
THE JOURNAL OF FINANCE • VOL, XLIX, NO. 3 • JULY 1994

Rational Prepayments and the
Valuation of CoUateralized Mortgage

Obligations

JOHN J. MCCONNELL and MANOJ SINGH*

ABSTRACT

This article presents a procedure for evaluating collateralized mortgage obligation
(CMO) tranches. The solution procedure is in the spirit of a dynamic programming
problem in which an individual mortgagor's decision to prepay is the feedback
control variable—the mortgagor seeks to minimize the value of the mortgage
subject to refinancing costs. We employ a two-step procedure to solve this dynamic
programming problem. The first step uses an implicit finite difference backward
solution procedure to determine the "optimal" prepayment boundary for a class of
mortgagors, each of whom confronts the same proportional refinancing cost. This
step is repeated for several different classes of mortgagors that difTer in the level of
refinancing costs that they confront. The outcome of this first step is a series of
prepayment boundaries—one set of boundaries for each level of refinancing costs
(i.e., one set of boundaries for each refinancing cost category of mortgagors). In the
second step, the prepayment boundaries determined in the first step are u.sed in
conjunction with Monte Carlo simulation to value the CMO tranches. The essence of
the second step is that when the simulated interest rate hits the boundary for a
particular class, it triggers a prepayment scenario for that class of mortgagors. We
conduct extensive sensitivity analysis to determine the robustness of this approach
(and our solution procedure) to alternative single-factor models of the term struc-
ture of interest rates and to alternative specifications of the distribution of refinanc-
ing cost levels confronted by mortgagors. The sensitivity analysis indicates that
CMO tranche valuation is not particularly sensitive to alternative models of the
term .structure so long as the models are consistent with the current yield curve,
but, even when alternative specifications of the refinancing cost categories generate
nearly identical values for the collateral underlying the CMO (i.e., the generic
mortgage-backed securities), the resulting tranche values can differ widely between
the two specifications. The results point out the importance of accurate estimation
of the distribution of refinancing costs when the rational valuation model is used for
the analysis of CMO tranches.

As OF SEPTEMBER 1993, the face amount of outstanding securitized mortgage
instruments exceeded $1.2 trillion. Of this total, the vast majority had been
transformed from generic mortgage-hacked securities (MBS) into collateral-
ized mortgage ohligations (CMO) in which the cash flows (i.e., the principal
and interest payments) from the underlying mortgages are allocated among
various tranches or classes according to a preestablished, although some-
times complex, hierarchy. Within a CMO, the various tranches differ from

•McConnell is from Purdue University. Singh is from Boston College. This article has benefit-
ted from many discussions with Stephen Ross and from comments by Scott Richard.
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each other according to the priority of cash flows received and according to
the degree to which the tranches have claims against either principal,
interest, or both. Thus, within a CMO, even though two tranches are sup-
ported hy the same collateral and provide the same coupon rate of interest,
the prices (and "yields") of these two tranches may differ because the timing
and amounts of principal payments are uncertain.

Similarly, across CMOs, two otherwise apparently identical tranches may
differ in price (and "yield") hecause the coupon or remaining term to maturity
of the underlying collateral differs hetween the two structures. For example,
given two identically structured CMOs, the A tranches of the two may differ
in price (and "yield") because the coupon rates or the remaining terms-to-ma-
turity of the underlying collateral differ between the two. Thus, even though
the trading volume of CMO tranches is substantial, most trades involve
analysis of the specific tranche in question. That is, CMO tranches typically
do not trade as generic instruments. For that reason, significant resources
have been devoted to the development of "mortgage analytics."

Two components-are fundamental to the analysis of mortgage-related
instruments—specification of the dynamics of the term structure of interest
rates and characterization of the call option exercise policy followed by
mortgagors. In this regard, development of mortgage valuation models has
evolved along two related, but, still separate, paths. They are related in the
way in which they incorporate the dynamics of the term structure of interest
rates—both rely upon the assumption of an arbitrage-free economy and,
within this no-arbitrage framework, both rely upon one of several well-known
models of the term structure of interest rates. These models include, among
others, Brennan and Schwartz (1982), Cox, Ingersoll, and Ross (1985), Heath,
Jarrow, and Morton (1992), Ho and Lee (1986), Richard (1978), and Vasicek
(1977).

The two evolutionary paths differ in the way in which they characterize the
call option exercise policy followed by mortgagors. The first path assumes
that mortgagors follow an "optimal" call policy constrained by some level of
transactions costs. This set of research includes models developed by Dunn
and McConnell (1981a, 1981b), Dunn and Spatt (1986), Johnston and Van
Drunen (1988), Kau, Keenan, Muller, and Epperson (1992), and Stanton
(1993a, 1993b).' In these models, mortgagors exercise their call option when-
ever the value of the mortgage, if left uncalled, would exceed the remaining
principal balance of the loan plus the transactions costs associated with
refinancing it. Stanton (1993a) refers to this class of models as "rational"
valuation models.^ The virtue of this class of models is that they are derived
under the fundamental premise that individual mortgagors follow a con-

Dunn and McConnell (1981a,b) effectively assume that transaction costs are zero.
These models are known hy other names as well. For example. Merrill-Lynch has developed a

version of the Johnston and Van Drunen (1988) model to which they refer as the "refinancing
threshold pricing" (RTP) model. That is, the benefit of refinancing must exceed a threshold level
of refinancing costs before the mortgagor will repay his loan.
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strained utility-maximizing call policy. As a consequence, Stanton
that this approach is robust to structural changes in the economic environ-
ment. The deficiency of this approach is that it does not immediately lend
itself to the valuation of CMO tranches. In particular, rational prepayment
models rely upon a finite difference backward solution procedure that begins
with the maturity date of the mortgage and proceeds backwards in time
under the assumption that, at each point in time, mortgagors follow the
optimal call policy hased upon future cash fiows. This solution procedure does
not lend itself to analysis of CMOs because the hierarchical structure of
payments to the various tranches requires knowledge of prior mortgage
prepayments. That is, the backward finite difference solution procedure does
not readily accommodate the "memory" required to determine the allocation
of cash flows among the CMO tranches.

The alternative evolutionary path relies purely upon statistical estimation
to characterize mortgagor call policy. Under this approach, a "prepayment"
model is estimated as a function of interest rates, other macroeconomics
variables, and certain pool-specific variables. The virtue of the purely statisti-
cal approach is that it can be easily adapted to the analysis of CMOs. In this
type of analysis, the empirically estimated prepayment model is used with a
"forward-looking" Monte Carlo simulation to value the CMO tranches. Be-
cause the Monte Carlo procedure begins at time zero and proceeds forward in
time, it can keep track of prepayments and, therefore, the amount of princi-
pal that has been paid to each tranche at each point in time. In comparison
with the rational prepayment models, however, the purely statistically hased
models may he less robust to changes in the economic environment.

Thus, application of the rational prepayment approach to CMOs would be a
desirable enhancement of current mortgage analytics. It is to this task that
we turn in this article. In particular, we present a solution procedure through
which the rational prepayment approach can be used to analyze CMOs. The
solution procedure is in the spirit of a dynamic programming problem in
which an individual mortgagor's decision to prepay is the feedback control
variable—the mortgagor seeks to minimize the value of the mortgage subject
to refinancing costs. We employ a two-step procedure to solve this dynamic
programming problem. The first step uses an implicit finite difference back-
ward solution procedure to determine the "optimal" prepayment boundary for
a class of mortgagors, each of whom confronts the same proportional refinanc-
ing cost. This step is repeated for several different classes of mortgagors that
differ in the level of refinancing costs that they confront. The outcome of this
first step is a series of prepayment boundaries—one set of boundaries for
each level of refinancing costs (i.e., one set of boundaries for each financing
cost category of mortgagors). In the second step, the prepayment boundaries
determined in the first step are used in conjunction with Monte Carlo
simulation to value the CMO tranches. The essence of the second step is that
when the simulated interest rate hits the boundary for a particular class, it
triggers a prepayment scenario for that class of mortgagors.
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We should note that we are not claiming that the rational prepayment
approach is necessarily superior to the purely empirically based approach.
After all, even the rational prepayment procedure does require statistical
estimation of the parameters of the distribution of refinancing costs. The
conclusion as to whether one valuation technique dominates the other re-
quires further experimentation and a comparison of the models over time.
Stanton (1993a, 1993b) does, however, present evidence with a limited set of
data for generic MBSs that the rational valuation approach is as accurate as
at least one empirically based model and that the approach can successfully
accommodate heterogeneity across mortgage pools. In short, the initial evi-
dence appears promising.

We further the understanding of the rational valuation method for CMOs
by conducting extensive sensitivity analysis to determine the robustness of
this approach (and our solution procedure) to alternative single-factor models
of the term structure of interest rates and to alternative specifications of the
distribution of refinancing cost levels confronted by mortgagors. The sensitiv-
ity analysis indicates that CMO tranche valuation is not particularly sensi-
tive to alternative models of the term structure so long as the models are
consistent with the current yield curve, but, even when alternative specifica-
tions of the refinancing cost categories yield nearly identical values for the
collateral underlying the CMO (i.e., the generic MBSs), the resulting tranche
values can difFer widely between the two specifications. The results point out
the importance of accurate estimation of the distribution of refinancing costs
when the rational valuation model is used for the analysis of CMO tranches.

The following section briefly describes CMO structures. Section II outlines
the rational prepayment valuation procedure in greater detail. Section III
presents our two-step procedure for valuation of CMOs using the rational
prepayment method and conducts sensitivity analysis with respect to alterna-
tive specifications of the term structure and with respect to alternative
specifications of the costs of refinancing. Section IV concludes.

I. The Structure of CoUateralized Mortgage Obligations

CMOs have been created that have as many as 70 different tranches.
Essentially, the CMO structure is a mechanism for reallocating mortgage call
or prepayment risk among classes of investors. Typically, a CMO is collateral-
ized by pools of mortgages with coupon rates and maturities that lie within a
narrow range. Each period a servicing fee is subtracted from the principal
and interest cash flows that are then passed through to investors. The CMO
structure assigns the principal and interest cash flows from the underlying
collateral to the various tranches.

To illustrate, consider a simple "sequential pay" CMO with five classes: an
A tranche, a B tranche, a C tranche, an interest accrual or "Z-bond," and an
interest only (10) strip. The A, B, and C tranches are assigned a fixed rate of
interest and a face value that may be any feasible rate and any feasible face
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value. That is, the coupon rates and face values must be feasible given the
cash flows available from the underlying collateral. Because this CMO has an
interest-only tranche, the coupon rates on the A, B, and C tranches must be
less than the rate on the underlying collateral (the "excess" interest is passed
to the 10 strip). Under the sequential pay structure, the promised fixed rate
of interest along with all principal payments (including any prepayments)
from the collateral are paid to the A tranche until that tranche is fully
retired. During this period, the B and C tranches receive only interest. Once
the A tranche is retired all principal payments along with fixed rate of
interest are paid to the B tranche until it is fully retired, after which time, all
principal payments are then passed through to the C tranche.

The interest accrual or Z-bond also has a stated principal balance and a
fixed rate of interest. However, the Z-bond does not receive any cash flows
until the senior tranches are fully retired. Rather, interest payments that
would have been paid to the Z-bond are paid to the senior tranches, in order
of priority, until their principal balances are retired. Concurrently, the princi-
pal balance of the Z-hond is increased by the amount of the foregone interest
payment. That is, the unpaid interest accrues to the Z-bond. Once the senior
tranches are retired, principal payments from the underlying collateral are
paid to the Z-bond along with the stated interest rate on the unpaid principal
balance. Thus, the Z-bond is much like a zero coupon bond (hence, its name)
except that the maturity is uncertain.

As its name implies, the IO tranche receives interest payments only, and
these come about only so long as the coupon rate on the priority tranches is
less than the rate on the underlying collateral. The "extra" interest is passed
through to the 10 tranche. The 10 tranche continues to receive cash flows
only so long as some principal remains outstanding from the underlying
collateral. Once the collateral is fully retired, cash flows to the 10 tranche
cease.

As even this simple example illustrates, tracking and allocating the cash
flows from the generic MBSs to the various tranches is critical to the analysis
of CMOs. Constructing a valuation model that will do that in a rational
prepayment framework is the goal of this article.

II. Rational Prepayments and Mortgage Valuation

A. The Foundation

Development of the rational valuation approach to mortgage valuation can
be traced, at least, to Dunn and McConnell (1981a, 1981b). They assume that
markets are frictionless and that mortgagors exercise their call option as soon
as the value of the mortgage, if left uncalled, would exceed the face value of
the loan. In their framework, and, indeed, in all of the subsequent rational
mortgage valuation models, the value ofa generic MBS is merely the sum of
the values of individual mortgages that support it less the value of the fees
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associated with servicing and insuring the mortgages. An outcome of this
model is that MBSs never sell at prices above par.

Given the empirical observation that MBSs do trade at prices above par,
Dunn and Spatt (1986) and Johnston and Van Drunen (1988) incorporate the
transaction costs associated with mortgage refinancing into the rational
valuation framework. In their models, mortgagors do not prepay until the
savings in interest cost associated with prepayment are sufficiently large to
cover the cost of refinancing their loans. As a consequence, MBSs can trade at
prices above par. Additionally, these models allow for differences in the cost
of refinancing among different groups of mortgagors. The differential in
transactions costs across mortgagors means that some mortgagors prepay
sooner than others when interest rates decline—the lower the cost of refi-
nancing for a class of mortgagors, the more sensitive that class is to a decline
in the interest rate. This heterogeneity in costs and, therefore, speed of
prepayment, gives rise to a pattern of prepayments that captures the
"burnout" effect in mortgage prepayments.^ Unfortunately, unreasonably
high levels of refinancing costs are required to generate MBS prices as high
as observed prices. To explain this phenomenon, Dunn and Spatt (1986)
hypothesize that mortgagors do not respond immediately when interest rates
decline. This lag in the prepayment process means that not all mortgagors
prepay when the interest rate declines to the "optimal" refinancing level. The
effect of this delay is that MBS prices are higher than they otherwise would
be for any given level of refinancing costs and any level of interest rates.

In addition to the "optimal" prepayments that occur when interest rates
decline, each of these rational models allows for a "background" level of
prepayments that are unrelated to interest rate movements. Dunn and
McConnell (1981a, 1981b) attribute such prepayments to exogenous phenom-
ena such as relocations, divorces, deaths, and so on.''

Stanton (1993a, 1993b) operationalizes the various aspects of prepayment
behavior. To account for "delayed" prepayments when rates decline, he posits
that mortgagors evaluate their prepayment options only at discrete intervals
rather than continuously. To operationalize this aspect of prepayment behav-
ior, he introduces a probability function such that only a fraction of mort-
gagors prepay when the interest rate declines to the otherwise "optimal"
refinancing level. To operationalize the background level of prepayments that
occurs even when the interest rate has not declined to the optimal refinanc-
ing level, he introduces a constant rate of prepayments (a hazard rate) that
occurs regardless of the level of interest rates. He then specifies the distrihu-
tions of refinancing costs, the prepayment delay process, and the background

Once an MBS is outstanding, interest rates may decline and prepayments occur. Then
interest rates may rise. Subsequently, when interest rates fall again, prepayments will be less
than the first time that rates fell to the current level because the most interest-sensitive
mortgagors have already "burned out" of the pool.

^Johnston and Van Drunen (1988} generate a level of prepayments in the absence of changes
in interest rates by assuming that each "transactions cost class" of mortgagors prepays at a fixed
time, even if rates have not fallen to the "threshold" level required for prepayment hy the class.
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hazard rate of prepa3Ttients and estimates the parameters of each process for
a sample of generic MBSs. He then uses these to value generic MBSs and
finds that the model produces results comparable to those generated with the
Schwartz and Torous (1989) empirically based model for MBS valuation.

Needless to say, our adaptation of the rational valuation approach for
analyzing CMOs owes much to the prior work. In particular, we employ the
rational valuation approach with refinancing costs along with a finite differ-
ence solution technique in our first step to obtain refinancing boundaries for
each class of homogeneous mortgagors (where a class is distinguished by the
level of refinancing cost that it faces). At each point in time, the refinancing
boundary is a critical interest rate such that if the loan is not called, the
value of the cash flows to he paid by the mortgagor is greater than the
remaining principal balance of the loan plus the refinancing costs—we call
these interest-rate-related prepayments.

The second step encompasses several parts. First, we introduce a hack-
ground level of prepayments that occurs regardless of the level of interest
rates. Second, we incorporate the idea that mortgagors make refinancing
decisions only at discrete intervals. For this reason, only a fraction of the
class of mortgagors prepays when the interest rate hits the critical level
determined in step one. Third, we develop an algorithm for allocating cash
flows from the underlying MBS collateral among the various CMO tranches.
Finally, a Monte Carlo procedure is used to generate paths of interest rates.
At each point in time, for each simulated path, if the interest rate is greater
than the critical level determined in step one, only "background" prepay-
ments occur. If the interest rate falls below the critical level, prepayments are
the sum of the background prepayments and interest-rate-related prepay-
ments. The level of interest-rate-related prepayments is less than 100 percent
because the delay in the prepayment process means that not all mortgagors
prepay when the interest rate falls to the otherwise "optimal" refinancing
rate.

B. The Valuation Procedure

As with other models for mortgage valuation, the procedure that we
propose for analyzing CMO tranches can be applied with any arbitrage-free
model of the term structure of interest rates. For purposes of presentation, we
employ the extended version of the one-factor model of Cox, Ingersoll, and
Ross (1985) as exposited by Hull and White (1990). In this model, the
short-term interest rate, r, follows the process

dr = [dit) + aitHb - r)]dt + (Tit)]fr dz,

where dr represents an infinitesimal change in r over an infinitesimal time
period, dt, and dz is a standard Wiener process. The term ait)/r- is the
instantaneous standard deviation of changes in ;• and the term 0it) + ait)
(b ~ r) represents the time-dependent, mean-reverting drift of the short-term
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interest rate. In tbis model, the market price of interest rate risk is
for a function of time ipU). The risk-adjusted interest rate process is

dr = [(t>(t) - aU)r]dt + (TU)4T^dz, (1)

where Mt) = a(t)b + Bit), ait) = ait) + (p{t)(rit), (i>(t) and ait) are time-
varying drift parameters, and ait) is a time-varying volatility parameter.

Let i represent the ith refinancing cost category of mortgagors, each of
whom confronts refinancing cost RF', where RF' is expressed as a fraction of
the remaining principal balance of the loan. Let c^ he the servicing and
insurance fee, also expressed as a proportion of the remaining principal
balance of the loan.^ Let V'ir,t) represent the value of the cash fiows paid by
mortgagors (i.e., the value of the mortgagors' liabilities), and let M'ir, t)
denote the value of the cash flows received by the holder of the securitized
mortgages (i.e., the value of the MBSs). Because the investor does not receive
the cash flows due to refinancing (i.e., the refinancing costs) or the servic-
ing and insurance fee, the value of the cash flows paid by mortgagors al-
ways exceeds the value of the cash flows received by investors, i.e., V'(r, t) >
M'ir, t). Given the model of the term structure in equation (1) and invoking
the fundamental valuation equation, the value of an MBS collateralized by a
pool of mortgages from refinancing cost category i is governed by the system
of equations

.2 ,
\/2rait) V;, + iMt) ~ ait)r)V; + V/ + A' - rV = 0, (2a)

'M;, + icf>it) - ait)r)Mi + M/ + iA - c,F'(O) - rM' = 0 (2b)

where A' is the continuous time analog of the mortgage annuity payment
comprised of the interest and principal payments, and F'it) is the remaining
principal of the loan at time t.

Under the assumption that mortgagors continuously evaluate their refi-
nancing alternatives, the prepayment boundary condition for mortgagors
fi-om refinancing cost category i is

V'ir,t) < (1 +RF')F'it). (3)

Under the same assumption, the boundary condition for the value of the
securitized mortgages (i.e., the MBS) is

M'(r , t) = F'it), whenever V'ir, t) = il + RF')F'it), (4)

With these boundary conditions and equations (2a) and (2b), a finite differ-
ence solution procedure can be used to determine the value of a generic MBS
collateralized by a pool of mortgages all of which carry the same coupon rate
of interest, the same maturity, and all of which are from the same refinanc-
ing cost category i. Since equations (2a) and (2b) are second order, partial,
differential equations, the solution procedure requires one terminal condition

The servicing fee is retained by the loan originator for processing the paperwork associated
with the loans and for collecting and passing through the loan payments.
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and two natural boundary conditions. The terminal condition is that the
value of the mortgagors' liability as well as the value of the pass-through
MBS are equal to zero at maturity, or, V'ir, T) = M'ir, T) = 0. The first
natural boundary condition is that the values go to zero as interest rates go to
infinity, or, V'(=c, t) = M'(-^, t) = 0. The second boundary condition is the
"high contact" boundary condition, which ensures a smooth slope for the
values of V'{r, t) and M'ir, t) at the critical interest rate, r,. when equation
(4) holds. This boundary condition is Vjir^, t) = 0, where the subscript, r,
denotes the first derivative with respect to r. Analysis of a generic MBS
supported by mortgages from several different refinancing cost categories is
straightforward because the value of the MBS is merely a weighted average
of the values of the securitized mortgages from the various refinancing cost
categories. The weights are the remaining principal balances of the various
refinancing cost categories relative to the total remaining principal balance of
the underlying collateral.

It is here that our procedure for analyzing CMOs diverges from the rational
prepayment models developed for the valuation of generic MBSs. Our model
diverges because the sequential assignment of cash fiows within a CMO
structure requires knowledge of the history of mortgage prepayments—a
capacity that is not technically feasible with the finite difference solution
procedure.*" The second step of our procedure does, however, rely upon the
finite difference solution procedure and equation (2a) to determine a critical
boundary of interest rates, r'Xt), at which it is "optimal" for a group of
mortgagors facing refinancing cost RF' to prepay. That is, the mortgagor's
decision to prepay is the feedback control variable in the second step of our
solution procedure. To determine this critical boundary, let r^Xt) be the
interest rate at time, t, for refinancing cost category i obtained as the
solution to the equation V'ir;:, t) = il + RF')F'it).

To extend the model to incorporate background prepayments and the delay
in the prepayment process, we adopt the framework proposed by Stanton
(1993a). As does he, we define two parameters associated with prepayments.
The first is \it), a time-dependent prepayment hazard rate that determines
the level of background prepayments in the absence of interest-rate-^related
refinancing prepayments. The second parameter, p, captures the observed
delay in refinancing activity attributable to the idea that mortgagors evalu-
ate their refinancing alternatives only at discrete intervals. Over any time
interval, the probability of prepayment depends on the level of interest rates
and the time-dependent hazard rate of prepayments. If the interest rate is

^Theoretically, it is possible to expand the state space by the number of tranches in the CMO
and implement a recursive, finite-difference solution procedure. Unfortunately, given any reason-
able number of tranches (i.e., more than three), the solution procedures become technically
infeasible. We thank Scott Richard for pointing out this possibility. See also Kau, Keenan,
MuUer, and Epperson (1993).
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above a critical level, the probability of prepayment in time interval A( is

Pt,\t} - 1 - e . \^)

If the interest rate falls below the critical level, the probability of prepayment
in the time interval A/ is

n ( t\ 1 _- -J ~ ( ̂ (O "*"/fjif fO\
H r^ ' — i. c . \O/

In the limit, as Ai goes to zero, let the continuous prepayment probability per
unit of time at any time t for any refinancing cost category i be defined by
the function -rr'ir, t). Hence, the function ir'ir, t) is equal to 7r^(r, t) = Mt)
when there are only background prepayments and is equal to irjir, t) = Mt)
+ p when the interest rate falls below the critical level r'it)?

Given the critical boundary of interest rates from step one, equations (5)
and (6) can be used to determine the prepayments and, therefore, the cash
flows at any point in time for any interest rate for mortgagors from refinanc-
ing cost category /. CMO valuation requires the allocation of the total cash
flows from the underljang collateral to the various tranches. To allocate cash
flows at each point in time, it is necessary to retain a memory of prior
prepayments. To construct this memory, let w' = F'{O)/F(;{Q) denote the
initial fraction of the pool of mortgages with refinancing cost RF', where the
subscript G refers to the generic pass-through security (i.e., the overall
underlying collateral), let N be the number of refinancing cost categories, let
FQ^O) = I!^= 1 F*(0), and let the fraction of mortgages in category i surviving
until time t be S'(r, t). Thus,

dS'U) = -TT'{t)SKt)dt (7)

where the dependence of S'(f) and 7T'(0 on the interest rate is suppressed for
notational convenience.

The allocation of cash flows among the tranches requires the knowledge of
the total cash flow from the underlying collateral at each point in time. Let

N

SU) = Z^'S'it) (8)

be the fraction of the underlying collateral that survives until time t, and let

N
PRU) = Y.w'7r'(t)S'(t) (9)

With these assumptions, the value of a generic MBS can be determined with a finite
difTerence solution procedure with an additional ingredient. Specifically, it is necessary to define
the value of the mortgagor's liability and the value of the MBS conditional on the prepayment
option remaining unexercised. At each step in the finite difference procedure, the value of the
MBS is a weighted average of value of the MBS in the absence of prepayment and the remaining
principal balance where the prepayment probability functions in equations (5) or (6) are used to
assign the weights.
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be tbe prepayment rate for the declining balance of the underlying collateral
at time t. In the absence of prepayments, the cash flow from the underlying
collateral is A =̂  Lfl i w'A' and the remaining principal balance of the under-
lying collateral is

Fait) = ( A / c ) ( l - expi-ciT- t))) (10)

where c is the coupon rate on the underlying collateral and T is the term to
maturity of the loans. Taking into account prepayments, the total cash flows
from the underljdng collateral to MBS investors is

CFcit) = Sit)A + PR{t)Ff;it) - Sit)c^F^;(t). (11)

This cash flow is then allocated among the various tranches according to a
predetermined hierarchy.

Let the cash flow to tranche Q be CFqit). Then, the value of a CMO
tranche, P(r, S',..., S^, t), is the solution to the differential equation

A'

(12)

subject to terminal and boundary conditions appropriate to each tranche.^
The cash flow term, CFQit), is a function of the remaining principal balance
of the collateral and the remaining principal halance of tranche Q. The
principal balance and the termination date of each tranche are determined
simultaneously. The relation between the remaining principal of the underly-
ing collateral, the remaining principal balances of the individual tranches,
and the termination date of each tranche can be formulated as a system of
simultaneous equations. The system of equations is specific to a given CMO
structure and, in general, depends upon the number and types of tranches in
the structure (e.g., whether the tranches are sequential or simultaneous pay,
whether the structure includes an interest-only or a principal-only tranche,
whether the structure contains a planned amortization class-bond or a tar-
geted amortization class-bond, and so on). Additionally, as described in
McConnell and Singh (1993), the terminal conditions for each tranche are
stochastic and depend upon the particular CMO structure. As an example,
determination of the terminal conditions, the remaining principal balance,
and the cash flow term for each tranche is outlined in the Appendix for the
five-tranche CMO described in Section I.

To summarize, the A'̂  differential equations governing mortgagors' liabili-
ties, V'ir, t) in equation (2a), the equation that governs the value of a CMO
tranche, Pir, t), in equation (12), and the A*" prepayment boundary condi-
tions for the A'̂  different refinancing cost categories in equation (3), along
with the terminal and natural boundary conditions for each individual tranche
comprise our CMO valuation framework.

Henceforth, for notational convenience, the dependence of P on S',.... S'^ is suppressed.
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As noted, the solution of this system of equations is performed in two steps.
The A' equations representing mortgagors' liabilities are solved first by using
the implicit finite difference backward recursion procedure to determine N
refinancing boundaries for tbe different refinancing cost categories of mort-
gagors. Monte Carlo simulation is then used to solve equation (12) to deter-
mine the value of individual CMO tranches. The simulations rely on the cash
flow equations and the terminal conditions for each tranche. (These are
outlined in the Appendix for the five-tranche example of Section I.) The
Monte Carlo procedure is an approximation of the fundamental risk-neutral
valuation equation

Mir, t) = £j|^/cFy(s)exp - friv)dv\ds\, (13)

where E, denotes expectations taken with respect to the equivalent Martin-
gale measure of the risk-adjusted process. In this procedure, paths of the
risk-adjusted short-term interest rate are generated for the remaining term
to maturity of the mortgages. At each point along a path, for each category of
refinancing costs, the risk-adjusted interest rate is compared with the critical
interest rate. If the interest rate is below the critical level, equation (6) is
used to determine the prepayment rate, and if the interest rate is above the
critical level, the prepayment rate is given by equation (5). This procedure
determines the cash flows along each path of interest rates for mortgages
belonging to a particular refinancing cost category. The procedure is repeated
for each refinancing cost category. The total cash flow to the tranches at each
point in time is then computed as the weighted sum of the cash flows using
the fraction of loans surviving, S'it), of each refinancing cost category. The
allocation of the cash flow among various tranches is determined by the
structure of the CMO. The present value of the cash flows along each
simulated path is determined by discounting the cash flows at the risk-
adjusted interest rate. The entire procedure is repeated for a large number of
paths. Tbe value of a CMO tranche is, then, the average of the present values
of the cash flows over many iterations of the entire procedure.

III. Implementation of the Dynamic Programming Procedure:
Valuation of a Five-tranche CMO

A. Calculation of the Critical Interest Rate Boundary

In this section, we illustrate our valuation procedure with a numerical
example. The first step in our procedure depends only upon the model of the
term structure of interest rates and the values of the associated parameters,
the refinancing cost categories, and the coupon rate and term to maturity of
the underlying collateral. To solve the valuation equation for the mortgagor's
liability in equation (2a), we use an implicit finite-difference, backward
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solution procedure with the boundary condition given in equation (3).^ Start-
ing from the maturity date of the mortgage, the value of the mortgagors'
liabilities, V'ir, t), is compared with the remaining principal balance plus
the refinancing cost, (1 + RF')F'(t). If the value exceeds (1 + RF')F'it), it is
se t equa l to (1 + RF')F'{tl If V'ir, / ) < (1 + RF')F'it), t h e va lue is V'ir, t).
At each point in time, there is a contiguous pair of interest rates such that
V'ir, t) is less than (1 + RF')F'it) for the higher interest rate and is greater
than (1 + RF')F'it) for the lower interest rate. By interpolation between the
two interest rates, we determine the critical interest rate, r^it). Proceeding
backwards in this fashion, the path of this critical prepayment boundary is
determined for the refinancing cost category i for a given set of parameters of
the term structure.

To illustrate the procedure, we assume the collateral comprises 9.5 percent,
30-year mortgages, and we employ the extended Cox, IngersoU, and Ross
term structure model given in equation (1) with 4>it) = 0.02, ait) ^ 0.2, and
ait) = 0.05. This set of parameters implies that the (asymptotic) infinite
maturity zero coupon rate is 9.71 percent. With these parameters, a critical
boundary can be determined for each refinancing cost category of mortgages.
We assume the collateral is made up of mortgages from five categories of
refinancing costs, RF' = 0, 3, 6, 9, and 12 percent for i = 1,...,5.

Figure 1 displays the critical boundary for each of the five refinancing cost
categories in our example. Each boundary comprises 360 critical interest
rates at monthly intervals. As anticipated, at each point in time, the critical
interest rate increases as the refinancing cost decreases. Through time, for
the zero refinancing cost category, the critical boundary traces the level of the
short-term interest rate that gives the current coupon mortgage rate for a
mortgage with a term to maturity equal to the remaining term of the original
9.5 percent mortgage. As the remaining term to maturity declines, the
current coupon rate approaches the short-term rate. At maturity, the critical
refinancing rate equals the original coupon rate of 9.5 percent.

For mortgages with positive refinancing costs, the critical boundary of
interest rates may initially increase. However, as the remaining term to
maturity declines, the present value of interest savings due to refinancing
becomes smaller because the shorter remaining term to maturity implies that
interest must be paid over a shorter time period. For any positive refinancing
cost, as the remaining term to maturity approaches zero, the critical interest
rate also approaches zero. Hence, for the four categories with positive refi-
nancing costs, the critical boundary eventually declines to zero.

A 360-point grid across time vs. 50 points across interest rates is developed. A transformation
of interest rates is performed (see Brennan and Schwartz (1978)) to ensure a high concentration
of grid points between 4 and 20 percent for the short-term rate. The transformed interest rate
variable is y = 1/(1 + yr). We use a value of 12.5 for y. The natural boundaries at zero and the
critical interest rate, r,,, for the short-term rate are used along with the terminal condition for
individual mortgages, V'ir, T) = 0. The Crank-Nicolson finite-difference algorithm is used for
solving the equations. To ensure accuracy of the numerical results, we employ an implicit
finite-difference procedure.
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Figure 1. Optimal reflnancing boundaries I. This figure displays the short-term interest
rate boundaries with five different levels of refinancing costs for the optimal refinancing of 9.5
percent coupon, 30-year, fixed-rate mortgages. Refinancing costs as a percentage of the remain-
ing principal balance for the five categories are (from the highest to the lowest boundary) 0, 3, 6,
9, and 12 percent respectively. The Cox, Ingersoll, and Ross model of the term structure is
employed to determine the short-term interest rate boundaries. The parameters of the term-
structure mode! are: (/»(i) = 0.02; ait) = 0.05; ait) = 0.2. These parameters imply an asymptotic
long-term interest rate of 9.71 percent.

Figure 1 gives the critical path of interest rates for one specification of the
parameters of the term structure. A change in the value of any of the
parameters of the term structure will result in a different critical prepayment
boundary for each level of refinancing costs. Specifically, for the given set of
parameters in Figure 1, the implied asymptotic long-term zero coupon rate is
9.71 percent. A change in any of the parameters results in a different implied
long-term rate. Keeping the mean reversion parameter ^(t) and the volatility
parameter (T(i) constant, an increase in ait) results in a decline in the
asymptotic long-term rate or, equivalently, a decline in the slope of the yield
curve. Note, however, that in the Cox, Ingersoll, and Ross model, the initial
level of the short-term interest rate does not affect the asymptotic long-term
interest rate. In Figure 2, the value of the parameter a{t) is increased to 0.3
from 0.2, which implies a new asymptotic long-term rate of 6.58 percent. At
time zero, the refinancing boundaries for each of the refinancing cost cate-
gories that are shown in Figure 2 are higher than their corresponding values
in Figure 1. A higher refinancing boundary implies a higher rate of prepay-
ments for the 9.5 percent coupon mortgages. As we shall discuss later, an
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Figure 2. Optimal reflnancing boundaries II. This figure displays the short-term interest
rate boundaries witb five difFerent levels of refinancing costs for the optimal refinancing of 9.5
percent coupon, 30-year, fixed-rate mortgages. Refinancing costs as a percent of the remaining
principal balance for the five categories are (from the highest to the lowest boundary) 0, 3, 6, 9,
and 12 percent respectively- The Cox, IngersoU, and Ross model of the term structure is
employed to determine the short-term interest rate boundaries. The parameters of the term-
structure model are: (^(0 = 0.02; ait) = 0.05; a{t) - 0.3. Tbese parameters imply an asymptotic
long-term interest rate of 6.58 percent.

increase in ait) implies a lower discount rate in the second stage of the
valuation model. In Section III.C, we conduct a sensitivity analysis with
respect to different values of the parameters of the term structure. Although
not displayed, each different set of parameters yields a different path of
critical interest rates for each refinancing cost category. The interaction of
the effect of ait) on the prepayment boundary and on the discounting of cash
flows to the tranches determines the net effect on the value of the tranche.

B. Valuation of a Five-tranche CMO

To implement the second step of our valuation procedure, consider the
simple sequential pay five-tranche CMO described in Section I. Let the face
values of the three sequential pay tranches and the Z-bond be FJ.O), F^iO),
F(.iO), and FyiO). Because the 10 pays interest only, it has no stated principal
value. Each tranche may have a different coupon rate of interest. Denote
tbese rates as c^, Cg, c^, and c^. Let c,, be the coupon rate of the tranche
paying the highest rate of interest where h = A, B, C, or Z. The interest paid
to the 10 tranche is the difference between the interest payments from the
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underlying collateral and the promised interest payments to the A, B, C, and
Z tranches. Every CMO must satisfy a cash flow requirement and a face
value requirement given as

- exp(-c , r ) ) , (14)

(15)

where F'Q{0) is the present value of the scheduled collateral cash flows
discounted with the highest coupon rate of interest of any CMO tranche. That
is, the promised coupon rates and principal payments must be feasible given
the underlying collateral. The condition given in equation (14) insures that
the interest payments promised to each tranche can be met regardless of the
prepayment rate of the underlying collateral. The condition given in equation
(15) insures that the face value of the collateral is at least equal to the sum of
the face values of the individual tranches. Enforcing these conditions can lead
to "overcoUateralization." In that case, the "excess" collateral may be held by
the issuer as equity interest or used to support a principal only tranche.

Because prepayments are uncertain, the maturities of the tranches are
stochastic and depend upon the rate of mortgage prepayments. Let t^, t2, ^3,
and 4̂ denote the times at which the A, B, C, and Z tranches are retired, and,
if the CMO is overcollateralized, let t^ be the time at which the underlying
collateral is finally retired. For purposes of developing the model, the cash
flows to the four tranches can be allocated into time intervals demarcated by
the dates at which retirement of the tranches occurs. The first time interval
is denoted as 0 < ( < (j, the second is t^ < t < t2, the third \& t2 < t < ^3, the
fourth is t^ <t < t^, and the fifth is t^ < t < t^. When the CMO is not
overcollateralized, t^ = t^.

The cash flows from the underlying collateral consist of the scheduled
principal and interest payments from the surviving mortgages plus any
prepayments. The prepayment rate for each refinancing cost category is
determined by the critical interest rate boundary for that category and is
expressed as 7r'(r, t) = 7r'(r, t I r^(t)). Each time the interest rate falls below
the critical level, the prepayment rate is 7r/(r, t) ^ Ait) + p. The prepayment
rate for background prepayments is Tr^ir, t) = \(t). The fraction of loans from
cost category i surviving until time t is determined by equation (7). The
fraction of the total underlying collateral surviving until time t is determined
by equation (8), and the prepayment rate for the total underlying collateral is
determined with equation (9). These are then used with equation (11) to
determine the total cash flow from the underlying collateral. The Appendix
presents the equations that allocate the cash flow among the various tranches
at each point in time. The cash flow equation for each tranche along with
equation (12) provide the framework for valuing each tranche separately. The
valuation is accomplished by using the risk-adjusted discounting procedure of
equation (13).



Rational Prepayments and the Valuation of CMOs 907

C. Numerical Example

Table I presents the results of a numerical illustration for a five-tranche
CMO with the Cox, Ingersoll, and Ross model of the term structure. In this
illustration, the short-term interest rate, r(0), and the drift parameter, ait),
are varied to obtain different shapes and levels of the term structure. The
values of the five tranches and the generic MBS are presented for three
different levels of the short-term interest rate and five values of the parame-
ter ait). The three levels of the short-term rate are 3, 6, and 9 percent. The
implied long-term interest rate is defined as the 30-year zero coupon rate
corresponding to a given level of the drift parameter ait). Thus, the results
are generated for 15 different yield curves.

The coupon rate of the underlying collateral is 9.5 percent with a 0.5
percent servicing and guarantee fee, which makes the pass-through coupon
rate of the MBS that collateralizes the CMO equal to 9.0 percent. The A, B,
and C tranches each have initial principal equal to 30 percent of the principal
of underlying collateral and the Z-bond makes up the remaining 10 percent.
The 10 strip is based on the interest differential between the collateral
pass-through coupon rate and the coupon rates of the four other tranches.
The collateral consists of mortgages from five refinancing cost categories each
of which comprises 20 percent of the initial value of the underlying mortgage
collateral. The proportional cost for the five categories are 0, 3, 6, 9, and 12
percent, respectively. The prepayment delay parameter, p, is equal to 2.0,
which implies that mortgagors evaluate their refinancing alternatives every
six months. The background level of prepayments is assumed to be 5 percent
per year.

The values of the various tranches are displayed in columns 4 through 8 of
Table I. Column 9 gives the value of the generic MBSs that collateralize the
CMO. The columns labeled A, B, C, and Z express the values of the CMO
tranches as a percentage of the face value of the relevant tranche. Column 8
gives the value of the 10 as a percentage of the face value of the collateral.
Thus, in every case, the value of the collateral is merely the value of the IO
plus the weighted sum of the values of the other tranches.

Because the short-term rate determines the level of the entire term struc-
ture in a single-factor model, the values of the generic MBSs and the
individual tranches are quite sensitive to changes in the short-term rate.
They are also sensitive to changes in the value of the parameter a(t). For any
given level of the short-term rate, an increase in ait) implies a lower
long-term interest rate.

Two opposing interest rate effects are at work in determining the pattern
in the tranche values. With a decline in the long-term rate, the discounting
effect tends to increase tranche value. However, a decrease in rates tends to
increase the probability of refinancing. Depending upon which effect predomi-
nates, an increase in ait) may lead to either an increase or a decrease in the
value of the generic CMO. In the top two sections of Table I, a decrease in
ait) first leads to an increase in the value of the generic CMO and then a



908 The Journal of Finance

inirtMco
o iaqaqco

[ > . r - . [ > . T i - - : r o o x p o o a q
c o c i r i a i o c r H r - < c ^ t b ! D
O O O O O l O O O X M

C- t - 00 W ^ CO
c^ in i-̂  fî  oq ^^
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decrease in value. The way in which the change in the value of the generic
MBS is allocated across the CMO tranches depends on the initial level of the
short-term rate and on the maturity (and priority) of the tranche. In general,
longer maturity tranches and the 10 are more sensitive to changes in the
level and shape of the term structure than are the shorter maturity tranches.
That, of course, is not news. What is new, at least four purposes, is that our
procedure for CMO tranche valuation gives results that are consistent with
intuition and with empirically based models of CMO analysis.

D. Alternative Models of the Term Structure of Interest Rates

As we noted, our procedure for analyzing CMOs can be employed with any
arbitrage-free model of the term structure. Hull and White (1990) examine
the sensitivity of the valuation of interest-rate-dependent derivative securi-
ties to two alternative characterizations of the term structure—the extended
Cox, Ingersoll, and Ross model and the extended version of the Vasicek
(1977) model. They analyze bond options and interest rate caps with maturi-
ties up to five years and conclude tbat the values of these securities are not
sensitive to the particulars of the term-structure model employed so long as
the model is consistent with the entire observed yield curve. Their conclu-
sions may or may not hold for the long-dated options embedded in 30-year
MBSs. Furthermore, even if the alternative models yield similar values for
generic MBSs, it is possible that the models will produce different values for
the individual tranches because the reallocation of call risk among the
tranches may depend on the characteristics of the specific term-structure
model employed.

In the spirit of Hull and White, we analyze the sensitivity of CMO tranche
values to three models of the term structure—the extended version of the
Cox, Ingersoll, and Ross model, the extended version of the Vasicek model,
and the Heath, Jarrow, and Morton (1992) model—all three of which can be
made consistent with the entire observed yield curve.'" We begin our analysis
with the yield curves that are generated with the Cox, Ingersoll, and Ross
model used for the valuation results in Table I. Given the yield curves of
Tahle I, we derive the implied time-dependent parameters of the risk-
adjusted interest rate process of the Vasicek model

dr = [<f,it) - a(t)r]dt + ait)dt. (16)

In the Vasicek model (in contrast to the Cox, Ingersoll, and Ross model),
short-term interest rate volatility is independent of the level of the short-term
interest rate. To derive the yield curves of the Vasicek model, we employ the
procedure used in Hull and White (1990), In their framework, the initial term
structure of interest rates is represented by the price of a pure discount bond
with maturity T, A(0, Dexp - B(0, r)r(O), where r(0) is the initial short-

'°The Heath, Jarrow, and Morton (1992) model was not available when Hull and White (1990)
conducted their analysis.
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term interest rate and A(0, T) and .6(0, T) are functions of maturity. The
parameters of the Cox, Ingersoll, and Ross model are used to determine the
value of A(0, T) and S(0, T) (equations (28) and (29) in Hull and White) as

\

A(o,r) =
2ye'

(y + tt - 1) + 27

and

(y 2y '

where y = Va^ + 2 ^ . Equations (13), (14), (15), and (16) from Hull and
White are then used to determine the time-varying parameters such that the
Vasicek model fits the yield curve generated with the Cox, Ingersoll, and Ross
model. Equations (13) and (14), respectively, are

aad
B{t,T) =

A'{t,T) -A'(O,T)

where a subscript denotes a derivative with respect to that variable and
A'U, T) = log[A(^ T)]. The drift parameters of the Vasicek model are
obtained from equations (15) and (16) in Hull and White as

aU) = -B,j(O,t)/B,(O,t),

and

With the Vasicek model, the diflerential equation governing the value of a
mortgagor's liability is

l/2a(t)'\\. + {il>it) - aU)r)V; + V/ + A' - rV - 0, / - 1,...,A^

(17)

where i represents the refinancing cost category i. The differential equation
governing the value of CMO tranche Q is

N

(18)

The cash flow term, CFQ, and boundary conditions are the same as with the
Cox, Ingersoll, and Ross model. The CMO valuation procedure is the same as
outlined earlier.



Rational Prepayments and the Valuation of CMOs 911

The Heath, Jarrow, and Morton framework, which utilizes the entire term
structure of forward rates as a starting point, permits several characteriza-
tions of the term structure of volatilities. For comparison purposes, we use a
one-factor Heath, Jarrow, and Morton model and assume a term structure of
forward rate volatilities that is consistent with the Vasicek model. In the
Heath, Jarrow, and Morton model, the infinitesimal change in the instanta-
neous forward rate dfit, T) at time t for the future time T is

dfit,T) ^ait,T)dt + fxe^^/^x^-'We (19)

where ait, T) is a time-dependent drift parameter, and the parameters a
and ^ determine the structure of forward-rate volatilities. The evolution of
the short-term interest rate that is consistent with the forward-rate dynamics
is given as

t) - 2iiT/fJif[il -e-^ ' ) - 2(1 -e-'^/^./jj ^ ra
•'o

(20)

where /"(O, T) is the initial term structure of forward rates. With this
specification of forward-rate dynamics, the short-term interest rate follows a
mean reverting process given by

dr = /i/2[Tj(O - r\dt + adz (21)

where

• n i t ) = { 2 / f i ) < } f i O , t ) / r 7 t + f i O , t ) + 2 i a / f i f [ l - e - ' " ] .

With this characterization of the Heath, Jarrow, and Morton model, equa-
tions (17) and (18) can be used to value CMO tranches with two modifica-
tions: (1) (f>(t) is replaced with (/x/2)-n{t) and (2) a(^) is replaced with ^ / 2 .

Tranche values with the two alternative term-structure models are given in
Tahle II. Panel A shows the tranche values obtained by using the extended
Vasicek model. The volatility parameter, <r{t), in the Vasicek model is
0.05vr(0) , where r(0) is the initial short-term interest rate. This makes the
volatility of the short-term interest rate identical to the initial volatility in
the Cox, Ingersoll, and Ross model. In the Heath, Jarrow, and Morton model,
the constant parameter fx determines the term structure of volatility, but
does not infiuence the initial term structure of interest rates. In the Heath,
Jarrow, and Morton model, the parameter fi also governs the rate of mean
reversion of the short-term interest rate. We set /x equal to 2a where a is
the parameter governing the rate of mean reversion in the Cox, Ingersoll, and
Ross model, so that the rate of mean reversion is equivalent across the two
models.

Table II presents values of the generic MBS and the fiv; tranches of our
example CMO for the 15 interest rate scenarios of Table I. Perhaps surpris-
ingly, a comparison of the two panels in Tahle II with Table I shows that, so
long as the specification of the term-structure model is consistent with the
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observed yield eurve, not only are the values of generic MBSs relatively
insensitive to the particular one-factor model of the term-structure model
employed, but so too are the values of the individual tranches. Thus, our
CMO valuation procedure appears to he rohust to alternative specifications of
a single-factor model of the term structure.

E. Alternative Specifications of the Refinancing Cost Categories

Given that the choice of the term-structure model employed appears to be
of relatively little consequence in the valuation of CMO tranches, the next
question becomes whether the values are equally insensitive to alternative
characterizations of prepayment behavior. To address this question, we value
the CMO under two different characterizations of the distribution of refinanc-
ing costs and with three different specifications of the prepayment delay
parameter, p. The results are presented in Table III. Panel A of the table
assumes equal proportions of mortgagors with refinancing costs of 3, 6, 9, 12,
and 15 percent. Panel B assumes equal proportions of mortgagors with
refinancing costs of 1, 2, 10, 20, and 30 percent. In each panel, the delay
parameter, p, is set at three different levels—1, 2, and 12—that correspond
to mortgagors evaluating their refinancing alternatives at one-year, six-
month, and one-month intervals. Both panels assume a short-term interest
rate of 6 percent and employ the five different levels of the parameter ait)
used in Table I. The tranche values of Table III can be compared with the
tranche values in the middle section of Tahle I.

In general, the results are compatible with intuition. Overall, differences in
the prepayment delay parameter and refinancing costs are likely to have
little effect on tranche valuation when the probability of prepayment is low.
Only when prepayment is a serious possibility are differences in refinancing
costs and prepayment delay likely to have any impact. This result is apparent
in the scenarios in which the implied long-term rate is high. For example,
when the long-term rate is 14.7 percent the value of the generic MBS in
Panel A, Panel B, and the middle section of Tahle I is 92.82 regardless of the
prepayment-delay parameter. Similarly, the values of the various tranches
are identical for these scenarios. In the scenarios in which the probability of
prepayment is higher (i.e., when the implied long-term interest rate is lower),
the effect of differences in the cost of refinancing and prepayment delay is
more pronounced. For example, consider the three cases in Panel A in which
the implied long-term interest rate is 6.5 percent and the prepayment delay
parameters are 1, 2, and 12 (i.e., refinancing decisions are made at one-year,
six-month, and one-month intervals). The value of the generic MBS declines
from 103.03 to 101.68 to 100.45 as the interval for refinancing decisions
declines. Similarly, the values of each of the tranches declines as the delay
parameter decreases, with the greatest effect heing manifest in the tranches
with the longer maturities. For example, the value of the Z-bond declines
from 108.00 to 100.44 as the refinancing interval declines from one-year to
one-month.
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Panels A and B of Tahle III, along with the middle section of Tahle I, can be
compared to examine the sensitivity of tranche valuation to specification of
the costs of refinancing. The effect of some changes in the distributions of
refinancing costs are straightforward, but not others. For example, in Table I,
the refinancing cost categories are 0, 3, 6, 9, and 12 percent in equal
proportions, whereas in Panel A of Table III, the categories are 3, 6, 9, 12,
and 15 percent. In essence, the costs are uniformly higher in Panel A of Table
III in comparison with those in Table I. As expected, the value of each
tranche is lower in Table III than the comparable tranche in Table I. In Panel
B of Table III, the refinancing cost categories are "stretched" relative to those
in Table I. In Table III, the cost categories are 1, 2, 10, 20, and 30 percent.
The values of the tranches here are also higher than those of the comparable
tranches in Table I, but the greatest effect occurs in the longer maturity
tranches and the IO.

One other comparison is useful to consider. Suppose two different combina-
tions of the delay parameter and the refinancing cost distributions give rise
to the same or a similar value of the underlying generic MBSs. Does that
imply that the value of the tranches will he the same? As an example,
consider the case in Panel A where the long-term interest rate is 6.52 percent
and the prepayment delay parameter is 1. Compare that with the case in
Panel B in which the long-term rate is again 6.52 percent and the delay
parameter is 2. The value of the generic MBSs in the two panels are nearly
identical—103.03 vs. 103.12. However, the Panel B value of the Z-bond
exceeds the Panel A value by 3.54, and the Panel B values of the A, B, and C
tranches are less than the corresponding values in Panel A by 0.10, 0.46, and
0.50, respectively. Hence, for any given term structure, a specification of the
prepayment parameters that leads to a correct value of the generic MBS
prices may lead to incorrect valuation of CMO tranches. As might be antici-
pated from the discussion above, this problem is most severe when prepay-
ment probabilities are high. The important message here is that use of the
rational valuation method for CMO valuation requires careful (and accurate)
estimation of the parameters of the refinancing cost categories and the
prepayment-delay parameter. Stanton's (1993a, 1993b) work in that regard
deserves thoughtful consideration and further development.

IV. Summary and Conclusions

CMOs have come to dominate the mortgage-backed securities market.
Because CMO tranches rarely trade as generic instruments, "mortgage ana-
lytics" play a major role in the trading of CMO tranches. We propose a
two-step procedure for analyzing CMO tranches that is in the spirit of a
dynamic programming problem. The novelty of our procedure is that we
employ a rational prepayment valuation model in step one that determines a
critical level of interest rates at which value-minimizing mortgagors would
optimally refinance their mortgages. The rational valuation model is solved
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by means of an implicit finite difference solution procedure. The critical level
of interest rates depends upon the remaining term to maturity of the mort-
gage and the refinancing cost confronted by the mortgagor. Given several
categories of refinancing cost mortgagors, a critical path of interest rates is
determined for each refinancing cost category. These critical paths are then
used in the second step of the procedure, along with Monte Carlo simulation,
to determine the cash flows to and the value of each CMO tranche.

Sensitivity analysis indicates that the procedure yields results consistent
with intuition and with the pattern of observed market prices. The analysis
also indicates that the results are generally insensitive to the particular
single-factor model of the term structure employed. The results are, however,
sensitive to assumptions about refinancing costs confronted by mortgagors
and to other aspects of the refinancing decision. As always, with mortgage
valuation, the results point to the importance of accurate estimation of the
parameters of the prepayment process.

Appendix

The remaining principal balances and the retirement dates of the tranches
in the five-tranche CMO structure outlined in Section IILA depend on the
rate at which the underlying collateral is retired. It is assumed that tranches
A, B, and C are retired sequentially, while the Z tranche accrues interest. The
Z tranche starts receiving cash flows only after the three prior tranches are
fully retired. The 10 tranche, however, receives payments throughout the life
of the collateral. The remaining balance of the underlying collateral is a
function of path of interest rates since the origination of the mortgage pool
and is measured by the fraction of the pool surviving until time t. Sit). The
cash fiow, CFqit), to any tranche, Q, at time, t, depends on the remaining
principal balance of the tranche at time t and is contingent on the path of the
interest rate from the origination of the collateral. The cash flows and the
remaining principal balances of the various tranches are determined from a
set of simultaneous equations for one specific realization of the interest rate
path. The retirement dates of each tranche are determined from the cumula-
tive principal paid on the underlying collateral.

Time t^, the retirement date of the A tranche, occurs when the following
equation is satisfied:

FA =^f;<0) -Sit^)Fcity) +F;,(O)(exp(cz/i) - 1). (AD

The first two terms on the right give the total principal paid on the underly-
ing collateral. The last term gives the acci^ed interest on the Z-hond that is
used to retire A tranche. Thus, time t^ occurs when the A tranche is fully
retired.

To determine the cash flow rate to A tranche at any time /, it is necessary
to determine the (growing) principal of the Z-bond at t and the remaining
principal of A tranche. At any time prior to t^ (when the Z-bond hegins to
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receive principal payments), the principal of the Z-bond is

O. (A2)

The remaining principal of the A tranche at any time up to and including t^
is

Fj,{t) -F^iQ) - [{FaiO) - S(t)Fa(t)} + F^^(O){exp{czt) - I)]. ( A 3 )

The cash flow rate to the investor in tranche A is

CF^it) = SU)[A -cFait)] + PR(t)FcU) + c^F^it) + c^Fj^it). (A4)

The first term on the right represents the scheduled principal payments from
the collateral, the second term gives the cash flows from prepayments on the
collateral, the third term is the interest accrued on the Z-bond, and the fourth
term is the interest paid on the remaining principal of the A tranche.

The cash flows to the other tranches during the first time interval, 0 < ( <
?i, are CF^it) = ĉ FfiCO); CFcU) = CcFciO); CF^it) = 0; and CFj^U) = CFQU)

- CF/t) - CFgit) - CFfCO. Thatis, the cash flow to the A and B tranches is
just the promised interest rate times the initial face value, the cash flow from
the Z-hond is zero, and the cash flow to the 10 is just the difference between
the cash flow to the collateral and the cash flows to the other tranches.

Time 2̂ occurs when the following equation is satisfied

F^(0) + FB(O) =FG(O) - SU2)Fc.it2) + F^SO)[exp(czt.J - 1]. (A5)

That is, 2̂ occurs when the B tranche is fully retired. During the interval
t^ < t < t^, the remaining principal balance on the B tranche is

g g cS - SU)FGU)] -H FziO){expiczt) - 1} - F^iO)] (A6)

and the cash flow rate to the B tranche is

t) + c^F^U) + c^FsU). (A7)

Terms on the right in equation (A7) are analogous to those in equation {A4).
The cash flows to the other sequential tranches and the 10 during the second
time interval, t^ <t < i^, are CF^U) = CF^it) = 0, CF(.{t) = CcF^iO); and
CF,o(t) = CFcU) - CF^U) - CF^Xt).

Time /.j occurs when the B tranche is fully retired. That is, when

_t:,) - 1]. (A8)

During the third interval, 2̂ ^ ' — '3- ^^^ remaining principal on the C
tranche is

c c a a z z t ) -1} - F,(0) - ^
(A9)

and the cash flow rate to the C tranche is

CFc = S{t)[A - cFait)] + PR(t)Fa(t) + c^F^it) + c^Fcit). (AlO)
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During this interval, the cash flows to the A and B tranches and the Z-bond
are zero, and the cash flow to the 10 is CF^jit) = CFf^it) - CFfjit).

Time t^ occurs when the Z-bond is fully retired,

^ c, ^Fa(t,). (All)

The remaining principal balance of the Z-bond at time t, where t^ < t < t^, is

Fzit) = F^(0) + F^(0) + F^.iO) + F^iO) - F^iO) + SU)FGit) (A12)

and the cash flow rate to the Z-hond is

F^it). (A13)

The cash flows to the A, B, and C tranches during 3̂ < ^ < (4 are zero and
CF,oit) = CFa(t) - CFzit).

When the CMO is not overcollaterahzed, t^ - t^, and the CMO is fully
retired at t^. When the CMO is overcollateralized, t^ occurs when Sit^)F(jit^)
= 0. That is, t^ occurs when the underlying collateral is fully retired. During
the interval t^ < t < t^, the cash flow is divided hetween the IO and the
equity interest in the overall CMO structure due to overcoUateralization, and
the cash flows to the other tranches are zero. In our exposition, we assume no
overcoUateralization.

Let Pqit) denote the value of any CMO tranche, Q, at time, t. The terminal
conditions for the solution of the differential equation (12) for the individual
securities are

PG^^) = -f^Ui) = Psit.,) = Pc^t^) = P^it^) = Pjoit^) = 0. (AM)
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