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1 Introduction

The human capital hypothesis (Becker, 1962) states that in a competitive market, higher education leads

to higher human capital and therefore higher wages. This hypothesis has led to decades of empirical

discussion on the average marginal return to education based primarily on the Mincer regression (Mincer,

1974). The debate has centered around the omitted ability bias, with the assumption being that ordinary

least squares (OLS) estimates of the growth rate of earnings with schooling are likely to be overstated

due to the positive association between earnings and ability as well as ability and schooling (Griliches,

1977). In an attempt to correct for the potential upward bias, a large body of empirical work has emerged

over the past four decades that adopted various econometric strategies to account for the endogeneity of

schooling which could potentially deliver a reliable estimate of the returns to schooling. Such strategies

include the use of instrumental variables (IV) estimates (e.g., Angrist and Krueger, 1991), utilizing within

family variation in schooling (e.g., Ashenfelter and Krueger, 1994), and the use of observable proxies for

ability (e.g., Heckman, Stixrud, and Urzua, 2006). However, each strategy suffers from its own set of

issues and collectively they produce conflicting and sometimes surprising results (Card, 2001; Heckman,

Lochner, and Todd, 2006; Caplan, 2018). This has led to a call for new panel data approaches utilizing large

administrative datasets (Heckman, Lochner, and Todd, 2006; Altonji, 2010).

This paper adopts an interactive fixed effects or common factor framework for estimating the returns

to schooling that allows for multiple unobserved skills with associated prices that are potentially time-

varying. The skills are represented by the factor loadings while their prices are represented by the common

factors. Additive individual and/or time fixed effects are obtained as special cases of this framework.

Skills and prices are both allowed to be correlated with schooling which addresses the endogeneity of the

latter without resorting to external instruments or proxies for ability. The modeling approach can also

accommodate individual-level heterogeneity in the returns to schooling. The framework thus constitutes a

substantive generalization of most existing approaches that assume ability is unidimensional and/or returns

are homogeneous. Moreover, it allows us to quantify two important sources of bias: one from ignoring

the interactive fixed effects structure (the ability bias) and the other from ignoring potential parameter

heterogeneity. Estimation is carried out using the methods developed by Bai (2009), Pesaran (2006), and
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Song (2013) that facilitate consistent estimation of the growth rate of earnings with schooling and enable

statistical inference via asymptotically valid standard errors.

Using a common factor structure to model the earnings function is, however, not new. Hause (1980)

employs an interactive effects framework (referring to it as “the fine structure of earnings”) to decompose

the covariance matrix of earnings time series into ability and on-the-job training components and evaluate

the empirical significance of the latter. Heckman and Scheinkman (1987) employ a multifactor model for

earnings in order to test the hypothesis of uniform pricing across sectors of the economy. More recently,

Carneiro et al. (2003) use the common factor structure as a dimension reduction tool to model the de-

pendence across unobservable ability components and estimate counterfactual distributions of outcomes

while Heckman, Stixrud, and Urzua (2006) show that a low-dimensional vector of latent cognitive and

non-cognitive skills modeled using a factor structure explains a variety of behavioral and labor market

outcomes (see also Heckman et al., 2017). Westerlund and Petrova (2017) apply the interactive fixed effects

framework to the returns to schooling and find smaller returns than OLS. However, their analysis was an

empirical illustration of the performance of Pesaran’s (2006) common correlated effects estimator under

asymptotic collinearity, and leaves much room for work.1 Our contribution differs from these studies in

that we exploit the time series variation in schooling over the sample period as well as the high-dimensional

nature of the panel dataset to simultaneously address the twin issues of heterogeneity in returns to schooling

and the endogeneity of schooling thus enabling us to disentangle the biases associated with ignoring one or

both of these features.

Our empirical analysis employs a unique panel dataset on earnings and education over the period

1978-2011 based on respondents from the Survey of Income and Program Participation (SIPP) linked with

tax and benefit data from the Internal Revenue Service (IRS) and Social Security Administration (SSA).

Combining nine SIPP survey panels and administrative earnings data provides a panel dataset that is of high

quality, has a long time dimension, and includes a large number of individuals. An important advantage of

administrative data on earnings over survey data is that the latter are subject to rising measurement error and

non-response (Abowd and Stinson, 2013; Meyer et al., 2015). This is particularly relevant for estimating the

1This includes the use of a larger dataset, additional estimators (Bai, 2009; Song, 2013), a variety of specifications to account
for heterogeneity and experience, relation of the results to both the IV and the ability proxy literature, and accommodation of
individual-level heterogeneity in the returns to schooling, all of which we address in this paper.
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returns to schooling, given that the nature of earnings misreporting in survey data tends to vary with earnings

and education levels (e.g. Chenevert et al., 2016). The linked dataset has a much larger time dimension and

cross-section dimension than in the few existing panel studies on returns to schooling, which usually rely

on the Panel Study of Income Dynamics (PSID) or the National Longitudinal Study of Youth (NLSY) (see

section 4.1 for the relevant references).

Previewing our results, we first replicate the well established finding in the literature that the IV

estimate of the growth rate of earnings due to schooling is larger than the corresponding OLS estimate, both

using cross-section and panel data. The IV estimate is based on using the quarter of birth interacted with

the year of birth as instruments following Angrist and Krueger (1991). Next, our interactive fixed effects

estimates are found to be considerably smaller than the OLS estimates, regardless of whether a pooled

or heterogenous model is estimated. Our preferred specification based on models with heterogeneous

coefficients yields a point estimate of the average marginal returns to schooling of about 2.8-4.4 percent

relative to OLS and two stage least squares (2SLS) estimates which lie in the range 7.7-12.7 percent. While

both omitted ability and heterogeneity biases contribute to the overall OLS bias, a decomposition of the

aggregate least squares bias shows that the omitted ability component is responsible for a larger fraction of

the bias relative to the heterogeneity component. Overall, our results are more similar to the ability proxy

literature, which finds smaller returns than OLS and the IV literature, although we find even larger positive

bias and smaller marginal returns. Lastly, we analyze both across-group and within-group heterogeneity

in the returns to schooling. Although we find minimal evidence of heterogeneous returns across race,

Hispanic status, or foreign born status, our results indicate that returns are larger for individuals born in

more recent years. Our findings are also suggestive of “sheepskin effects” and considerable heterogeneity

within demographic groups and education levels.

The rest of the paper is organized as follows. Section 2 discusses issues related to the existing

econometric strategies in the literature. Section 3 introduces the interactive effects framework including

a brief description of the associated estimation methods. Section 4 details the administrative data used

to conduct the empirical analysis. Section 5 presents the estimated specifications and results. Section 6

concludes. Online Supplemental Appendices A-D provide detailed derivations and additional empirical

results, including robustness to the inclusion of higher order terms for schooling and experience.
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2 Issues in the Existing Literature

In order to motivate the approach taken in this paper, it is useful to first highlight the issues associated

with the different econometric strategies that have been employed in the literature to correct for the omitted

ability bias inherent in OLS estimates of the returns to schooling. These issues have turned out to be of

considerable importance from an empirical standpoint and have contributed to a general lack of consensus

about the appropriate methodology to adopt when estimating the returns to schooling. We first discuss the

two main approaches that are based on utilizing cross-sectional data: the IV approach and the ability proxy

approach. This is followed by an assessment of existing panel data studies including a discussion of the

relative advantages of our approach which should further help delineate our contribution to the literature.

The IV approach is based on exploiting natural variation in the data caused by exogenous influences

on the schooling decision. For instance, the seminal study of Angrist and Krueger (1991) uses an individual’s

quarter of birth (interacted with year of birth or state of birth in some specifications) as an instrument for

schooling based on the observation that compulsory schooling laws tend to lead individuals born earlier

in the year to have less schooling relative to those born later in the year. Surprisingly, however, the IV

estimates were found to be consistently larger than the OLS estimates thereby presenting an empirical puzzle

regarding the interpretation of the IV estimates (see Card, 2001, Table II, for a summary of this literature).

One potential explanation for the larger IV estimates is in terms of the Local Average Treatment Effect

(LATE) on a selected sample (Imbens and Angrist, 1994). That is, if the instrument has a larger impact on

individuals with higher marginal returns to schooling, the IV procedure will tend to produce an overestimate

of the average marginal returns to education.2 Heckman, Lochner, and Todd (2006) and Heckman, Urzua,

and Vytlacil (2006), however, point out that the LATE interpretation of the IV estimate assumes away

directional heterogeneity in the response of schooling choices to instruments. Card (2001) discusses other

explanations for the puzzle including attenuation bias in the OLS estimates due to measurement error in

schooling, short term credit constraints and specification search bias.3,4 Carneiro and Heckman (2002)

2Note that the LATE issue arises when the marginal returns are heterogeneous, which could occur either when the relationship
between earning and schooling is linear, but the coefficients are individual-specific; or when the coefficients are homogeneous, but
schooling enters the model nonlinearly.

3Card (2001) notes that measurement error in schooling cannot explain the observed difference in OLS and IV estimates while
Carneiro and Heckman (2002) show that IV can exceed OLS even in the absence of credit constraints.

4Oreopoulos (2006) approximated the average treatment effect by looking at a compulsory schooling policy change that
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argue, using AFQT as a measure of ability, that the observed pattern of results can simply be a consequence

of using poor or invalid instruments that are either only weakly correlated with schooling or correlated with

ability. Heckman, Lochner, and Todd (2006) conclude in their survey of the literature that the IV approach

is of limited use in uncovering a reliable estimate of the returns to schooling.5

The ability proxy approach employs observable proxies for ability in order to mitigate the impact of

the ability bias. Common proxies for cognitive ability include GPA, AFQT scores and other components in

the ASVAB tests while those for non-cognitive ability include the Rotter Locus of Control Scale which mea-

sures the degree of control individuals feel they possess over their life and the Rosenberg Self-Esteem Scale

which measures perceptions of self-worth (Heckman, Stixrud, and Urzua, 2006).6 Heckman et al. (2017)

provide a comparison of standard OLS estimates to estimates controlling for ability proxies using Bartlett

cognitive and non-cognitive factors, and find that the latter are about 20-50 percent smaller, depending on

the specification. Similar reductions are reported by Ashworth et al. (2017) in comparing the basic Mincer

regressions to regressions that include ability proxies and actual experience using the NLSY panel data.7 A

major challenge facing this literature is that the ability proxies, particularly those measuring non-cognitive

ability or “soft skills” such as conscientiousness, conformity, self-esteem, etc., are far from perfect resulting

in biased estimates of the schooling effect (Heckman, Stixrud, and Urzua, 2006).8 Our paper contributes

to the literature by providing a rigorous framework that allows the data to speak regarding the importance

of multi-dimensional abilities without relying on imperfect proxies. Our preferred specification based on

models with heterogeneous coefficients suggests a reduction in the average marginal returns to schooling

between 44-64 percent relative to OLS.

In contrast to the cross-section methods, the panel data approach identifies the effect of schooling

based on time-series variation within individuals. Angrist and Newey (1991) and Koop and Tobias (2004)

affected a large group of people in the U.K. and suggested that even when the sample is not subject to selection problems and
credit constraints, the IV estimate is still larger than OLS and therefore the empirical puzzle remains.

5As one of the referees pointed out, criticism over the validity of the IV strategy depends on the choice of the instrument so
that making general statements about the IV estimates of the returns to schooling is difficult.

6While GPA is commonly used as a measure of cognitive ability, there is evidence indicating that GPA captures a mix of
cognitive and non-cognitive skills (Humphries and Kosse, 2017).

7Based on reviewing the earlier evidence, Caplan (2018, Chapter 3) suggests that cognitive ability bias is between 20-30 percent
while non-cognitive ability bias is between 5-15 percent. He interprets the ability bias in the literature as a lower bound on the true
bias due to the imperfect measure of abilities, especially the non-cognitive abilities.

8Even cognitive ability measures, such as AFQT scores, are subject to criticism (Polachek et al., 2015).
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use panel data from the NLSY to estimate the returns to schooling (more precisely, the percentage growth

rate of earnings due to schooling) although their modeling approaches are different. Both studies, however,

assume that individual fixed effects can effectively capture the potential endogeneity of schooling. Angrist

and Newey (1991) employ a standard panel data framework with homogeneous coefficients where unob-

served heterogeneity is controlled for using individual and time fixed effects. They find that the fixed effects

estimates are roughly twice as large as the OLS estimates which runs counterintuitive to the notion that

ability bias tends to overstate the OLS returns and suggests that individual fixed effects are not sufficient

to control for the potential upward bias. Koop and Tobias (2004) address the issue of cross-sectional

heterogeneity in returns adopting a Bayesian framework to characterize the nature of such heterogeneity.

Comparing results across a wide variety of specifications, they find strong evidence in favor of models that

allow for heterogeneous slopes. Our modeling approach is considerably more general than those adopted

in these studies in that we allow for multidimensional abilities with possibly time-varying prices as well as

cross-sectional heterogeneity in the growth rate of earnings with schooling. Our empirical analysis also uses

a linked survey-administrative dataset which offers important advantages over survey-based data.

A potential drawback of the panel data approach is that it requires a sample of individuals with

continuous earnings while increasing schooling. This may include, for example, traditional students who

also work while obtaining a bachelors degree or individuals who return to school later in life, whether to

finish an uncompleted degree or for additional degrees. This sample could be different from the traditional

idea of a student who completes degrees consecutively and does not work while in school. Setting aside

sample selection effects, there could also be issues comparing time-series earnings before, during, and

after schooling, since earnings before or during schooling could be part-time or seasonal work and not truly

reflect an individual’s earning potential (Card, 1995; Lazear, 1977). That said, we believe these concerns are

mitigated somewhat by the facts that: (1) we do replicate well-established results in terms of the absolute and

relative magnitude of OLS and IV estimates from the cross-section literature; (2) we set annual minimum

earnings restrictions equal to the federal minimum wage multiplied by 800 hours, following the criterion

adopted in Koop and Tobias (2004); (3) we find similar sample statistics and cross-section estimates if we

instead use a sample that does not require continuous earnings while in school; and (4) other research has

shown that the student population that works during school is large (Bacolod and Hotz, 2006; Bound et al.,
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2012; Carnevale et al., 2015; Hotz et al., 2002), and is thus an important population itself. Furthermore,

unlike the cross-section approach, the use of panel data allows us to formally test for heterogeneity in the

returns to schooling, while also allowing for multiple unobserved skills with time varying returns that are

potentially correlated with both schooling and earnings.

3 Empirical Framework

This section presents the interactive fixed effects framework that forms the basis of our empirical analysis

aimed at estimating the growth rate of earnings with years of schooling. Conditional on the common factor

structure embedded in the framework that represents multiple skills with time varying prices, one can further

derive not only the aggregate OLS and IV biases but also provide a decomposition of the biases in terms of

their omitted ability and heterogeneity components. Section 3.1 lays out the modeling framework including

a description of the alternative estimation approaches. Section 3.2 discusses the intuition underlying the

omitted ability and heterogeneity biases.

3.1 The Interactive Fixed Effects Model

The general interactive fixed effects model with heterogeneous coefficients is specified as

yit = ci + sitβi +w′itγi + vit (1)

vit = λ
′
i ft +uit (2)

where yit and sit represent, respectively, the (log of) annual earnings and the years of schooling completed for

person i = 1, ...,N at period t = 1, ...,T , and wit is a vector of observable characteristics that influence wages

and are potentially correlated with education (e.g., experience). We include a set of person fixed effects ci to

control for time-invariant person characteristics such as gender and race. The parameter βi measures the

percentage change in annual earnings for person i due to an additional year of schooling. This parameter

does not necessarily represent an internal rate of return to schooling unless the only costs of schooling are

earnings foregone, and markets are perfect (Heckman, Lochner, and Todd, 2006). The error term vit is

composed of a common component (λ ′i ft) and an idiosyncratic component (uit). Here λi represents a
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(r× 1) vector of unmeasured skills (factor loadings), such as innate abilities, while ft is a (r× 1) vector

of unobserved, possibly time-varying, prices (or common factors) of the unmeasured skills.9 Both loadings

and the factors are potentially correlated with the observables (sit ,wit). The number of common components

r is assumed unknown. The object of interest is the average marginal return [E(βi)] in the population. Note

that while the returns to each of the skill components (λ ′i ft) are identified, the skills and their prices are

not separately identified.10 That is, the estimated factors and their loadings only estimate a rotation of

the underlying true parameters and so cannot be given a direct economic interpretation. Unlike Heckman,

Stixrud, and Urzua (2006), our paper does not attempt to distinguish between the role of cognitive and

non-cognitive skills in explaining the behavior of earnings. Rather, we are interested in estimating the rate

of growth of earnings with schooling employing the interactive fixed effects structure as a device to control

for the different components of ability that may affect earnings and are potentially correlated with schooling.

It is important to note that while the validity of the IV estimates relies on assumptions of relevance and

exogeneity of the instruments, the validity of the factor model estimates depends on the assumption of a

common factor structure where each factor makes a nontrivial contribution to the variance of vit .

Various panel data specifications used in the literature can be obtained as special cases of (1) and (2).

The standard panel data model with person and time fixed effects considered by Angrist and Newey (1991)

is obtained by setting βi = β , γi = γ, λi = λ . Koop and Tobias (2004) consider a restricted version of (1) and

(2) that allows heterogeneity in returns to schooling but assumes that the endogeneity of schooling (i.e., the

ability bias) is fully accounted for by the individual fixed effects ci. Thus, their model does not allow for

multiple skill components with time varying prices. We consider estimating model (1) and (2) using two

alternative econometric procedures: the principal components approach (Bai, 2009; Song, 2013) and the

common correlated effects approach (Pesaran, 2006). We now briefly describe each of these methods.

9While we refer to the factor loadings as skills/abilities, there are other time-invariant determinants with possibly time-varying
prices, such as motivation and persistence, that can be captured by the factors loadings as well.

10For an arbitrary (r× r) invertible matrix A, we have FΛ′ = FAA−1Λ′ = F∗Λ∗′, so that a model with common factors
F = ( f1, ..., fT )′ and loadings Λ = (λ1, ...,λN)

′ is observationally equivalent to a model with factors F∗ = ( f ∗1 , ..., f ∗T )
′ and

Λ∗ = (λ ∗1 , ...,λ
∗
N)
′ where F∗ = FA and Λ∗ = ΛA−1′.
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3.1.1 The Principal Components Approach

Bai (2009) advocates an iterative principal components approach that treats the common factors and their

loadings as parameters which are jointly estimated with the regression coefficients assuming cross-sectional

homogeneity of the latter. Under both large N and large T, the estimator is shown to be
√

NT -consistent

and asymptotically normal under mild conditions on the idiosyncratic components that allow for (weak)

correlation and heteroskedasticity in both dimensions. To ensure that the asymptotic distribution is centered

around zero, a bias corrected estimator is proposed. Our empirical analysis employs the bias corrected

estimator which we refer to as the interactive fixed effects (IFE) estimator.

Let xit = (sit
′,wit

′)′ and x̃it = xit −T−1
∑

T
t=1 xit with ỹit defined analogously. Letting φ = (β ′,γ ′)′, the

IFE estimator is obtained by iteratively solving the following pair of equations:

φ̂
[
{ ft}T

t=1,{λi}N
i=1
]

=

(
N

∑
i=1

T

∑
t=1

x̃it x̃′it

)−1( N

∑
i=1

T

∑
t=1

x̃it(ỹit −λ
′
i ft)

)
(3)

ỹit − x̃′itφ = λ
′
i ft + ũit (4)

In particular, given the factors and loadings, we compute φ̂ from (3) and given φ , we compute the factors

and loadings from (4) using principal components. Two choices of initial values are employed to start the

iteration and the one that leads to the lower sum of squared residuals upon convergence is chosen as the final

set of estimates. The first choice sets ft = 0 for all t in (3) while the second sets φ = 0 in (4). The tolerance

level for the convergence of the sum of squared residuals was set at 10−10 and convergence was achieved

within 500 iterations across all estimated specifications.

Song (2013) develops a heterogeneous version of the IFE estimator that allows the regression co-

efficients to be individual-specific. The estimator is obtained by taking the cross-sectional average of the

individual-specific IFE estimates and is shown to be
√

N-consistent for the average return in the population.

We refer to this estimator as the IFEMG (MG denoting mean group) estimator.

Both the IFE and IFEMG estimators require a choice on the number of common factors. Bai (2009)

proposes estimating the number of factors employing the information criterion procedure of Bai and Ng

(2002). Specifically, the number of factors is obtained by minimizing the “ICp1” criterion with kmax = 10.
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3.1.2 The Common Correlated Effects (CCE) Approach

Pesaran (2006) proposes to proxy for the unobserved common factors ft using cross-sectional averages of

the dependent and independent variables, i.e., unlike the principal components approach, the factors are

treated as nuisance parameters rather than parameters of interest. Estimation is based on augmenting the

regression (1) with the cross-sectional averages and does not require knowledge of the number of factors.

Two estimators are suggested: (1) the common correlated effects mean group (CCEMG) estimator which

allows for heterogeneous coefficients and is obtained by estimating person-specific time series regressions

using OLS and taking the average of the person-specific estimates; (2) the common correlated effects pooled

(CCEP) estimator which pools the observations over the cross-section units and achieves efficiency gains

when the slope parameters are the same across units.11

Based on a random coefficients formulation for the regression coefficients and the factor loadings,

both estimators are shown to be
√

N-consistent and asymptotically normal as the cross-section dimension

(N) and the time series dimension (T ) jointly diverge to infinity. The finite sample performance of both

estimators can be sensitive to a particular rank condition which requires that the number of factors does not

exceed the total number of observed variables (see the Monte Carlo evidence in section 7 of Pesaran, 2006).

Pesaran (2006, p.1000) also suggests a two-step approach to estimation that involves combining the

CCE and principal components approaches. For the model specified in (1) and (2), the first step entails

obtaining the residuals v̂it = yit− ĉi−sit β̂i−w′it γ̂i where (ĉi, β̂i, γ̂i)
′ denote the individual-level CCE estimates.

The factors are then estimated by principal components treating the residuals as observed data where the

number of factors is again selected based on the information criterion discussed in section 3.1.1. In the

second step, the factor estimates (say { f̂t}T
t=1) are then directly used as regressors in the regression equation

yit = ci + sitβi +w′itγi +λ
′
i f̂t +ξit (5)

Given that the consistency of β̂i hinges on the validity of the aforementioned rank condition, we replace

β̂i with the CCEMG estimate when computing the first step residuals. The estimate of βi obtained from

OLS estimation of (5) will be referred to as the “two-step CCE” estimate and the corresponding mean group

11The coefficients of the cross-sectional averages are, however, allowed to be individual-specific in both the pooled and
heterogeneous specifications.
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version as CCEMG-2. For the pooled analog of (1), the first step residuals are obtained using the CCEP

estimate and the resulting estimate is referred to as CCEP-2. Our empirical analysis reports both the one and

two-step CCE estimates. A potential advantage of the two-step approach is that the second-step estimate is

based on factors estimated by principal components instead of observable proxies and is therefore possibly

less sensitive to the fulfillment of the rank condition.12

3.2 Omitted Ability and Heterogeneity Biases

In the interactive effects environment, there are at least two potential sources of bias that can arise in panel

OLS/IV estimation of the returns to schooling. The first is the omitted ability bias that emanates from

ignoring the common factor structure (2). While OLS estimation treats the ability components as part of

the error term leading to endogeneity of the schooling variable, the IV estimator can be subject to bias if the

instruments are inappropriate in that they are correlated with the factor structure. The second source of bias

arises from estimating a pooled specification when the true regression coefficients are heterogeneous. In

practice, the two biases may reinforce or offset each other depending on their signs. The interactive effects

framework allows us to separately estimate the bias associated with each of the two sources (see section

5.5). See Appendix A for the derivation of the heterogeneity bias.

4 Data

4.1 Linked Survey-Administrative Data

Linked survey-administrative data come from the U.S. Census Bureau Gold Standard File (GSF) which

links respondents from the SIPP with tax and benefit data from the IRS and SSA.13 The linked dataset

includes respondents’ survey information from the SIPP for the years they were in the survey and annual tax

and benefit information that ranges from 1978-2011 for some variables and 1951-2011 for others.14 This

12The rank condition is potentially very relevant in this application, given that our empirical analysis based on panel data
includes a small number of observed variables (2-3, depending on the specification). Note that we only include cross-sectional
averages of the earning and schooling variables in the CCE approach, given that age controls are equivalent to the inclusion of a
deterministic time trend (see Appendix B for details).

13We use version 6.0 of the GSF. Outside researchers can access a synthetic version of the GSF, known as SIPP Synthetic Beta.
Researchers can then have their results validated on non-synthetic data. More information is available in Benedetto et al. (2018).

14Nine SIPP panels are linked: 1984, 1990, 1991, 1992, 1993, 1996, 2001, 2004, and 2008.
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allows us to construct a panel dataset with annual earnings, annual years of schooling, and other covariates.

Annual earnings comes from the SSA’s Detailed Earnings Record (DER), which is based on W-2 records

for employed workers and Schedule C records for self-employed workers, including deferred earnings, and

is available from 1978-2011. We construct a longitudinal years of schooling variable using the educational

history information in the SIPP, which includes not just the highest level of schooling completed, but also

the year each level was completed. See Appendix C for more details on the construction of this variable.

Administrative data on earnings is advantageous to survey data due to rising measurement error and

non-response in survey data (Abowd and Stinson, 2013; Meyer et al., 2015). Previous work has shown that

earnings data from surveys appears to be overstated at the bottom of the earnings distribution and understated

at the top (Chenevert et al., 2016; Cristia and Schwabish, 2009; Pedace and Bates, 2000). Chenevert et al.

(2016) also found that survey earnings data is overstated for lower education levels and understated for

higher education levels. These findings have potential implications about the reliability of survey data for

estimating the returns to schooling. Several of the aforementioned studies on the merits of administrative

versus survey data analyze the same SIPP and SSA DER data that we use (Abowd and Stinson, 2013;

Chenevert et al., 2016; Meyer et al., 2015).

Linked SIPP-administrative data therefore provides a unique panel dataset of education and earnings

that is of high quality, has a long time dimension, and includes a large number of individuals. Most studies

have relied on cross-section analysis (e.g., Angrist and Krueger, 1991; Card, 1995) or short panels (e.g.,

Carneiro et al., 2003; Carneiro and Heckman, 2002; Carneiro et al., 2011; Cunha et al., 2005). Studies that

use longer panel data typically use either the PSID (e.g., Westerlund and Petrova, 2017) or the NLSY (e.g.,

Angrist and Newey, 1991; Ashworth et al., 2017; Koop and Tobias, 2004).15 The linked SIPP-administrative

data has several advantages over the PSID and NLSY, including larger sample sizes, due to the combination

of many SIPP panels;16 more accurate earnings data, due to the removal of survey mis-reporting, non-

response, and top-coding; less attrition, because longitudinal earnings data come from administrative records

rather than repeated survey responses; and a longer time dimension for earnings, due to administrative

earnings records that cover many years.

15Two other recent examples of panel analysis use administrative data from Norway and Sweden (Bhuller et al., 2017; Nybom,
2017).

16Most panel studies in the literature analyze approximately 1,000-2,000 individuals, with the extremes being 888 in Westerlund
and Petrova (2017) and 3,695 in Cunha et al. (2005).
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Heckman, Lochner, and Todd (2006) conclude in their survey of the literature that the solution to

improving the estimation of returns to schooling lies in rich panel data and new econometric approaches. The

use of linked survey-administrative data addresses the former of those recommendations. It also addresses

the latter recommendation: the use of rich panel data allows for an interactive fixed effects framework which

cannot be applied to cross-section or short panel data (see Altonji, 2010 for further discussion).

4.2 Sample Selection and Summary Statistics

The main sample of analysis was selected based on eight selection criteria: (1) males; (2) age 16-65 during

the entirety of 1978-2011; (3) at least 27 years of age at the time of their SIPP survey; (4) not currently

enrolled in school at the time of their SIPP survey; (5) no missing information for variables included in the

analysis; (6) positive earnings each year from 1978-2011; (7) meets annual minimum earnings thresholds;

(8) at least one change in years of schooling during 1978-2011. The first five criteria are typical in the

returns to schooling literature. The sample is restricted to males to analyze a population that historically

is consistently and strongly attached to the labor market. The age range is limited to 16-65 to focus on

prime working years. Criteria (3)-(5) select individuals who are most likely to have complete and accurate

educational histories.

Criteria (6)-(8) are required due to the panel data approach. Positive earnings in each year is required

to have a balanced panel sample. However, work while enrolled in school may often be part-time work.

Thus, earnings may be artificially low during school, which could lead to biased estimates of the return

to schooling from panel datasets. To ensure that we are analyzing earnings that reasonably represent

individuals’ full earning potential, we further limit the sample to individuals who meet minimum earnings

thresholds during each and every year.17 We set the annual minimum earnings equal to the federal minimum

wage multiplied by 800 hours, following the criterion adopted in Koop and Tobias (2004).18 Finally, we

further limit the sample to individuals with at least one change in years of schooling so that we can estimate

17Note that this restriction could also make the sample less representative of some types of individuals, such as individuals who
experience job loss or other negative earnings shocks before returning to school.

18Koop and Tobias (2004) have annual data on wages, hours, and weeks. Their sample restrictions to identify individuals whose
earnings represent full earnings potential include limiting to individuals who work at least 30 weeks in the year, work at least 800
hours in the year, and have a wage of at least $1. We are forced to restrict based on annual earnings amounts due to the lack of
annual weeks and hours worked information.
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person fixed effects models.19 Each of these criteria is typical in the panel data literature on estimating

the returns to schooling: Angrist and Newey (1991), Koop and Tobias (2004), and Westerlund and Petrova

(2017) analyze individuals who have positive earnings and increase their schooling at the same time, while

Koop and Tobias (2004) also use minimum earnings and work thresholds.

Nonetheless, it is reasonable to be concerned that the final panel sample may not be representative

of a typical individual’s work and school experience. To investigate this, Table 1 shows summary statistics

for not only the main sample of analysis, but also how the summary statistics change as we sequentially

add the selection criteria to obtain our final sample. Panel A shows the balanced panel sample. Panel

B shows a cross-section sample which is a subset of the panel sample for year 1990. We include both

because, while our main results are based on a panel sample, we also provide some cross-section results

below. Column (1) shows a baseline sample of 47,500 individuals obtained by applying criteria (1)-(5)

listed above.20 Before applying the remaining selection criteria, we show a comparative sample in column

(2). This column restricts the baseline sample to individuals who have positive earnings every year after

finishing their schooling. Whereas our restriction of positive earnings each year from 1978-2011 is required

for the panel analysis, this restriction is more consistent with the cross-section literature.21 It decreases the

sample by more than half, from 47,500 to 22,000 individuals. Based on Panel A, the comparative sample

has higher average earnings (+$13,800), more average years of schooling (+0.73 years), lower average age

(-0.63 years), and higher means for the fraction White, non-Hispanic, native born, and married.22

Column (3) imposes the criterion that individuals must have positive earnings each year from 1978-

19We checked the sensitivity of the results to an additional restriction that removed individuals with an earnings observation
in the top one percent of the sample. We chose not to include this restriction in the main sample because (1) we do not have a
precedent in the returns to schooling literature for what top percent to remove; (2) one advantage of using the administrative data
rather than survey earnings data is the lack of top-coding; and (3) the results are similar. These results are available upon request.

20We show age in years in this table for demonstration, but for the analysis below we followed Angrist and Krueger (1991)
and constructed age-in-quarters as the individual’s age-in-quarters at the time of their SIPP survey. That is, the within-birthyear-
birthquarter variation due to the differences in which quarter individuals were born and which quarter they were interviewed allows
cross-section IV specifications that include birth year fixed effects, age controls, and the quarter-based IVs. When we moved to the
panel setting, we calculated the age-in-quarters variable for their non-survey years by subtracting/adding four for each additional
year away from the survey year for consistency and for the sake of estimating similar panel 2SLS specifications.

21The cross-section literature often relies on “potential experience” as a proxy for work experience when estimating returns to
schooling, which explicitly builds in an assumption of positive earnings each year after finishing schooling: the proxy assumes that
individuals are always either in school or working, but never both, and measures experience as age−years of schooling−6. The
cross-section literature typically also uses a similar sample selection criteria by analyzing individuals with positive earnings and
not currently enrolled in school.

22The large standard deviation for annual earnings is due to the fact that the earnings data is very skewed to the right.
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2011. This only further decreases the sample from 22,000 to 18,500 individuals. The average earnings

(+$320) and average years of schooling (-0.09 years) do not change much compared to the effect of imposing

positive earnings after finishing schooling. The average age increases (+0.68 years) and the fraction White,

non-Hispanic, native born, and married continues to increase. Column (4) imposes the annual minimum

earnings criterion. This decreases the sample from 18,500 to 12,000 individuals. The only particularly no-

table changes arising from this restriction are higher annual earnings (+$4,290), as expected, and increased

mean age (+0.94 years). Finally, column (5) imposes the criterion of at least one change in schooling

during 1978-2011. This decreases the sample from 12,000 to 3,600 individuals. The notable changes in

sample means arising from this restriction are mean years of school (+0.62 years) and mean age (-1.83

years).23 In summary, comparing the balanced panel and minimum earnings restrictions in columns (3)

and (4) to the comparative sample in column (2), these criteria do not further decrease the sample size

dramatically compared to the decrease from the baseline sample when imposing the common assumption

in the literature of positive earnings after finishing school. Comparing the final sample in column (5) to the

comparative sample, the only differences in the summary statistics are relatively small changes in average

annual earnings due to the minimum earnings threshold (+$4,580), years of school (+0.53 years), age (-0.21

years), and small increases in the fraction White, non-Hispanic, native born, and married.

To further alleviate concerns that our main sample may not be representative, we begin our analysis

below by estimating cross-section specifications based on both our main sample in column (5) of Panel B

and the comparative sample in column (2) in order to replicate the well-known pattern of OLS/2SLS results

from the literature. Furthermore, the main panel sample is used to generate OLS and 2SLS estimates, in

addition to estimates from specifications based on an interactive fixed effects structure. Thus, to the extent

that estimates of the return to schooling are larger or smaller based on panel analysis, all of the estimates

should be affected by this, such that comparing OLS/2SLS estimates with interactive fixed effects estimates

still illustrates the effect of allowing for multiple unobserved skills with time-varying prices.

23The relatively large changes in sample size and mean age are due to losing individuals who never complete high school and
also older individuals who already completed their schooling by 1978, both of whom would have no observed changes in years of
schooling.
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5 Empirical Results

The empirical results are organized into five subsections. Section 5.1 presents the set of specifications

estimated that differ according to whether cross-section or panel data are employed, whether the regression

parameters are allowed to be heterogeneous, and whether interactive fixed effects are incorporated. Section

5.2 reports the cross-section estimates which replicate the robust empirical finding in the literature that

the IV estimate of the returns to schooling exceeds the OLS estimate. The former is based on using the

quarter of birth interacted with year of birth as instruments following the seminal paper by Angrist and

Krueger (1991). Our choice of IV is driven by the fact that it is one of the most widely used in the literature

and the only available one in our dataset, although we acknowledge its limitations with respect to both

relevance and exogeneity (Bound et al., 1995; Buckles and Hungerman, 2013; Barua and Lang, 2016).

Section 5.3 presents the panel OLS, 2SLS, and interactive fixed effects estimates obtained by pooling the

data across cross-section units assuming homogeneous parameters. Section 5.4 contains results for models

that allow heterogeneity in the returns to schooling. Section 5.5 details the bias estimates from both pooled

and heterogeneous models. Finally, Section 5.6 conducts a more in-depth analysis of the nature and degree

of heterogeneity by examining the distribution of returns for various subgroups of the population.

5.1 Estimated Specifications

We estimate a total of seven specifications that are summarized in Table 2 and grouped as follows:

• Group 1 [Specification 1]: Cross-section OLS and 2SLS regressions of log annual earnings on

schooling to verify the “IV > OLS” result commonly found in empirical studies. We estimate the

specification

yi = c+ siβ +aiρ1 +a2
i ρ2 +ui

where ai denotes the age of individual i. The age variables are included to account for the actual

experience (we discuss this issue further below).

• Group 2 [Specifications 2-3]: Standard panel data specifications with person or time fixed effects to
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control for unobserved heterogeneity. When person fixed effects are included, it takes the form

yit = ci + sitβ +aitρ1 +a2
itρ2 +uit (6)

where ait denotes the age of individual i at period t. We also estimate specifications with time instead

of person fixed effects. Angrist and Newey (1991) consider a specification of the form (ignoring

demographic controls)

yit = ci +δt + sitβ + peitρ1 + pe2
itρ2 +uit

where peit denotes potential experience and is computed as peit = ait − sit − 6, where they define

sit as the highest grade completed. They estimate a reduced form schooling effect (expressed as a

function of sit and ait) based on the observation that the effect of schooling conditional on potential

experience is not identified. We present a derivation in Appendix B which shows that the effect of

actual experience can be accounted for by including age and its square as controls as in (6).

• Group 3 [Specifications 4-5]: This group contains specifications that include interactive fixed effects

while assuming that the regression coefficients are homogeneous. The nesting model takes the form

yit = ci + sitβ +aitρ1 +a2
itρ2 +λ

′
i ft +uit

We also estimate specifications with time instead of person fixed effects.

• Group 4 [Specifications 6-7]: This group consists of specifications where the slope parameters are

allowed to be individual-specific. The general specification is given by

yit = ci + sitβi +aitρ1i +a2
itρ2i +λ

′
i ft +uit (7)

We also estimate specifications when the interactive fixed effects are excluded (OLSMG). We consider

the specification shown in (7) with person and interactive fixed effects, age controls, and individual-

specific parameters to be our preferred specification because it is the most flexible version and also

accounts for experience as discussed in Appendix B.
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Appendix D.1 shows that our empirical findings are robust to the inclusion of quadratic schooling

and/or quartic age variables (Murphy and Welch, 1990; Cho and Phillips, 2018) for all specifications de-

scribed above while Appendix D.2 shows the results to be robust to an alternative interpretation of the factor

structure in terms of time-varying returns to observable, time invariant individual-specific characteristics.

We have also estimated specifications 1 and 3 with demographic controls including race, Hispanic status,

foreign born status, marital status, state of residence during the SIPP survey and birth year. The results are

very similar and available upon request.

5.2 Cross-Section Estimates

Columns (1)-(4) of Table 3 present the cross-section OLS and 2SLS estimation results. Columns (1)-(2)

report findings based on the final sample as summarized in Table 1, Panel B, column (5). OLS yields an

estimated effect of about 9.2 percent while the corresponding 2SLS point estimate, using the interactions

of quarter of birth with year of birth as instruments, is about 13.4 percent. A similar pattern is observed in

columns (3)-(4) for the comparison sample without the earnings-in-school restriction as described in Table

1, Panel B, column (2), with the 2SLS point estimate exceeding the OLS point estimate by about 45 percent.

Overall, these findings are in accordance with the literature summarized in Card (2001) which indi-

cates OLS estimates generally range from 5 to 10 percent, while 2SLS estimates generally range from 10 to

16 percent, and demonstrates the robustness of the “IV>OLS” result across different datasets and instrument

sets. For instance, the seminal study by Angrist and Krueger (1991) finds, based on the 1920-29 birth cohort

using data on men from the 1970 Census, an OLS estimate of about 7 percent and a 2SLS estimate of about

10 percent when controlling for age and its square, race, marital status and urban residence.

5.3 Pooled Estimates

The results from OLS and 2SLS estimation using panel data over 1978-2011 are presented in Table 3,

columns (5)-(7). Similar in spirit to the cross-section analysis, the OLS point estimates are smaller than the

2SLS point estimates across specifications. Columns (5)-(7) also report the results of Pesaran’s (2015) CD

test for the presence of cross-section dependence applied to the residuals for each estimated specification.24

24The test is based on estimated pairwise correlation coefficients between the pooled OLS/2SLS residuals for each pair of
cross-section units. The test has a standard normal asymptotic distribution under the null hypothesis of no cross-section dependence.
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In all cases, the test provides evidence against no cross-section dependence (at the 1% level) which further

motivates the use of the interactive fixed effects estimators.

Table 4 reports the results from estimating pooled specifications with interactive fixed effects. The

estimators included are the IFE, CCEP and CCEP-2 estimators. Irrespective of whether one controls for

interactive effects using principal components or cross-section averages of the observed variables, the point

estimates are smaller in magnitude than the OLS and 2SLS estimates reported in Table 3. For instance,

the IFE point estimate with time fixed effects is about 2.6 percent while the corresponding OLS and 2SLS

estimates are about 10.5 percent and 12.7 percent, respectively. Under the assumption that the interactive

effects specification represents the true model, the pattern of results suggests that the OLS and 2SLS

estimates are both upward biased, with the magnitude of the 2SLS bias exceeding the OLS bias. This is

consistent with the premise that the IV approach suffers from flawed instruments that are correlated with

unobserved abilities or skills, which the interactive fixed effects specifications can account for. The CCEP

point estimates are slightly larger than the IFE estimates reflecting the difference in how the unobserved

common factors are accounted for in the two approaches. However, the CCEP-2 estimates that employ the

estimated factors are closer to the IFE estimates.

5.4 Mean Group Estimates

Table 5 presents results from estimating the specifications 6-7 in Table 2 that allow the slope parameters to

be individual-specific. In addition to the CCEMG, CCEMG-2 and IFEMG estimators, we also include the

OLSMG estimator that entails taking the average of the individual-specific time series OLS regressions of

log earnings on a constant, age controls, and schooling. Note that a mean group 2SLS estimate cannot be

computed since the instruments are time-invariant. To confirm the presence of heterogeneity, Table 5 also

reports the results from two slope homogeneity tests recently proposed by Ando and Bai (2015) and Su and

Chen (2013).25 Both tests provide evidence against the null of slope homogeneity at the 1% level.

Consistent with the foregoing pooled results, when the interactive effects are ignored, the OLSMG

point estimate of the return to schooling is larger (7.8 percent). The one-step and two-step CCE approaches
25The Ando and Bai (2015) test is based on the (scaled) difference between the individual-level estimates and the IFEMG

estimate while the Su and Chen (2013) test is based on the Lagrange Multiplier (LM) principle that utilizes IFE residuals computed
under the null of slope homogeneity. Both tests have a standard normal asymptotic null distribution. We refer the reader to the
original articles for details.
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yield similar estimates of about 4.4 and 4.1 percent, respectively, which is larger relative to the IFE point

estimate of the average marginal returns to schooling (2.8 percent). Given that the mean group estimates

exceed the corresponding pooled estimates for all three approaches, we should expect a negative correla-

tion between the individual-level estimate β̂i and the weight on individual i′s return ωi according to the

heterogeneity bias analysis in Appendix A. Indeed, the IFE-based correlation was estimated to be -0.003,

while the corresponding one and two-step CCE correlation was estimated as -0.005 and -0.017, respectively.

The pattern of findings for the estimated schooling effect obtained from the heterogeneous factor models

therefore suggests that ignoring potential heterogeneity is likely to induce an downward bias in the parameter

estimates. We also computed the CD test for cross-section dependence based on the OLSMG estimate and

found evidence against no cross-section dependence for both specifications at the 1% level.26

5.5 Bias Estimates

Since the interactive effects framework allows for both individual slope heterogeneity and cross-sectional

dependence modeled through a common factor structure, it is possible to obtain estimates of the biases em-

anating from each of the two sources. We can use the decomposition β̂POLS− β̂IFEMG =
(

β̂POLS− β̂IFE

)
+(

β̂IFE − β̂IFEMG

)
, where β̂POLS denotes the OLS estimate assuming a homogeneous slope parameter. The

first term in the decomposition may be interpreted as the bias arising from ignoring the common factor

structure while the second term denotes the bias from ignoring potential parameter heterogeneity. The results

are shown in Figure 1. Based on the IFE results, we find β̂POLS− β̂IFEMG ' 4.9 percentage points, β̂POLS−

β̂IFE ' 5.7 percentage points, β̂IFE − β̂IFEMG ' −0.8 percentage points. A similar calculation using the

one-step CCE estimates yields β̂POLS− β̂CCEMG ' 3.3 percentage points, β̂POLS− β̂CCEP ' 3.9 percentage

points, β̂CCEP − β̂CCEMG ' −0.6 percentage points. For the two-step CCE method, we obtain β̂POLS −

β̂CCEMG−2 ' 3.6 percentage points, β̂POLS − β̂CCEP−2 ' 5.4 percentage points, β̂CCEP−2− β̂CCEMG−2 '

−1.8 percentage points. For all three estimation approaches, the omitted ability bias captured using the

interactive fixed effects structure appears to be the more important contributor to the total OLS bias.

26The results are available upon request.
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5.6 Heterogeneity Analysis

This section examines the extent of heterogeneity in individual-level returns. We focus on the differences

between the OLS and factor model (FM, henceforth) estimates pertaining to distributional characteristics of

the individual returns, and differences in mean returns across and within subgroups. Most existing studies

assume that the return to schooling is the same for all individuals, but there are exceptions (Harmon et al.,

2003; Henderson et al., 2011; Koop and Tobias, 2004; Li and Tobias, 2011). The results for heterogeneity

across and within subgroups discussed below are most comparable to the results from Henderson et al.

(2011). They use cross-section nonparametric kernel regression methods to study heterogeneity in returns,

but their method does not address omitted ability bias.

5.6.1 Distribution of Individual Returns

Figure 2 plots the distribution of individual returns for each estimator based on kernel density plots.27

There are clearly large differences in returns across individuals. Most of the density associated with the

heterogeneous OLS model falls between approximately a negative 50 percent return and a positive 50 percent

return. The FMs clearly shift the distribution to the left, which is consistent with evidence that the FMs are

removing positive ability bias from the OLS estimates. The FM estimates place greater density immediately

around the modal return, which is illustrated by the height of the density plots compared to OLS.

The most striking result from the figure is that each of the estimators shows a considerable fraction

of individuals with negative returns to schooling. Overall, 39.2 percent of individuals have negative returns

in the heterogeneous OLS model, 46.2 percent in the heterogeneous IFE model, 42.8 percent in the het-

erogeneous CCE model, and 44.2 percent in the heterogeneous CCE-2 model as shown in Table 5. These

percentages are larger than the estimate in Henderson et al. (2011), who find that 15.2 percent of individuals

who are White have negative returns to schooling. Heckman et al. (2017) and Prada and Urzua (2017), who

use ability proxies from the NLSY to address ability bias, find fractions of negative returns between the

estimate in Henderson et al. (2011) and our estimates.

27The kernel density plots are based on a standard normal (Gaussian) kernel with a bandwidth of 0.5.
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5.6.2 Across-Group Heterogeneity

Table 6 reports the mean and variance of the individual returns separately by several subgroups: race (White,

Black, other race), Hispanic status, foreign born status, birth cohort (born before 1950, born 1950-1954,

born 1955-1959, born after 1959), and highest education level completed.28,29 Mean returns for individuals

who are non-White are statistically tested against the mean for individuals who are White. For the other

subgroups, the mean for each group is statistically tested against the mean for the group listed directly above

it within each panel of the table. Based on the OLSMG model, the mean return to schooling is statistically

larger for individuals (1) who are White compared to Black; (2) born in later birth cohorts; (3) with a high

school degree compared to some college; (4) with a bachelor’s degree compared to some college; (5) with a

bachelor’s degree compared to a graduate degree.

Mean individual returns from the FMs are generally smaller than those from the OLSMG model for

every subgroup, which is consistent with the main results discussed in the previous sections. Further, the FM

estimates show there are no statistically significant differences by race. Similar to the OLSMG results, the

FM estimates indicate the largest mean return for individuals who ultimately stop at high school, followed

by individuals whose highest achievement is a bachelor’s and a graduate degree, respectively.

The statistically larger returns for more recent birth cohorts, found across all four heterogeneous

models, is consistent with evidence that returns to schooling have risen over time (Card and Lemieux, 2001).

In contrast to Henderson et al. (2011), which suggests diminishing marginal returns to years of schooling

at least until graduate school, both OLSMG and FM results are more suggestive of “sheepskin effects”,

i.e., if the value of additional years of school is partly related to the value of degree attainment rather than

knowledge obtained in each year, then returns may be larger for individuals who complete bachelor’s and

graduate degrees than for individuals who drop out of college (Hungerford and Solon, 1987; Jaeger and

Page, 1996; Layard and Psacharopoulos, 1974).30

28The CCE model from Pesaran (2006) makes a random coefficients assumption on the individual-level returns. This assumption
only affects the CCE standard errors and therefore analysis of the mean and variance of individual-level returns by particular
characteristics is feasible without violating assumptions of the model.

29Due to the limited sample size, the results of non-white, Hispanic, and foreign born individuals should be interpreted with
caution. It is possible that these groups in our sample have unique attributes and are not representative of the rest of the population
or that we lack the statistical power to detect significant differences.

30The heterogeneity results across education groups are also consistent with the quadratic schooling specifications entertained
in Appendix D.1 where the marginal return to schooling depends on the level of schooling. The findings based on the more general
specifications for schooling are shown to be qualitatively similar to those for the linear schooling specifications (see Tables D1-D3).

22



5.6.3 Within-Group Heterogeneity

The heterogeneous models also allow for the analysis of heterogeneity within subgroups. Table 6 shows

the variance of the individual returns within each subgroup. The FM estimates show mostly larger variance

than OLSMG for every subgroup. Both FM and OLSMG estimates show interesting patterns of the relative

variance across subgroups that are worth noting: (1) The results generally show larger variance for more

recent birth cohorts; (2) Evidence also suggests larger variance for individuals who only obtain a high

school degree than any other education level.

Table 7 reports the 25th, 50th, and 75th percentiles of the distribution of individual returns by sub-

group. The FM estimators generally show smaller returns at each percentile, again consistent with previous

results. The difference between the 25th and 75th percentiles is often larger for OLSMG than the FMs.

While this appears inconsistent with the larger FM variance in Table 6, it can be reconciled by analyzing

the distributional plot in Figure 2. The FM estimators place relatively more density immediately around the

mode than OLS, which produces a smaller range between the 25th and 75th percentiles than OLS. But the

FM estimators also have longer right tails than OLS, which increases the overall variance.

6 Conclusion

This study explores the viability of an interactive fixed effects approach to estimating the returns to schooling

employing a large panel dataset that links survey data with tax and benefit information obtained from

administrative records. SIPP provides longitudinal education information, while administrative records from

the IRS and SSA provide a long history of high-quality earnings data. The generality of the interactive fixed

effects approach over most existing approaches is apparent in at least three dimensions: (1) Unobserved

ability is allowed to be multidimensional where each component is characterized by its own contribution

to earnings with skill prices that can vary over time; (2) The endogeneity of schooling is accounted for

through estimation of or proxying for the skill prices that is made possible by the high-dimensional nature

of the the panel without the need to resort to external instruments or proxies for ability; (3) Individual-level

heterogeneity in the returns to schooling can be accommodated that allows us to simultaneously address the

twin sources of bias that can arise due to unmeasured skills (the omitted variable bias) and assuming that
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the marginal returns to schooling are homogeneous across individuals.

The estimates from our preferred specification indicate considerably lower average marginal returns to

schooling compared to traditional methods such as OLS or 2SLS. While both aforementioned sources of bias

contribute to the aggregate least squares bias, our estimates point to a relatively more important role for the

bias induced by omission of time-varying returns to skills. The two biases operate in the opposite direction

serving to explain the gap in the heterogeneous interactive fixed effects estimates and the homogeneous panel

OLS estimates. Our subgroup heterogeneity analysis suggests larger returns for individuals born in more

recent years, the presence of “sheepskin effects” so that degree attainment can have an important impact in

determining the value of additional years of schooling, and considerable within-group heterogeneity.

Several extensions of our analysis are in order. First, it would be interesting to investigate the extent of

heterogeneity in returns at different quantiles of the earnings distribution using the quantile interactive effects

approach recently developed by Harding and Lamarche (2014). Second, while our results indicate important

differences both across and within subgroups, our sample only includes men. Analysis of heterogeneity

from a gender standpoint is a promising avenue for future research. Third, our paper only considers cross-

sectional heterogeneity but as the nonparametric analysis of Henderson et al. (2011) documents, returns

vary not only across individuals but also across time. A limitation of our analysis in this context is that

splitting the sample by time periods would leave us with relatively few observations in each subsample

(splitting by, say, half would imply a time series dimension of seventeen for each subsample) to estimate the

individual-specific parameters. Fourth, our analysis assumes that the skill prices are homogeneous across

individuals although they are allowed to vary over time. Heckman and Scheinkman (1987) find evidence

in favor of a model where skill prices are sector-specific which suggests the presence of a grouped factor

structure for earnings which allows heterogeneity in skill prices across sectors of the economy but possibly

homogeneous for individuals within a particular sector. We leave analyses of these and related issues as

possible directions for further research.
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Figure 1: Bias Decomposition of Pooled OLS Estimate

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard File.
Note: The darkest shaded bar for each estimator represents the pooled OLS estimate with person fixed effects and age

controls, corresponding to column (5) in Table 3. We use the decomposition β̂POLS − β̂IFEMG =
(
β̂POLS − β̂IFE

)
+

(
β̂IFE − β̂IFEMG

)
to estimate the ability and heterogeneity bias, where β̂POLS denotes the OLS estimate assuming

a homogeneous slope parameter. The same calculations are applied using CCE and CCE-2 estimates.

Figure 2: Distribution of Marginal Returns to Schooling

Note: Each line is a kernel density plot of individual returns based on the heterogeneous model for the given
estimator, based on a Gaussian kernel with a bandwidth of 0.5. Results are based on the specification in Table 5.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
Baseline Plus Positive Plus Positive Plus Annual Plus ≥ One
Sample Earnings DER Earnings Minimum Schooling Change

After Schooling 1978-2011 Earnings During 1978-2011

A. Balanced Panel Sample

Annual Earnings 36,620 50,420 50,740 55,030 55,000
(109,200) (95,450) (97,170) (110,200) (80,490)

Years of School 13.55 14.28 14.19 14.19 14.81
(2.31) (2.11) (2.06) (2.05) (2.05)

Age 40.16 39.53 40.21 41.15 39.32
(10.94) (10.86) (10.79) (10.61) (10.6)

Black 0.085 0.060 0.059 0.052 0.049
(0.280) (0.239) (0.236) (0.222) (0.216)

Other Race 0.045 0.032 0.023 0.022 0.024
(0.208) (0.175) (0.151) (0.147) (0.160)

Hispanic 0.073 0.038 0.035 0.032 0.037
(0.260) (0.190) (0.184) (0.178) (0.191)

Foreign Born 0.089 0.040 0.026 0.027 0.033
(0.285) (0.195) (0.158) (0.164) (0.177)

Married 0.684 0.727 0.748 0.793 0.760
(0.465) (0.445) (0.434) (0.406) (0.428)

Birth Year 1954 1955 1954 1953 1955
(4.83) (4.66) (4.49) (4.04) (4.011)

Observations 1,609,000 744,000 624,000 401,000 123,000

B. 1990 Cross Section Sample

Annual Earnings 34,800 44,340 45,520 49,400 47,230
(36,610) (38,750) (39,420) (43,860) (38,610)

Years of School 13.61 14.36 14.25 14.21 14.87
(2.32) (2.09) (2.05) (2.05) (2.03)

Age 35.66 35.03 35.71 36.65 34.82
(4.83) (4.66) (4.49) (4.04) (4.01)

Black 0.084 0.059 0.059 0.050 0.056
(0.280) (0.239) (0.236) (0.222) (0.216)

Other Race 0.044 0.032 0.024 0.021 0.028
(0.208) (0.175) (0.151) (0.147) (0.160)

Hispanic 0.074 0.036 0.035 0.033 0.042
(0.260) (0.190) (0.184) (0.178) (0.191)

Foreign Born 0.088 0.039 0.024 0.029 0.028
(0.285) (0.195) (0.158) (0.164) (0.178)

Married 0.716 0.773 0.784 0.792 0.833
(0.452) (0.423) (0.410) (0.380) (0.392)

Birth Year 1954 1955 1954 1953 1955
(4.83) (4.66) (4.49) (4.04) (4.01)

Observations 47,500 22,000 18,500 12,000 3,600

Source: SIPP respondents linked to IRS and SSA data in the U.S. Census Bureau Gold Standard File.
Note: Each column reports averages and standard deviations (in parentheses) for the sample specified in the column and
table panel. Column (1) starts with a baseline sample. Columns (2)-(5) sequentially add additional sample criteria until
the final sample is shown in column (5). Table Panel A shows the balanced panel samples. Panel B shows cross-section
samples based on the 1990 cross-section values of the balanced panel samples. The number of observations and all other
statistics are rounded according to U.S. Census Bureau disclosure avoidance rules. Annual earnings are adjusted for
inflation to 1999 dollars. See section 4.2 for additional details.
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Table 2: Summary of Estimated Specifications

Specification Controls Estimator

1. yi= c+ siβ + aiρ1+a2i ρ2+ui age controls CSOLS, CS2SLS
2. yit= ci+sitβ + aitρ1+a2itρ2+uit person fixed effects, age controls POLS
3. yit= δt+sitβ + aitρ1+a2itρ2+uit time fixed effects, age controls POLS, P2SLS
4. yit= ci+sitβ + aitρ1+a2itρ2+λ′

ift+uit person and interactive fixed effects, age controls IFE, CCEP, CCEP-2
5. yit= δt+sitβ + aitρ1+a2itρ2+λ′

ift+uit time and interactive fixed effects, age controls IFE, CCEP, CCEP-2
6. yit= ci+sitβi+aitρ1i+a

2
itρ2i+uit person fixed effects, age controls OLSMG

7. yit= ci+sitβi+aitρ1i+a
2
itρ2i+λ

′
ift+uit person and interactive fixed effects, age controls IFEMG, CCEMG, CCEMG-2

Note: The estimators are abbreviated as follows: (1) CSOLS: Cross-section ordinary least squares; (2) CS2SLS: Cross-section two
stage least squares; (3) POLS: Panel ordinary least squares; (4) P2SLS: Panel two stage least squares; (5) IFE: pooled interactive
fixed effects estimator [Bai, 2009]; (6) IFEMG: mean group interactive fixed effects estimator [Song, 2013]; (7) CCEP: common
correlated effects pooled estimator [Pesaran, 2006]; (8) CCEMG: common correlated effects mean group estimator [Pesaran, 2006];
(9) OLSMG: mean group ordinary least squares estimator; (10) CCEP-2: two-step CCEP estimator [Pesaran, 2006]; (11) CCEMG-
2: two-step CCEMG estimator [Pesaran, 2006].

Table 3: Cross-Section and Panel OLS and 2SLS Estimates of the Return to Schooling for Males

(1) (2) (3) (4) (5) (6) (7)
Cross-Section Comparative Sample Panel

OLS 2SLS OLS 2SLS OLS OLS 2SLS

Years of School 0.092*** 0.134*** 0.095*** 0.138*** 0.077*** 0.105*** 0.127***
(0.004) (0.025) (0.002) (0.035) (0.005) (0.003) (0.016)

Age & Age-Squared Yes Yes Yes Yes Yes Yes Yes
Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 9.19 6.10 184.9
CD Test Stat. 130 7.26 5.66
Observations 3,600 3,600 22,000 22,000 123,000 123,000 123,000

Note: The dependent variable is the log of annual W-2 earnings and self-employment earnings. Columns (1)-
(4) are based on a cross-section in 1990. The comparative sample used in columns (3)-(4) is shown in Table
1 Panel B column (2). Years of school is instrumented for with quarter of birth indicator variables interacted
with year of birth indicator variables in columns (2), (4) and (7). Standard errors are shown in parentheses and
heteroskedasticity-robust for cross-section and clustered at the person level for panel. Significance is as follows:
one-percent=***, five-percent=**, and ten-percent=*.
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Table 4: Common Factor Model Estimates of the Return to Schooling for Males - Pooled Model

(1) (2) (3) (4) (5) (6)
IFE IFE CCEP CCEP CCEP-2 CCEP-2

Years of School 0.020*** 0.026** 0.038*** 0.037*** 0.023*** 0.024***
(0.003) (0.003) (0.004) (0.006) (0.004) (0.004)

Age & Age-Squared Yes Yes Yes Yes Yes Yes
Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 123,000 123,000 123,000 123,000 123,000 123,000

Note: Columns (1)-(2) are based on Interactive Fixed Effects (IFE) (Bai, 2009) with 8 and
7 factors, respectively, selected by the ICp1 procedure in Bai and Ng (2002). Columns (3)-(4)
are based on Common Correlated Effects pooled (CCEP) (Pesaran, 2006). Columns (5)-(6)
are based on the two-step CCE procedure with 7 and 8 factors, respectively, selected by the
ICp1 procedure in Bai and Ng (2002) applied to residuals based on the CCEP estiamtes. IFE
and CCE standard errors are calculated following Bai (2009) and Pesaran (2006), respectively.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*.

Table 5: Common Factor Model Estimates of the Return to Schooling for Males - Heterogeneous
Model

(1) (2) (3) (4)
OLSMG IFEMG CCEMG CCEMG-2

Years of School 0.078*** 0.028*** 0.044*** 0.041***
(0.006) (0.003) (0.006) (0.006)

Age & Age-Squared Yes Yes Yes Yes
Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 34.19 21.6 21.48
Ando-Bai Slope Test 5324 1422 -73.63
Observations 123,000 123,000 123,000 123,000

Percent of individuals with negative returns 0.392 0.462 0.428 0.442

Note: The panel OLS, IFE, CCEP, and CCEP-2 estimators from Table 3 and 4 are replaced
with versions that allow regression coefficients to vary across individuals (Pesaran, 2006; Pesaran
and Smith, 1996; Song, 2013). The individual-level regression coefficients are then averaged
across all individuals to produce a “mean group” (MG) result. IFEMG estimates are based on
4 factors for columns (2), selected by the ICp1 procedure in Bai and Ng (2002). Two-step CCE
estimates are based on 4 factors for columns (4), selected by the ICp1 procedure in Bai and Ng
(2002) applied to residuals based on the CCEMG estimates. The Su-Chen and Ando-Bai slope
homogeneity tests are based on Su and Chen (2013) and Ando and Bai (2015).
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A Heterogeneity Bias Derivations

Heterogeneity bias arises when one estimates a pooled specification when the regression coefficients are

in fact heterogeneous across the cross-section units. To analyze this source of bias, we consider the IFE

estimator of Bai (2009). We can write (1) as

Yi = Siβi +Fλi +Ui (A.1)

with Yi,Si,Ui being (T × 1) vectors defined as Yi = (yi1, ...,yiT )
′, Si = (si1, ...,siT )

′, Ui = (ui1, ...,uiT )
′ and

F = ( f1, ..., fT )
′ being the (T × r) matrix of common factors. Here we interpret yit (sit) as the part of log

wages (schooling) unexplained by the controls wit and person/time fixed effects.

The IFE estimator is given by

β̂IFE =

(
N

∑
i=1

S′iMF̂Si

)−1( N

∑
i=1

S′iMF̂Yi

)
(A.2)

where MF̂ = IT − F̂
(
F̂ ′F̂

)−1 F̂ ′, and F̂ is the principal components (PC) estimate of F .

Under the heterogeneous model (A.1), we can write (A.2) as

β̂IFE =

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂ (Siβi +Fλi +Ui) =

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂

(
Siβi +(F− F̂)λi + F̂λi +Ui

)
=

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂Siβi +

(
∑

i
S′iMF̂Si

)−1(
∑

i
S′iMF̂(F− F̂)λi +∑

i
S′iMF̂Ui

)

'
N,T large

(
∑

i
S′iMF̂Si

)−1

∑
i

S′iMF̂Siβi

where the approximation in the last line holds since the other terms are negligible for large N,T [Bai, 2009].

This gives

β̂IFE '
N,T large

∑
i

ωiβi (A.3)

where ωi = (∑i S′iMF̂Si)
−1 S′iMF̂Si is the weight on the individual i’s return (note that ∑i ωi = 1). This
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suggests that β̂IFE is likely to exceed β̂IFEMG (since β̂IFEMG is an estimate of N−1
∑i βi) if there exists

positive correlation between βi and ωi, i.e., marginal returns are higher for those individuals who have higher

time variation in the unexplained portion of schooling. This can be verified empirically by computing the

cross-sectional correlation between β̂i (the individual-specific IFE estimate) and ωi.

B Accounting for Experience

Consider the pooled specification

yit = ci + sitβ + eitρ1 + e2
itρ2 +λi

′ ft +uit (A.4)

where eit denotes actual experience and sit denotes schooling. Let eit = ei0+ t, where ei0 is initial experience

and t is the time trend. Therefore,

yit = ci + sitβ +(ei0 + t)ρ1 +(ei0 + t)2
ρ2 +λi

′ ft +uit

or,

yit = (ci + ei0ρ1 + e2
i0ρ2)+(2ei0ρ2)t +(ρ1t +ρ2t2)+ sitβ +λi

′ ft +uit

or,

yit = ρ̃1i + ρ̃2it + δ̃t + sitβ +λi
′ ft +uit (A.5)

where

ρ̃1i = ci + ei0ρ1 + e2
i0ρ2, ρ̃2i = 2ei0ρ2

δ̃t = ρ1t +ρ2t2

Thus, from (A.5) in the pooled model, besides time fixed effect, we should include person fixed effects and

person-specific linear trend, which is equivalent to a pooled model that includes person fixed effects, age

and age-squared terms instead of the person-specific linear trend.
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In the heterogeneous model,

yit = ci + sitβi + eitρ1i + e2
itρ2i +λi

′ ft +uit

or

yit = ρ̆1i + ρ̆2it +ρ2it2 + sitβi +λi
′ ft +uit (A.6)

where

ρ̆1i = ci + ei0ρ1i + e2
i0ρ2i, ρ̆2i = ρ1i +2ei0ρ2i

From (A.6), we should include person fixed effects and person-specific quadratic trend, which is equivalent

to a heterogeneous specification that includes person fixed effects, age and age-squared terms instead of the

person-specific quadratic trend.

C Data: Schooling Variable Construction

We construct a longitudinal years of schooling variable based on the SIPP education information that

includes highest education level completed (‘no high school degree’, ‘high school degree’, ‘some college’,

‘college degree’, and ‘graduate degree’), the year during which high school was completed, the year during

which post-high school education began, the year during which post-high school education ended, and

the year during which a bachelor’s degree was earned. First, individuals were assigned one of the five

highest-level-completed values for each year.31 All individuals were assigned ‘no high school degree’ before

the year they graduated high school and ‘high school degree’ beginning in their graduation year. Individuals

whose highest completed level was ‘some college’ and thus did not obtain a bachelor’s degree were assigned

‘some college’ beginning in the year their post-high school education ended. Individuals who obtained at

least a college degree were assigned ‘college degree’ beginning in the year they obtained their bachelor’s

degree. Individuals who obtained a graduate degree were assigned ‘graduate degree’ beginning in the year

their post-high school education ended.32 Then, based on highest level completed at each year, individuals

31‘Some college’ includes anything less than a bachelor’s degree. Thus it includes both individuals with some years of college
but no degree and individuals with an associate’s degree.

32Note that the variable for the year post-high school education ended could be before, the same as, or after the year a bachelor’s
degree was earned. If a person started college but did not obtain a bachelor’s degree, then it indicates when the person dropped out
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were assigned a years of schooling value. Individuals with ‘no high school degree’ in a given year were

assigned 10 years of school, individuals with ‘high school degree’ were assigned 12 years, individuals

with ‘some college’ were assigned 14 years, individuals with ‘college degree’ were assigned 16 years, and

individuals with ‘graduate degree’ were assigned 18 years.33

Another approach is to measure actual years spent in school, regardless of completed education

levels. This is not feasible in the U.S. Census Bureau GSF as it is in some other datasets such as the

NLSY, although it is not obvious that this approach would be preferable: variation in years of school that

is independent of completed education levels (e.g., individuals who complete college in three versus five

years) might introduce more measurement error into the variable. However, we did want to attempt to

smooth the discrete jumps described above for two reasons. First, the scheme introduces measurement error

by explicitly missing some variation in years of school. For example, it misses the transition through high

school by only assigning 10 years for any year before high school degree completion. It also misses the

distinction between individuals working with a high school degree with versus without college experience,

because the years of schooling variable does not increase until the individual either finishes their post-high

school schooling or obtains a bachelor’s degree. Second, because we have to limit the main sample to

individuals with at least one change in schooling (and further limit to individuals with at least two changes

in schooling in Appendix D.1), this allows us to retain more individuals. We therefore make the following

two adjustments to smooth the years of schooling variable: (1) we change years of schooling from 10 to

11 the year before a high school degree was finished, which captures progression from 10th grade through

12th34; and (2) we change years of schooling from 12 to 13 beginning the year when an individual begins

their post-high school education, which captures the distinction between an individual working with a high

school degree with versus without college experience.35 Our main sample of analysis in Panel A column (5)

of Table 1 has the following distribution of within-person changes in years of schooling: 250 changes from

10 years to 11; 500 changes from 11 to 12; 900 changes from 12 to 13; 1,500 changes from 13 to 14; 1,100

or obtained a shorter degree. If a person obtained a bachelor’s and then stopped, then it is the same as the bachelor’s year variable.
If the person obtained a graduate degree, then it indicates when they finished graduate school.

33Assigning years of school based on highest level completed is common in the literature (e.g., Heckman, Lochner, and Todd,
2006; Henderson et al., 2011).

34Our sample is limited to individuals at least 16 years of age, so we do not expect to capture many individuals in grades earlier
than 10th.

35We also conducted our analysis using the non-smoothed version of the schooling variable and the results obtained were
qualitatively similar to those reported in the paper based on the smoothed version.
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changes from 13 to 16; and 900 changes from 16 to 18.

D Robustness Checks

D.1 Robustness to Alternative Specifications

In this section we discuss robustness of the main results to alternative specifications. Our main results are

based on a linear years of schooling and quadratic age specification. This specification is the traditional

model originating from Mincer (1974). However, numerous studies have indicated that this specification

may not be flexible enough and higher-order terms in schooling and/or experience may be needed (Murphy

and Welch, 1990; Heckman, Lochner, and Todd, 2006; Cho and Phillips, 2018). These papers provide

evidence supporting the use of up to a quadratic term in years of schooling and a quartic term in experience.36

The robustness of our main results in Tables 3-5 to the inclusion of a quadratic years of schooling

term and/or a quartic age term are shown in Tables D1-D3, respectively. The sample for specifications that

include a quadratic in years of schooling is further restricted to individuals with at least two changes in years

of schooling so that we can estimate quadratic terms for the individual-level regressions associated with the

heterogeneous models. The marginal returns shown in the tables for specifications with a quadratic years of

schooling term are evaluated at the mean level of schooling in the whole sample for the pooled models. For

the heterogeneous models, we compute each individual’s return based on their mean schooling, and then

average the returns across individuals. All of the results are very similar to those in the main text, suggesting

that our findings are not sensitive to the assumption of a linear relationship between schooling and earnings

or a quadratic relationship between age and earnings.

36Notably, however, Cho and Phillips (2018) find that the original Mincer specification is appropriate when no additional
explanatory variables are included beyond years of school and experience, as is the case in our specifications.
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Table D1: OLS and 2SLS Specification Robustness

(1) (2) (3) (4) (5) (6) (7)
Cross-Section Comparative Sample Panel

OLS 2SLS OLS 2SLS OLS OLS 2SLS

A. Quadratic Schooling and Quadratic Age

Years of School 0.078*** 0.124*** 0.092*** 0.112*** 0.069*** 0.093*** 0.101***
(0.006) (0.021) (0.002) (0.038) (0.007) (0.005) (0.017)

Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 3.12 6.10 188.3
CD Test Stat. 71.43 -2.13 -2.12
Observations 1,300 1,300 22,000 22,000 45,000 45,000 45,000

B. Linear Schooling and Quartic Age

Years of School 0.091*** 0.125*** 0.095*** 0.151*** 0.073*** 0.105*** 0.127***
(0.004) (0.027) (0.002) (0.035) (0.005) (0.003) (0.016)

Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 7.89 1.13 182.4
CD Test Stat. 136.9 7.18 5.68
Observations 3,600 3,600 22,000 22,000 123,000 123,000 123,000

C. Quadratic Schooling and Quartic Age

Years of School 0.077*** 0.122*** 0.092*** 0.134*** 0.060*** 0.092*** 0.100***
(0.006) (0.023) (0.002) (0.038) (0.007) (0.005) (0.017)

Person Fixed Effects Yes No No
Year Fixed Effects No Yes Yes
First-State F-Stat 2.58 1.13 184.19
CD Test Stat. 71.25 -2.31 -2.29
Observations 1,300 1,300 22,000 22,000 45,000 45,000 45,000

Note: Each table panel shows robustness of the results in Table 3 to extending the specification to include a
quadratic in years of schooling and/or a quartic in age. See Table 3 for additional details.
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Table D2: Common Factor Pooled Model Robustness

(1) (2) (3) (4) (5) (6)
IFE IFE CCEP CCEP CCEP-2 CCEP-2

A. Quadratic Schooling and Quadratic Age

Years of School 0.026*** 0.023*** 0.031*** 0.035*** 0.025*** 0.026***
(0.006) (0.006) (0.008) (0.008) (0.008) (0.007)

Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 45,000 45,000 45,000 45,000 45,000 45,000

B. Linear Schooling and Quartic Age

Years of School 0.020*** 0.026*** 0.037*** 0.036*** 0.024*** 0.024***
(0.003) (0.003) (0.004) (0.010) (0.004) (0.005)

Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 123,000 123,000 123,000 123,000 123,000 123,000

C. Quadratic Schooling and Quartic Age

Years of School 0.026*** 0.029*** 0.031*** 0.034*** 0.026*** 0.025***
(0.005) (0.005) (0.008) (0.009) (0.009) (0.007)

Person Fixed Effects Yes No Yes No Yes No
Year Fixed Effects No Yes No Yes No Yes
Observations 45,000 45,000 45,000 45,000 45,000 45,000

Note: Each table panel shows robustness of the results in Table 4 to extending the specifica-
tion to include a quadratic in years of schooling and/or a quartic in age. Columns (1)-(2) are
based on 7 and 7 factors in Panel A; 8 and 7 factors in Panel B; and 7 and 6 factors in Panel
C, selected by the ICp1 procedure in Bai and Ng (2002). Columns (5)-(6) are based on 7 and
8 factors in Panel A; 7 and 8 factors in Panel B; and 7 and 8 factors in Panel C, selected by
the ICp1 procedure in Bai and Ng (2002) applied to residuals based on the CCEP estimates.
See Table 4 for additional details.
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Table D3: Common Factor Heterogeneous Model Robustness

(1) (2) (3) (4)
OLSMG IFEMG CCEMG CCEMG-2

A. Quadratic Schooling and Quadratic Age

Years of School 0.101*** 0.030** 0.035** 0.025*
(0.013) (0.013) (0.014) (0.015)

Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 15.39 12.26 12.16
Ando-Bai Slope Test 4,009 1,331 -51.37
Observations 45,000 45,000 45,000 45,000

Percent of individuals with negative returns 0.432 0.489 0.482 0.471

B. Linear Schooling and Quartic Age

Years of School 0.067*** 0.023*** 0.030*** 0.029***
(0.006) (0.007) (0.006) (0.006)

Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 27.49 21.5 21.39
Ando-Bai Slope Test 7,536 1,724 -84.91
Observations 123,000 123,000 123,000 123,000

Percent of individuals with negative returns 0.410 0.466 0.464 0.472

C. Quadratic Schooling and Quartic Age

Years of School 0.087** 0.034*** 0.032** 0.030*
(0.013) (0.013) (0.014) (0.017)

Person Fixed Effects Yes Yes Yes Yes
Su-Chen Slope Test 20.35 12.26 12.21
Ando-Bai Slope Test 5,734 1,545 -57.41
Observations 45,000 45,000 45,000 45,000

Percent of individuals with negative returns 0.461 0.483 0.494 0.492

Note: Each table panel shows robustness of the results in Table 5 to extending the specification
to include a quadratic in years of schooling and/or a quartic in age. Column (2) is based on 3
factors in Panel A; 4 factors in Panel B; and 2 factors in Panel C, selected by the ICp1 procedure
in Bai and Ng (2002). Column (4) is based on 3 factors in Panel A; 3 factors in Panel B; and
3 factors in Panel C, selected by the ICp1 procedure in Bai and Ng (2002) applied to residuals
based on the CCEMG estimates. Specifications with a quadratic in years of schooling are based
on a sample of individuals with at least two changes in schooling, in order to identify quadratic
terms from individual-level regressions. See Table 5 for additional details.
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D.2 Time-Varying Returns to Demographics as Proxies for Interactive Fixed Effects

Our interpretation of the interactive fixed effects structure as capturing unobserved skills or abilities hinges

on the assumption that there are no suitable proxies to fully account for their effects. Alternatively, such

a structure could be potentially capturing time-varying returns to time invariant individual-specific charac-

teristics such as demographics, or these characteristics could serve as useful proxies for individual skills or

abilities. To investigate this possibility, we estimated the following specification with demographic-by-year

fixed effects, denoted d′iθt , by OLS:

yit = δt + sitβ +w′itγ +d′iθt + vit

The estimates, reported in columns (1)-(2) in Table D4 below, are only marginally smaller than those

reported in columns (5)-(6) in Table 3, which strengthens our interpretation that the interactive fixed effects

models capture unobservable skills/abilities that cannot be accounted for using observable characteristics.

Table D4: Time-Varying Returns to Demographics as Proxies for Interactive Fixed Effects

(1) (2)

OLS OLS

Years of School 0.066*** 0.098***
(0.003) (0.005)

Age & Age-Squared Yes Yes
Person Fixed Effects Yes No
Year Fixed Effects No Yes
Demo-by-Year Fixed Effects Yes Yes
CD test stat 23.37 7.79
Observations 123,000 123,000

Note: Columns (1)-(2) are identical to columns (5)-(6) in Table 3, except with demographic-by-year fixed effects included.
These additional fixed effects are intended to proxy for the interactive fixed effects structure. That is, whereas a general
version of the pooled interactive fixed effects approach estimates yit = δt + sitβ +w′itγ + λ ′i ft + uit , here we estimate yit =
δt + sitβ +w′itγ + d′iθt + vit . The demographic variables included in di are race, Hispanic status, foreign born status, marital
status, birth year, and state of residence in the SIPP survey.
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