysis of the
28 Noel (2007) follows endogenously arising price changes and
station responses for a sample of 22 retail stations.
dataset still reveals two key patterns: namely that an
increase in the number of rivals increases the price
elasticity of demand of an individual seller and that the
reaction of rivals to an exogenous price change by one
seller in the market will decrease with an increase in the
number of rivals.

With respect to the elasticity findings, the direct link
we find between the number of sellers in a market and
the individual seller's price elasticity of demand
supports the premise of a key folk theorem, namely
that an increase in the number of competitors in a market
will reduce prices. With respect to our reactions, our
empirical findings are also important as they indicate
that station responses are partial. This finding of only a
partial response to a price deviation by one seller
contrasts with the simple two-firm sequential pricing
model of Maskin and Tirole, a model that suggests a
rival firm would “over react” to an exogenous price-
decrease, leading to a price war. Our finding that rival-
responses depend inversely on the number of sellers in
the rival's market reinforces the importance of consid-
ering the role of the number of sellers in price-setting
behavior.
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Appendix A. Sample means for Table 1

Table 1
Descriptive statistics
Variable
 Mean
(Standard deviation)
Log of sales volume (self-serve gasoline)
at treatment station
8.38
(.344)
Log of self-serve price
 .234
(.168)
Price interacted with:

Mid-level-density indicator
 .080

(.148)

High-density indicator
 .073

(.145)

Log of the number of stations
within two miles
.696
(.520)
Log of market-average self-serve price
 .269
(.155)
Log of market-average price interacted with:

Mid-level-density indicator
 .092

(.156)

High-density indicator
 .085

(.152)

Log of the number of stations
within two miles
.800
(.485)
Mid-level-density indicator
 .336
(.472)
High-density indicator
 .326
(.469)
San Diego area indicator
 .366
(.482)
San Francisco area indicator
 .170
(.375)
Observations/number of treatment stations
 4188/54
Numbers representmean values of variables inTable 1. Standard deviations
are in parenthesis.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.ijindorg.
2007.03.002.
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