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Disappointment at doing worse than expected can be a powerful emotion. This 
emotion may be particularly intense when the disappointed agent exerted effort in 
competing for a prize, thus raising her expectation of winning. Furthermore, a ratio-
nal agent who anticipates possible disappointment will optimize taking into account 
the expected disappointment arising from her choice.

In this paper we use a laboratory experiment to test whether agents are disappoint-
ment averse when they compete in a real effort tournament. In particular, we test 
whether our subjects are loss averse around reference points given by endogenous 
expectations that adjust to both an agent’s own effort choice and that of her rival. Pairs 
of subjects complete a novel computerized real effort task, called the “slider task,” 
which involves moving sliders across a screen. The First Mover completes the task, 
followed by the Second Mover, who observes the First Mover’s effort before choosing 
how hard to work.1 A money prize is awarded to one of the pair members based on 
the pair’s relative work efforts and some element of chance, which we control. After 

1 We use a sequential tournament to give clean identification, rather than because most competitive situations 
involve sequential effort choices.
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each repetition, the subjects are re-paired. We impose probabilities of winning the 
prize which are linear in the difference in the agents’ efforts, so the marginal impact of 
a Second Mover’s effort on her probability of winning does not depend on the effort 
of the First Mover she is paired with. Therefore, if agents care only about money and 
their cost of effort, the Second Mover’s work effort should not depend on the effort of 
the First Mover. However, as predicted by our model of disappointment aversion, the 
experimental data show a discouragement effect: the Second Mover shies away from 
working hard when she observes that the First Mover has worked hard, and tends to 
work relatively hard when she observes that her competitor has put in low effort. Thus, 
First and Second Movers’ efforts are strategic substitutes.

Our primary contribution is empirical. First, we offer evidence consistent with 
disappointment aversion from a reduced form linear random effects panel regres-
sion. More substantively, we exploit the richness of our experimental dataset to 
estimate the parameters of a structural model of disappointment aversion using the 
Method of Simulated Moments. This allows us to estimate the strength of disap-
pointment aversion on average and the extent of heterogeneity in disappointment 
aversion across the population. Goodness of fit analysis shows that the estimated 
model fits our data well.

Together with random variation in the monetary prize across pairs of subjects, 
the design of our slider task generates sufficient variation in behavior to enable 
us to estimate the structural parameters of our model of disappointment aversion. 
In particular, the slider task gives a finely gradated measure of performance over 
a short time scale. As the task takes only two minutes to complete, we can col-
lect repeated observations of the same Second Movers facing different prizes and 
First Mover efforts, while the fineness of the performance measure allows us to 
observe accurately how Second Movers respond to different prizes and First Mover 
efforts. The resulting panel data permit precise quantification of the distribution of 
the cost of effort and the strength of disappointment aversion across agents in the 
population.

The formal model that we test is a natural extension of disappointment aver-
sion to situations in which agents compete. Models of disappointment aversion 
(e.g., Bell 1985; Loomes and Sugden 1986; Delquié and Cillo 2006; and K​     o​szegi 
and Rabin 2006, 2007) build on the idea that agents are sensitive to deviations 
from what they expected to receive; in particular, agents are loss averse around 
their expected payoff, so losses relative to this expectation are more painful than 
equal-sized gains are pleasurable. We model expectations-based reference points 
as adjusting to an agent’s own effort choice and that of her rival: in the terminol-
ogy of K​     o​szegi and Rabin (2007), they are choice-acclimating. The endogeneity 
of an agent’s reference point is crucial: with loss aversion around a fixed refer-
ence point, even if given by a prior expectation, a Second Mover will continue to 
disregard First Mover effort.

Our empirical results thus address two important open questions in the literature 
on reference-dependent preferences: (i) what constitutes agents’ reference points?; 
and (ii) how quickly do these reference points adjust to new circumstances? Our 
analysis provides evidence that when agents compete they have reference points 
given by their expected monetary payoff and that an agent’s reference point adjusts 
essentially instantaneously to her own effort choice and to that of her competitor.
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Abeler et al. (2011) also provide reduced-form evidence consistent with choice-
acclimating reference-dependent preferences in the context of effort provision. 
Abeler et al. (2011) run a laboratory experiment in which subjects have a 50 per-
cent chance of being paid piece-rate and a 50 percent chance of receiving a fixed 
payment, and show that effort increases in the fixed payment. To the best of our 
knowledge, however, we are the first to estimate the strength of loss aversion around 
choice-acclimating reference points when agents exert effort. Furthermore, we are 
able to leverage our structural analysis to provide evidence that the expectation that 
acts as the reference point adjusts to the agent’s own choice of effort. In contrast, 
Abeler et al. (2011) do not distinguish between their choice-acclimating model and a 
more parsimonious model in which the reference point adjusts to the fixed payment 
but not the agent’s actual effort choice. Finally, we provide evidence that choice-
acclimating reference points are important in a different context to Abeler et al. 
(2011), namely one in which agents work to influence their probability of success. 
Such situations are common: in labor markets, workers often exert effort to increase 
their chances of winning promotions and bonuses; while agents also work to make 
success more likely in sports contests, examinations, patent races, and elections.

Complementary to our laboratory findings, Doran (2009), Crawford and Meng 
(2011), and Pope and Schweitzer (2011) find evidence of expectations–based refer-
ence-dependent preferences when cab drivers and professional golfers exert effort 
in the field.2 In particular, Crawford and Meng (2011) estimate the average strength 
of loss aversion for cab drivers around rational expectations–based daily income and 
hours targets. In contrast to our model, in these papers the reference point is taken to 
be fixed when the agents choose how hard to work, and so is not choice-acclimating. 
Evidence of expectations-based reference points in the absence of effort provision 
includes Loomes and Sugden (1987), and Choi et al. (2007), who study choices over 
lotteries; Post et al. (2008), who find evidence that reference points adjust during 
the course of the game show “Deal or No Deal”; Card and Dahl (2011), who show 
that the probability of domestic violence when an NFL football team loses depends 
on the extent to which the loss was expected; and Ericson and Fuster (2010), who 
find that the valuation placed on an endowed good depends on the probability that a 
trading opportunity will arise. The psychology literature also supports the thesis that 
agents’ emotional responses to the outcomes of gambles include disappointment 
and elation, that agents anticipate these emotions when choosing between gambles 
and that exerting effort, by increasing the likelihood of a good outcome, intensifies 
disappointment (Mellers, Schwartz, and Ritov 1999; van Dijk, van der Pligt, and 
Zeelenberg 1999).

Finally, our finding of a Second Mover discouragement effect adds to the existing lit-
erature on laboratory tournaments by showing that nonstandard preferences can move 
behavior away from that predicted by standard theory and by providing evidence of 
the impact of feedback during tournaments. Charness and Kuhn (2010) summarize 
the experimental literature. Bull, Schotter, and Weigelt (1987) study tournaments with 
an induced cost of effort; van Dijk, Sonnemans, and van Winden (2001) introduce 

2 An earlier literature in which reference points do not adjust to expectations explicitly also finds evidence of 
reference-dependent preferences in the field; for example, Camerer et al. (1997) study cab drivers and Fehr and 
Goette (2007) analyze bike messengers.
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real effort; while Berger and Pope (2009), and Eriksson, Poulsen, and Villeval (2009), 
consider feedback.

The rest of the paper is structured as follows. Section I describes the slider task 
and the design of the experiment. Section II develops our model of disappoint-
ment aversion when agents compete. Section III presents the empirical analysis. 
Section IV discusses alternative behavioral explanations of the discouragement 
effect. Section V concludes. Appendix A derives proofs not included in the main 
text. Appendix B provides further details about the structural estimation method and 
the model’s goodness of fit. Finally, Appendices C and D (in the online Appendix) 
lay out the instructions provided to the experimental subjects.

I.  Experimental Design

We ran six experimental sessions at the Nuffield Centre for Experimental Social 
Sciences (CESS) in Oxford, all conducted on weekdays at the same time of day 
in late February and early March 2009 and lasting approximately 90 minutes.3 
Twenty student subjects (who did not report Psychology or Economics as their 
main subject of study) participated in each session, with 120 participants in total. 
The subjects were drawn from the CESS subject pool, which is managed using the 
Online Recruitment System for Economic Experiments (ORSEE). The experimen-
tal instructions (Appendix C in the online Appendix) were provided to each subject 
in written form and were read aloud to the subjects. Seating positions were random-
ized. To ensure subject-experimenter anonymity, actions and payments were linked 
to randomly allocated Participant ID numbers. Each subject was paid a show-up fee 
of £4 and earned an average of a further £10 during the experiment (all payments 
were in Pounds sterling). Subjects were paid privately in cash by the laboratory 
administrator. The experiment was programmed in z-Tree (Fischbacher 2007).

A. The Slider Task

Before setting out the experimental procedure, we first describe the novel com-
puterized real effort task, which we call the “slider task,” that we designed for the 
purpose of this experiment.

The slider task consists of a single screen displaying a number of sliders. The 
number and position of the sliders on the screen does not vary across experimental 
subjects or across repetitions of the task. A schematic representation of a single 
slider is shown in Figure 1. When the screen containing the effort task is first dis-
played to the subject all of the sliders are positioned at 0, as shown for a single 
slider in Figure 1A. By using the mouse, the subject can position each slider at 
any integer location between 0 and 100 inclusive. Each slider can be adjusted and 
readjusted an unlimited number of times and the current position of each slider is 
displayed to the right of the slider. The subject’s “points score” in the task is the 
number of sliders positioned at 50 at the end of the allotted time. Figure 1B shows 

3 We also ran one pilot session without any monetary incentives whose results are not reported here.
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a correctly positioned slider. As the task proceeds, the screen displays the subject’s 
current points score and the amount of time remaining.

The number of sliders and task length can be chosen by the experimenter. In this 
experiment, we used 48 sliders and an allotted time of 120 seconds. The sliders were 
displayed on 22-inch widescreen monitors with a 1,680 by 1,050 pixel resolution. To 
move the sliders, the subjects used 800 dpi USB mice with the scroll wheels disabled.4 
Figure 2 shows a screen of sliders as shown to the subject in the laboratory. In this 
example, the subject has positioned three of the sliders at 50 and a points score of 3 
is shown at the top of the screen. A fourth slider is currently positioned at 33 and this 
slider does not contribute to the subject’s points score as it is not positioned correctly. 
To ensure that all the sliders are equally difficult to position correctly, the 48 sliders 
are arranged on the screen such that no two sliders are aligned exactly one under the 
other. This prevents the subject from being able to position the higher slider at 50 and 
then easily positioning the lower slider by copying the position of the higher slider.

The slider task gives a finely gradated measure of performance and involves little 
randomness; thus, we interpret a subject’s point score as effort exerted in the task. In 
Section III we see that with 48 sliders and an allotted time of 120 seconds, measured 
effort varies from 0 to 41, so the task gives rise to substantial variation in behav-
ior, and hence we can observe accurately how Second Movers respond to different 
prizes and First Mover efforts. As the task takes only two minutes to complete, we 
can collect repeated observations of the same Second Movers facing different prizes 
and First Mover efforts, allowing us to control for persistent unobserved hetero-
geneity. The resulting panel data enable us to use structural estimation to quantify 
precisely the distribution of the cost of effort and the strength of disappointment 
aversion across agents in the population.

The slider task also has a number of other desirable attributes: it is simple to com-
municate and to understand; it does not require or test preexisting knowledge; it is 
identical across repetitions; there is no scope for guessing; and as the task is com-
puterized, it is easy to implement and allows flexible real-time subject interactions.

B. Experimental Procedure

In every session, 10 subjects were told that they would be a “First Mover” and the 
other 10 that they would be a “Second Mover” for the duration of the session. Each 
session consisted of two practice rounds followed by 10 paying rounds.

In every paying round, each First Mover was paired anonymously with a Second 
Mover. Each pair’s prize was chosen randomly from {£0.10, £0.20, … , £3.90} and 
revealed to the pair members. The First and Second Movers then completed our 

4 The keyboards were also disabled to prevent the subjects from using the arrow keys to position the sliders.

Figure 1. Schematic Representation of a Slider

Panel A. Initial position                                                   Panel B. Positioned at 50

0                                                                                                 50
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slider task sequentially, with the Second Mover discovering the points score of 
the First Mover she was paired with before starting the task. As explained in 
Section IA, we used a slider task with 48 sliders and an allotted time of 120 sec-
onds. During the task, a number of pieces of information appeared at the top of 
the subject’s screen: the round number; the time remaining; whether the subject 
was a First or Second Mover; the prize for the round; and the subject’s points 
score in the task so far. If the subject was a Second Mover, she also saw the points 
score of the First Mover. Figure 2 provides an example of the screen visible to 
the Second Movers.

The probability of winning the prize for each pair member was 50 plus her own 
points score minus the other pair member’s points score, all divided by 100. Thus, 
we imposed winning probabilities linear in the difference of the points scores, with 
equal points scores giving equal winning probabilities, while an increase of 1 in the 
difference raised the chance of winning by 1 percentage point for the pair member 
with the higher points score. The probability of winning function was explained 
verbally and using Table 6. (See Appendix C in the online Appendix.) At the end of 
the round, the subjects saw a summary screen showing their own points score, the 
other pair member’s points score, their probability of winning the prize given the 
respective points scores, the prize for the round, and whether they were the winner 
or loser of the prize in that round.

After each paying round the subjects were re-paired according to the “no conta-
gion” matching algorithm of Cooper et al. (1996). This rotation-based algorithm 
ensures that not only do the same subjects never meet each other more than once, 

Figure 2. Screen Showing 48 Sliders

Note: The screen presented here is slightly squarer than the one seen by our subjects.
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but that each round is truly one-shot in the sense that a given subject’s actions in 
one round cannot influence, either directly or indirectly, the actions of other sub-
jects who the subject is paired with later on. The explanation to the subjects in the 
experimental instructions provides further detail.

Before starting the paying rounds, the subjects played two practice rounds to gain 
familiarity with the task and procedure and to give opportunities for questions. To 
prevent contamination, the subjects were made aware that during the practice rounds 
they were playing against automata who behaved randomly. At the end of each prac-
tice round, the subjects were informed of what their probability of winning would 
have been given the respective points scores, but were not told that they had won 
or lost in that round, and no prizes were awarded. We do not include the practice 
rounds in the econometric analysis.

II.  Theoretical Predictions

In this section, we provide a theoretical model of the behavior of a generic pair of 
First and Second Movers competing for a prize v in a particular round. After describ-
ing the model, we show that in the absence of disappointment aversion the Second 
Mover’s effort does not depend on the First Mover’s effort, while a disappointment 
averse Second Mover will respond negatively to the effort choice of the First Mover.

A. One-Shot Theory Model

Two agents compete to win a fixed prize of monetary value v > 0 in a rank-order 
tournament, choosing their effort levels sequentially. The First Mover chooses her 
effort level ​e​1​ from an action space  ⊆ [0, ​

_ e​ ] which can be discrete or continu-
ous. The Second Mover observes ​e​1​ before choosing her effort level ​e​2​ from . As 
noted in Section IA, we interpret a subject’s points score in the slider task as effort 
exerted.5 Agent i ’s probability of winning the prize ​P​i​ (​e​i​, ​e​j​) increases linearly in 
the difference between her own effort, ​e​i​ , and the other agent’s effort, ​e​j​ . Assuming 
symmetry of the probability of winning functions,

(1)	​ P​i​ (​e​i​, ​e​j​)  = ​ 
​e​i​  − ​ e​j​  +  γ

  _ 
2γ ​  ,

where we impose γ ≥ ​
_ e​ to ensure that ​P​i​ ∈ [0, 1].6 Throughout, we focus on the 

behavior of the Second Mover conditional on the First Mover’s effort, ​e​1​. Thus, we 
are able to abstract from any game-theoretic considerations, as the Second Mover 
faces a pure optimization problem given the First Mover effort that she observes.

5 Our use of the term “effort” therefore corresponds to the behavior of the agent (the number of correctly posi-
tioned sliders) rather than the associated cost of positioning the sliders.

6 Che and Gale (2000) call this a piece-wise linear difference-form success function. Note that for any First 
Mover effort ​e​1​ ∈ , the Second Mover’s probability of winning function is given by ​P​2​ = (​e​2​ − ​e​1​ + γ)/(2γ) for 
the whole range of ​e​2​ ∈  as ​e​1​ ≥ 0 and ​e​2​ ≤ ​

_ e​ ≤ γ so ​e​2​ ≤ γ + ​e​1​ and hence (​e​2​ − ​e​1​ + γ)/(2γ) ≤ 1, while ​e​1​ ≤ ​_ e​ ≤ γ and ​e​2​ ≥ 0 so ​e​2​ ≥ ​e​1​ − γ and hence (​e​2​ − ​e​1​ + γ)/(2γ) ≥ 0. In our experiment, we set ​
_ e​ = 48 and γ = 50.
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B. No Disappointment Aversion

Applying the canonical model in the tournament literature, the Second Mover’s 
utility ​U​2​ is separable into utility ​u​2​(​y​2​) from her tournament payoff ​y​2​ ∈ {0, v}, 
which we call her material utility, and her cost of effort ​C​2​(​e​2​), so

(2)	​U ​2​(​y​2​, ​e​2​)  = ​ u​2​(​y​2​)  − ​ C​2​(​e​2​).

This separability assumption in the canonical model is equivalent to saying that: 
(i) the cost of effort does not depend on whether the agent wins the prize; and 
(ii) when the monetary prize is awarded, the valuation placed on the prize is inde-
pendent of how hard the agent worked. The agent exerts effort in a two-minute 
interval before the outcome of the tournament is determined, justifying the first 
assumption. In relation to (ii), disappointment aversion is a microfounded explana-
tion of why agents might indeed care about efforts exerted when evaluating the prize 
(our model of disappointment predicts that the Second Mover’s value to winning 
relative to losing is increasing in her own effort).7

Separability implies that the Second Mover’s expected utility is given by

(3)  E​U​2​(​e​2​,​ e​1​)  =   ​P​2​(​e​2​,​ e​1​)​u​2​(v)  +  (1  − ​ P​2​(​e​2​,​ e​1​))​u​2​(0)  − ​ C​2​(​e​2​)

	 =  (​u​2​(v)  − ​ u​2​(0))(​ ​e​2​  − ​ e​1​  +  γ
  _ 2γ ​ )  + ​ u​2​(0)  − ​ C​2​(​e​2​).

As the winning probabilities are linear in the difference in efforts, the First Mover’s 
effort ​e​1​ has no effect on the marginal impact of the Second Mover’s effort ​e​2​ on her 
probability of winning. Thus, the Second Mover’s marginal utility with respect to 
her own effort does not depend on ​e​1​, giving the following result.

Proposition 1: In the canonical model without disappointment aversion the 
Second Mover’s optimal effort ​e​ 2​ *​ (or set of optimal efforts) does not depend on the 
First Mover’s effort ​e​1​.

Note that we have not imposed any concavity, continuity, or differentiability assump-
tions on ​u​2​(​y​2​) (and nor have we assumed anything about the shape of ​C​2​(​e​2​)). Thus, 
the result continues to hold if the Second Mover exhibits any degree of risk aversion 
over her monetary payoff, if she places a value on winning per se in addition to the 
value placed on the monetary payoff from winning (as ​u​2​(v) can incorporate this joy 
of winning), if she is inequity averse over monetary payoffs (Fehr and Schmidt 1999), 
or if she is loss averse around a fixed reference point (the last two follow as the utility 
to winning or losing can be redefined to incorporate a comparison to a fixed reference 

7 In their related work, Abeler et al. (2011) and Crawford and Meng (2011) make an equivalent separability 
assumption. In contrast to the standard labor literature where agents vary their hours of work, in our setting the time 
spent on the task is fixed and therefore only the intensity of effort can affect the valuation of the prize: thus standard 
complementarities or substitutabilities between leisure and consumption do not apply directly.
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point or to the payoff of the First Mover). The result also holds if ​u​2​(​y​2​) incorporates 
an impact of winning or losing on the utility function in any later tournaments, e.g., 
via changes in wealth or the reference point.

C. Disappointment Aversion

Models of disappointment aversion (e.g., Bell 1985; Loomes and Sugden 1986; 
Delquié and Cillo 2006; K​     o​szegi and Rabin 2006, 2007) build on the idea that 
agents are sensitive to deviations from their expectations, suffering a psychologi-
cal loss when they receive less than expected and experiencing elation when they 
receive more. Furthermore, agents anticipate these losses and gains when deciding 
how to behave.

We follow the literature in embedding disappointment aversion in a loss aversion-
type framework. Suppose that the Second Mover compares her material utility ​u​2​(​y​2​) 
to a reference level of utility ​R​2​, suffering losses when ​u​2​(​y​2​) is less than this refer-
ence point and enjoying gains when ​u​2​(​y​2​) exceeds the reference point. Specifically, 
total utility ​U​2​ is given by8, 9

(4)	​U ​2​(​y​2​, ​R​2​,​ e​2​)  = ​ u​2​(​y​2​)  + ​ 1​​u​2​(​y​2​)≥​R​2​​​G​2​(​u​2​(​y​2​)  − ​ R​2​)

	 + ​ 1​​u​2​(​y​2​)≤​R​2 ​​​L​2​(​u​2​(​y​2​)  − ​ R​2​)  − ​ C​2​(​e​2​),

where the loss function ​L​2​(x) < 0 for x < 0, the gain function ​G​2​(x) ≥ 0 for x > 0, 
and ​G​2​(0) = ​L​2​(0) = 0. The utility arising from the comparison of ​u​2​(​y​2​) to the ref-
erence point is termed gain-loss utility. The Second Mover is said to be loss averse 
if losses due to downward departures from the reference point are more painful 
than equal-sized upward departures are pleasurable, i.e., ​G​2​(x) < | ​L​2​(−x) | for all 
x > 0. The Second Mover is first-order loss averse if she is loss averse in the limit 
as the deviations from the reference point go to zero, i.e., ​lim​x↑0​ ​L​ 2​ ′ ​(x) > ​lim​x↓0​ ​G​ 2​ ′ ​(x), 
assuming differentiability of gain-loss utility except at the kink where x = 0.

Starting with Kahneman and Tversky (1979), most models of loss aversion take 
the reference point to be fixed exogenously, for example assuming it to be equal to 
the status quo. We noted above that the utility formulation (2) is flexible enough 
to incorporate loss aversion around a fixed reference point. Thus, a fixed reference 
point does not introduce any interdependence between the efforts of the First and 
Second Movers. (To see that Proposition 1 continues to hold, note that if ​u​2​(​y​2​) in 
(2) is redefined to include gain-loss utility, the analysis proceeds as before.)

8 The Prospect Theory of Kahneman and Tversky (1979) incorporates a loss averse value function defined only 
over losses and gains relative to the reference point, while we follow the disappointment aversion literature in defin-
ing total utility over both material utility and gain-loss utility arising from the comparison of material utility to the 
reference point.

9 By modeling each tournament as a one-shot interaction, we are assuming that our subjects frame each tour-
nament narrowly, i.e., they compare the outcome of each tournament to their reference point in isolation. In our 
setting, each interaction is one-shot and uncertainty is resolved immediately: at the end of each tournament, the 
subjects find out whether they won or lost and then get rematched with a new rival. Models and tests of loss aver-
sion generally incorporate narrow framing, either implicitly or explicitly (DellaVigna 2009) and the literature on 
narrow framing suggests that attitudes towards small gambles can only be explained by loss aversion together with 
the narrow framing of individual gambles (Barberis, Huang, and Thaler 2006).
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Instead of holding a fixed reference point, we assume that a disappointment averse 
Second Mover is loss averse around an endogenous reference point equal to her 
expected material utility given the effort levels that are actually chosen, so

(5)	​ R​2​  =  E[​u​2​(​y​2​) | ​e​2​, ​e​1​].

Thus, a Second Mover’s reference point will be sensitive to both the effort chosen by 
the First Mover and her own effort, and when optimizing the Second Mover under-
stands that her effort choice affects her reference point. Notice that the endogeneity 
of the expectation is crucial. If the Second Mover starts with a reference point equal 
to a prior expectation that is invariant to the effort levels that are actually chosen, the 
reference point is fixed so that, as explained above, Proposition 1 still holds. Instead, 
our reference point adjusts to the agents’ choices: in the terminology of K​     o​szegi and 
Rabin (2007), the reference point is choice-acclimating.10

To operationalize our model, we linearize material utility and gain-loss utility.11 
We assume that ​u​2​(​y​2​) = ​y​2​, so material utility is linear in money and the Second 
Mover’s reference point becomes her expected monetary payoff, i.e.,

(6)	​ R​2​  =  v​P​2​(​e​2​,​ e​1​).

Furthermore, we assume that the gain-loss utility arising from the comparison of 
​u​2​(​y​2​) to the reference point is piece-wise linear, with a constant slope of ​g​2​ in the gain 
domain and ​l​2​ in the loss domain. With piece-wise linearity, loss aversion implies that ​
l​2​ > ​g​2​, so losses are more painful than same-sized gains are pleasurable.12 Thus we 
define disappointment aversion as follows.13

Definition 1: A disappointment averse Second Mover is loss averse around her 
expected monetary payoff, so ​λ​2​ ≡ ​l​2​ − ​g​2​ , which measures the strength of disap-
pointment aversion, is strictly positive.

10 Technically our game is psychological as the Second Mover’s utility depends on her beliefs about the chosen 
efforts via the reference point. In particular, our game falls under the framework of a dynamic psychological game 
(Battigalli and Dufwenberg 2009) as utility depends on terminal node (ex post) beliefs, which are pinned down by 
the chosen efforts, so beliefs can update during the course of the game.

11 Given that the experimental stakes are small, we believe this comes at a low cost.
12 With piece-wise linearity, loss aversion and first-order loss aversion are equivalent. If ​l​2​ = ​g​2​, gains and losses 

relative to the reference point cancel out in expectation, so the agent acts as if she had standard preferences.
13 Our model of disappointment aversion directly extends the single-agent setup of Bell (1985) to our competi-

tive environment. Our formulation is also equivalent to that of Delquié and Cillo (2006) and the choice-acclimating 
model of K​     o​szegi and Rabin (2007, Section IV); it is straightforward to show that in a linear environment with only 
two outcomes, the reference lottery approach in those papers is equivalent to using a single reference point given by 
the endogenous expected payoff. We use the same parameterization as Bell (1985) and Delquié and Cillo (2006); 
Section IIIC6 explains the equivalence between our parameterization and that used by K​     o​szegi and Rabin (2007). 
Although in the same spirit, our model of disappointment is slightly different to that of Loomes and Sugden (1986) 
who do not allow a kink in utility, but instead use a disappointment/elation function that is nonlinear around the 
endogenous expected payoff. Finally, the K​     o​szegi and Rabin (2006) model does not predict a discouragement effect 
as in their “personal equilibrium” the reference point is taken to be fixed at the point of optimization.
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We can then express a disappointment averse Second Mover’s expected utility as

(7)    E​U​2​(​e​2​, ​e​1​)  = ​ P​2​(v  + ​ g​2​(v  −  v​P​2​)) 

	 +  (1  − ​ P​2​)(0  + ​ l​2​(0  −  v​P​2​))  − ​ C​2​(​e​2​)

	 =   v​P​2​  − ​ λ​2​v​P​2​(1  − ​ P​2​)  − ​ C​2​(​e​2​),

and we let

(8)	​ Λ​2​(​e​2​, ​e​1​)  ≡  −​λ​2​v ​P​2​(1  − ​ P​2​)

represent the extra term introduced into expected utility by disappointment aversion. 
We call ​Λ​2​ the Second Mover’s disappointment deficit as it is always negative for ​
λ​2​ > 0 (strictly negative for ​P​i​ ∉ {0, 1}). For a given prize v the disappointment defi-
cit is proportional to ​v​ 2​​P​2​(1 − ​P​2​), the variance of the Second Mover’s two-point 
distribution of monetary payoffs. A disappointment averse Second Mover dislikes 
variance in her monetary payoff as losses relative to her expected payoff loom larger 
than gains. (With risk aversion, agents care only about their probability of winning 
as there are only two possible outcomes.)

The variance is strictly concave in ​P​2​ and maximized at ​P​2​ = 1/2. When efforts are 
such that the Second Mover has zero probability of winning, the Second Mover has 
a reference point of zero and her realized payoff equals her reference point; she is 
never disappointed and never receives more than expected. Hence, her disappoint-
ment deficit is zero. Starting at zero, a small increase in her probability of winning 
leads to a large increase in the variance of her monetary payoff. Further increases in 
the probability of winning towards 1/2 lead to further yet smaller increases in the vari-
ance. At ​P​2​ = 1/2 the variance is at its highest so the disappointment deficit is at its 
most negative—irrespective of whether she wins or loses, the Second Mover’s real-
ized payoff is very different from her expected payoff. Starting at ​P​2​ = 1/2, increases 
in the probability of winning reduce the variance, initially by small amounts, and 
then by larger amounts as the probability of winning approaches 1.

For any value of the Second Mover’s effort, an increase in the First Mover’s 
effort reduces the Second Mover’s probability of winning. The variance there-
fore increases faster in ​P​2​ (when ​P​2​ < 1/2) or falls less fast in ​P​2​ (when ​P​2​ > 1/2), 
so the Second Mover has a lower marginal incentive to exert effort (given her 
effort always has the same marginal effect on her probability of winning). We 
thus have a discouragement effect, which is crucial to our identification strategy: 
a disappointment averse Second Mover responds negatively to the First Mover’s 
effort, so the harder the First Mover works, the more the Second Mover shies 
away from exerting effort. Thus, First and Second Mover efforts are strategic 
substitutes.14

14 It is straightforward to extend the proof of Proposition 2 to show that if ​λ​2​ were negative, the Second Mover 
would respond positively to the First Mover’s effort.
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Proposition 2: When the Second Mover is disappointment averse, higher First 
Mover effort discourages the Second Mover: the Second Mover’s optimal effort ​e​ 2​ *​ is 
always (weakly) decreasing in the First Mover’s effort ​e​1​.

Proof:
See Appendix AA.

Up to now we have imposed no assumptions on the shape of the cost of effort 
function. In order to derive an analytical expression for how the Second Mover 
responds to the First Mover’s effort, and to see how the slope of the reaction func-
tion changes in the value of the prize and the strength of disappointment aversion, 
we now assume a quadratic cost of effort function:

(9)	​ C​2​(​e​2​)  =  b​e​2​  + ​  c​e​ 2​ 
2​
 _ 

2
 ​ .

With this cost function, the Second Mover’s objective function will be everywhere 
convex or everywhere concave. With strict convexity, the Second Mover will always 
set effort at a corner. Instead we focus here on the case of strict concavity, which allows 
interior optima, showing that the discouragement effect becomes stronger as the Second 
Mover becomes more disappointment averse or the value of the prize goes up.

Proposition 3: Suppose a disappointment averse Second Mover has a quadratic 
cost function (given by (9)) and a strictly concave objective function, i.e., 2 ​γ​ 2 ​c 
− ​λ​2​v > 0. When the action space is continuous, the slope of the Second Mover’s 
reaction function in the interior is given by

(10)	​ 
d​e​ 2​ *​

 _ 
d​e​1​

 ​  = ​   − ​λ​2​v _  
2​γ​2​c  − ​ λ​2​v

 ​  <  0, 

which becomes strictly more negative in the strength of disappointment aversion ​λ​2​ 
and the value of the prize v. When the action space is discrete, the discrete analog of 
the reaction function behaves similarly.

Proof:
See Appendix AB.

These effects are intuitive. Referring back to (8) we see that the disappointment 
deficit term becomes more negative in the strength of disappointment aversion ​λ​2​ 
and the value of the prize v, so the Second Mover becomes more sensitive to First 
Mover effort as v and ​λ​2​ go up.

III.  Empirical Analysis

A. Overview and Sample Description

We use the dataset collected from the laboratory experiment described in Section I 
to test our theory of disappointment aversion. In Section IIIB we show in a reduced 
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form setting that, as predicted by our theory of disappointment aversion, Second 
Movers respond negatively to the effort choice of the First Mover they are paired 
with and that the strength of this effect is increasing in the value of the prize. In 
Section IIIC we use structural modeling to estimate the strength of disappointment 
aversion on average and the heterogeneity in disappointment aversion across the 
population. As outlined in the introduction and Section IA, our estimation strategies 
exploit identifying variation obtained from the properties of our slider task together 
with the experimental design.15

We analyze the behavior of Second Movers conditional on the effort choices of 
the First Movers. As noted in Section IIA, this allows us to abstract from any game-
theoretic considerations as the Second Movers face a pure optimization problem. 
This conditional analysis is sufficient for the purpose of identifying the presence and 
strength of disappointment aversion. Moreover, solving for the optimal behavior of 
the First Movers would require further assumptions concerning the First Movers’ 
beliefs about the unobserved characteristics and behavior of the Second Movers. 
We avoid these issues, together with the associated computational complexities and 
potential sources of misspecification, when performing a conditional analysis of the 
Second Mover effort choices.16

As explained in Section IA, we interpret the number of sliders correctly positioned 
by a subject within the allotted time, i.e., the points score, as the effort exerted by the 
subject in the task. While the slider task provides a finely gradated measure of effort, 
effort is still discrete. We emphasize that this discreteness is entirely unproblematic. 
Indeed, the above theoretical framework encompasses both discrete and continuous 
effort choices, and the testable implications of our theory of disappointment aversion 
apply irrespective of whether effort is discrete or continuous. In addition, as detailed 
below, discrete effort choices are easily accommodated in our structural model.

From the laboratory sessions we collected data on 60 First Movers and 60 Second 
Movers, each observed for 10 paying rounds, with re-pairing between rounds as 
detailed in Section IB. One Second Mover appears to have been unable to posi-
tion any sliders at exactly 50.17 Throughout our analysis this subject is dropped, 
except for the purpose of showing that our results are robust to our sample selection. 
Table 1 summarizes the behavior of the 59 Second Movers and the corresponding 
First Movers in each round. Efforts range between 0 and 41 sliders for First Movers 
and 0 and 40 sliders for Second Movers. Within each round, on average First and 
Second Movers exert roughly the same effort, with average effort increasing from 
around 22 sliders to just under 27 sliders over the 10 rounds.

15 Evidence from the field, in which agents operate in a natural environment, would complement our laboratory 
findings. See Levitt and List (2007) for a discussion of the relationship between laboratory and field evidence more 
generally.

16 Similar problems would arise if we attempted to identify disappointment aversion from responses to the prize 
in a simultaneous-move tournament. Furthermore, in a simultaneous-move context, even if all subjects were identi-
cal, disappointment aversion would be difficult to identify as symmetric and asymmetric pure-strategy equilibria 
coexist for certain values of the prize and subjects might play mixed-strategy equilibria.

17 The data show that this subject was moving sliders around throughout the session but failed to position any 
sliders at exactly 50 in either the practice rounds or in the paying rounds. This subject also experienced problems 
when entering his/her Participant ID number.
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B. Reduced Form Analysis

We use a panel data regression to examine whether Second Movers respond to the 
effort choice of the First Mover they are paired with. Exploiting Proposition 1, we 
hypothesize that if Second Movers are not disappointment averse then the observed 
efforts of the Second Movers will not depend on the corresponding First Mover 
efforts once controls for the prize and round effects are included.18 Alternatively, 
if subjects are disappointment averse then Proposition 2 implies a negative depen-
dence of observed Second Mover efforts on the corresponding First Mover efforts, 
again conditional on controls for the prize and round effects.

To explore how Second Movers respond to First Mover effort, we estimate the 
following linear random effects panel data model:

(11)  ​  e​2, n, r​  = ​ β​1​  + ​ β​2​​v​n, r​  + ​ β​3​ ​e​1, n, r​  + ​ β​4​​e​1,n,r​  × ​ v​n,r​ 

	 + ​ d​r​  + ​ ω​n​  + ​ ϵ​n, r​  for  n  =  1, … , N;  r  =  1, … , 10,

where n and r index, respectively, Second Movers and paying rounds, and N denotes 
the total number of Second Movers. ​e​1, n, r​ is the effort of the First Mover paired with 
the nth Second Mover in the r th round, and ​v​n, r​ is the prize draw for the nth Second 
Mover in the r th round. The prize, the First Mover’s effort, and the First Mover’s 
effort interacted with the prize are included as explanatory variables. The inclusion of 
the interaction of the prize and the First Mover’s effort is motivated by Proposition 3, 
which shows that in the case of a quadratic cost of effort function, the negative effect 
of the First Mover’s effort on the Second Mover’s optimal effort is larger at higher 
prizes. Additionally, the equation includes a set of round dummies denoted by ​d​r​ for 
r = 1, … , 10, with the first paying round providing the omitted category, to capture 
systematic differences between rounds that are common across Second Movers, and 
round invariant Second Mover specific effects denoted ​ω​n​ for n = 1, … , N to capture 
systematic differences between Second Movers. Lastly, ​ϵ​n, r​ is an unobservable that 

18 We note, however, that First and Second Mover efforts will not be independent unconditionally in the presence 
of prize and round effects that impact on both pair members.

Table 1—Summary of First and Second Mover Efforts

Paying Minimum Maximum

round Mean ​e​1​ SD ​e​1​ Mean ​e​2​ SD ​e​2​ ​e​1​ ​e​2​ ​e​1​ ​e​2​

1 22.034 5.991 21.763  6.101  1 0 33 34 
2 22.627 6.708 23.458  4.836  0 11 33 33
3 24.763 6.075 24.831  4.875  0 12 37  38
4 24.627 5.956 25.203  4.502  0 16 35  36
5 24.966 6.800 25.119  5.660  0 0 36  35
6 24.729 7.508 24.898  7.039  1 0 37  39
7 25.881 5.855 25.763  6.109  9 0 37  37
8 26.831 5.858 26.169  5.133  9 14 41  35
9 25.593 8.550 26.254  6.702  0  0 38  40
10 26.322 6.781 26.729  5.988  1  0 40  39

Note: SD denotes standard deviation and ​e​1​ and ​e​2​ denote, respectively, First and Second Mover effort.
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varies over rounds and over Second Movers and captures differences between rounds 
in a Second Mover’s effort choice that cannot be attributed to the other terms in the 
model. ​ω​n​ is assumed to be identically and independently distributed over Second 
Movers with a variance ​σ​ ω​ 2

 ​, while ​ϵ​n, r​ is assumed to be identically and independently 
distributed over rounds and Second Movers with a variance ​σ​ ϵ​ 

2​ .
Table 2 reports estimates of the parameters appearing in (11). The results for the 

preferred sample show a negative effect of First Mover effort on Second Mover 
effort. In more detail, at low prizes First Mover effort does not significantly affect 
Second Mover effort, while at high prizes there is a large and significant discour-
agement effect as predicted by our theory of disappointment aversion. Application 
of the Delta method reveals that the effect of First Mover effort on Second Mover 
effort is not significant at the 5 percent level for prizes less than £2, is significant 
at the 5 percent level for prizes between £2 and £2.60, and is significant at the 1 
percent level for prizes of £2.70 and above. For the highest prize of £3.90, a 40 
slider increase in First Mover effort decreases Second Mover effort by approxi-
mately 6 sliders, a 24 percent decrease relative to the average effort of 25 sliders.19 
Furthermore, there is a large and significant positive prize effect, and we find that 
the persistent unobserved individual characteristics explain more of the variation in 
behavior than the transitory unobservables.20

19 We use a 40 slider increase as an illustrative example as First Mover efforts ranged from 0 to about 40 (see 
Table 1).

20 To test whether behavior changes during the course of the experiment due to learning about the payoff func-
tion, we also estimated the model with separate coefficients on First Mover effort and First Mover effort interacted 
with the prize for the first five rounds of the experiment and for the final five rounds. The parameters corresponding 
to the first half of the experiment are not statistically significantly different from those corresponding to the second 
half ( p-value of 0.710). We further estimated the model excluding all prize controls, and found a negative but sta-
tistically insignificant effect of First Mover effort on Second Mover effort: both First and Second Mover efforts are 
positively correlated with the prize, so without prize controls the coefficient on First Mover effort is biased upward 
as it picks up part of the effect of the prize on Second Mover effort.

Table 2—Random Effects Regressions for Second Mover Effort

Preferred sample Full sample
59 Second Movers 60 Second Movers

Coefficient Standard error Coefficient Standard error

First Mover effort 0.044 0.049 0.047 0.049
Prize 1.639*** 0.602 1.655*** 0.592
Prize × First Mover effort − 0.049** 0.023 − 0.050** 0.023
Intercept 19.777*** 1.400 19.392***  1.447

​σ​ω​ 4.288 5.342
​σ​ϵ​ 3.852 3.826
N × R 590 600

Hausman test for random 2.60 2.43
  versus fixed effects df = 12, p = 0.998 df = 12, p = 0.998

Notes: df denotes degrees of freedom. Both specifications further include dummy variables for each of rounds 2–10 
inclusive. The coefficients on these variables are between 1.7 and 5.2, significantly greater than zero, and tend to 
increase over the rounds.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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We note that, although the parameters reported in Table 2 were estimated from a 
linear random effects model, an alternative specification in which round invariant 
Second Mover specific effects are treated as fixed effects yields almost indistinguish-
able results. This is because Second Mover specific effects are uncorrelated with the 
prize and the First Mover efforts due to the experimental design. Finally, Table 2 
shows that including the 60th Second Mover does not change conclusions concerning 
significance, and neither does this have substantial effects on the coefficient estimates.

C. Structural Modeling

Structural modeling seeks to fit the theoretical model with disappointment aver-
sion, presented above in Section IIC, to the experimental sample. In contrast to the 
reduced form analysis above, structural modeling recovers estimates of the strength 
of disappointment aversion on average and the population-level heterogeneity in 
disappointment aversion. Below, we describe our preferred empirical specification, 
our estimation strategy, including a discussion of identification, and our results. We 
then explore robustness to the specification of the reference point and of the cost 
of effort function. Finally, we relate our estimate of the disappointment aversion 
parameter to existing measures of loss aversion around fixed reference points.

1. Preferred Empirical Specification.—We use ​λ​2, n​ to denote the disappointment 
aversion parameter of the nth Second Mover. In this specification the strength of dis-
appointment aversion may vary between subjects; however, for a given subject the 
strength of disappointment is constant over rounds. We adopt the following specifica-
tion for ​λ​2, n​ :

(12)	​ λ​2,n​  ~  N(​​   λ​​2​, ​σ​ λ​ 2
 ​)  for  n  =  1, … , N,

and further assume that ​λ​2, n​ is independent over Second Movers. The parameter ​​   λ​​2​ 
represents the strength of disappointment aversion on average, and ​σ​ λ​ 2

 ​ denotes the 
variance of the strength of disappointment aversion in the population.

The cost of effort function is assumed to be quadratic, as in (9). The parameter 
b is assumed to be constant over rounds and common to Second Movers, while 
unobserved cost differences between Second Movers and learning effects enter the 
cost of effort function through the convexity parameter c; ​c​n, r​ denotes the convexity 
parameter of the nth Second Mover in the r th round and takes the following form:

(13)	​ c​n, r​  =  κ  + ​ δ​r​  + ​ μ​n​  + ​ π​n, r​  for  n  =  1, … , N;  r  =  1, … , 10.

In the above, κ denotes the component of ​c​n, r​, that is common across Second Movers 
and rounds. ​δ​r​ for r = 1, … , 10 are round effects, with the first paying round pro-
viding the omitted category. These round dummies allow the marginal costs of the 
first and later units of effort to vary over rounds at the population level. A cost of 
effort that is declining over rounds due to learning is represented by values of ​δ​r​
which are negative and decreasing over rounds. ​μ​n​ denotes unobserved differences 
in the cost of effort functions across Second Movers that are constant over rounds. 
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For the purpose of estimation, ​μ​n​ is assumed to be independent over Second Movers 
and to have a Weibull distribution with scale parameter ​ϕ​μ​ and shape parameter ​φ​μ​ . 
The final term in the cost function is ​π​n, r​, which represents unobserved differences 
in Second Movers’ cost of effort functions that vary over rounds as well as over 
Second Movers; ​π​n, r​ is assumed to be independent over Second Movers and rounds 
and to have a Weibull distribution with scale parameter ​ϕ​π​ and shape parameter ​φ​π​ . 
The Weibull distribution is a flexible two-parameter distribution that has positive 
support, thus allowing us to impose convex cost of effort functions on all Second 
Movers when estimating the model.21

Given this parameterization of the theoretical model, the structural model has 
17 unknown parameters, corresponding to the parameters describing disappointment 
aversion, ​​   λ​​2​ and ​σ​λ​ , the common cost parameters b and κ, the nine round effects ​δ​r​ 
for r = 2, … , 10, and the four parameters appearing in the distribution of the unob-
servables in the cost of effort function, namely, ​ϕ​μ​ , ​φ​μ​ , ​ϕ​π​, and ​φ​π​ . These 17 struc-
tural parameters are collectively denoted by the vector θ.

2. Estimation Strategy and Identification.—We estimate the 17 unknown param-
eters using the Method of Simulated Moments (MSM) (McFadden 1989; Pakes and 
Pollard 1989). The analytic complexity of choice probabilities, due to the multiple 
sources of unobserved heterogeneity, precludes the use of Maximum Likelihood and 
Method of Moments estimation techniques. MSM, in contrast, uses easily computed 
features of the sample as the basis for estimating the unknown parameters. Formally, 
the sample observations are used to compute a k × 1 dimensional vector of moments, 
with k ≥ 17, denoted M. Critically, every moment included in M should depend at 
least in part on one or more endogenous variables. The researcher has considerable 
discretion over the moments included in M; however, M typically includes period-
specific averages of endogenous variables, here the effort choices of the Second 
Movers in each round, together with correlations between the endogenous variables 
and the explanatory variables.

MSM proceeds by generating S simulated samples. Each simulated sample contains 
N Second Movers, each observed for 10 rounds. In each simulated sample the Second 
Movers face the same prizes and First Mover efforts as observed in the actual sample. 
The behavior of the Second Movers in the simulated samples is determined from the 
structural model using a trial value, ​θ​t​ , of the values of the unknown parameters, θ. In 
particular, unobservables are assigned to Second Movers in accordance with the above 
described distributions. For each Second Mover and each round, the expected utility 
is calculated for each feasible Second Mover effort choice, and the simulated effort 
choice is the action with the highest expected utility. Further details concerning the 
construction of the simulated samples are provided in Appendix BA.

The behavior of the Second Movers in the simulated samples is then compared 
to the behavior of the actual experimental subjects. Specifically, for each of the 
S simulated samples the vector of moments ​M​s​(​θ​t​) is computed. These are the 

21 In the preferred specification we use round-specific cost of effort functions; however, we also estimated the 
model with a flexible cost of effort function defined over a Second Mover’s total number of completed sliders during 
the paying rounds, x. Specifically, the cost of effort function was given by bx + (c​x​ψ​)/ψ where, as in the preferred 
specification, c included Weibull distributed subject-specific random effects. The Newey test for the validity of 
overidentifying restrictions firmly rejected this specification.
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same k moments as computed for the observed sample. The simulated moments ​
M​s​ are a function of the parameters ​θ​t​ used to simulate the behavior of the Second 
Movers, as different values of the parameters imply different optimal Second Mover 
effort choices. The average of ​M​s​ over the S simulated samples, ( ​∑ s=1​ 

S
  ​  ​​M​s​(​θ​t​))/S, 

provides a summary of the behavior of Second Movers in the simulated samples. 
The process of averaging over the S simulated samples reduces the effect of simula-
tion noise on the simulated moments. The following metric is then formed:

(14)	 J(​θ​t​)  =  (M  − ​  1 _ 
S
 ​ ​∑ 
s=1

​ 
S

  ​  ​​M​s​(​θ​t​))′ 
​W​ N​ (M  − ​  1 _ 

S
 ​​∑ 
s=1

​ 
S

  ​  ​​M​s​(​θ​t​)),

where ​W​ N​ is a fixed k × k dimensional positive semidefinite weighting matrix. 
The quantity J(​θ​t​) provides a scalar measure of the distance between the observed 
behavior of the actual experimental subjects and the behavior of the Second Movers 
in the simulated samples at the trial parameter vector ​θ​t​ . The MSM estimator of θ, 
denoted ​   ​  θ​​, is the value of ​θ​t​ that minimizes J(​θ​t​): ​ 


 ​  θ​​ = arg mi​n​​θ​t​​ J(​θ​t​). Thus, MSM 

estimates the structural parameters to be such that the behavior of Second Movers 
simulated on the basis of the structural model is as similar as possible to the behav-
ior of the actual Second Movers as observed in sample.

Under the conditions of Pakes and Pollard (1989), the MSM estimator is con-
sistent and asymptotically normal for any consistent weight matrix ​W​ N​. We use a 
weight matrix with diagonal elements equal to the inverse of N times the variances 
of the sample moments and zeros elsewhere and use bootstrap sampling of Second 
Movers with replacement to estimate ​W​ N​.22 Further details pertaining to the proper-
ties of the MSM estimator and estimation routine are presented in Appendix BB.

We use 38 moments to estimate the 17 structural parameters. The moments are 
described in Table 4 in Appendix BB. Correlations between Second Mover effort 
and First Mover effort, and between Second Mover effort and First Mover effort 
interacted with the prize, provide identifying information about ​​   λ​​2​, the parameter 
describing the strength of disappointment aversion on average. Percentiles of Second 
Mover specific correlations provide information about the standard deviation of 
disappointment aversion in the population, ​σ​λ​. The correlation between Second 
Mover effort and the prize helps to identify κ, which measures the component of 
the convexity of the cost of effort function common to Second Movers and rounds, 
while the associated percentiles help to identify the shape of the distributions of the 
unobserved cost differences between Second Movers. Moments pertaining to the 
marginal distribution of Second Mover effort, such as round specific means and the 
standard deviation, provide further identifying information.

3. Results.—The upper left panel of Table 3 reports the parameter estimates for the 
preferred specification. Before discussing the results, we briefly consider the good-
ness of fit of the preferred specification, presented in Table 5, located in Appendix 
BB. Table 5 shows that all fitted moments correspond closely to the values observed 
in the sample: in particular, the z-test statistics show that the observed and fitted 

22 Using instead the optimally weighed minimum distance estimator improves efficiency but can introduce con-
siderable finite sample bias (see Altonji and Segal 1996).
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moments never differ by more than 1.2 bootstrapped standard deviations. Consistent 
with this, the Newey test for the validity of overidentifying restrictions (OI test), 
reported in Table 3, does not reject the validity of the preferred specification.

Turning to the parameter estimates for the preferred specification, our estimate of the 
strength of disappointment aversion on average, ​​   λ​​2​ , is 1.729 and this is significantly 
different from zero at all conventional significance levels.23 In Section IIIC.6 we place 

23 We follow most of the literature in using the term “disappointment aversion” to describe this kink in utility 
around a choice-acclimating expectations-based reference point; we note, however, that our empirical results pro-
vide no direct evidence about the psychological processes that might underlie the kink.

Table 3—MSM Parameter Estimates

Preferred Nonquadratic Normally distributed
specification cost of effort cost unobservables

Estimate SE Estimate SE Estimate SE

​​   λ​​2​ 1.729*** 0.532 1.758*** 0.640 1.260*** 0.470
​σ​λ​ 1.823*** 0.556 1.868*** 0.634 1.393*** 0.481
b −0.538*** 0.036 −0.407*** 0.018 −0.493*** 0.012
κ 1.946*** 0.103 2.063*** 0.135 2.427*** 0.059
​σ​μ​ 0.516*** 0.062 0.902*** 0.151 0.266*** 0.024
​σ​π​ 0.346*** 0.127 0.716*** 0.204 0.204*** 0.030
α — — — — — —
ψ — — 2.534*** 0.128 — —
d​e​2​/d​e​1​(v=£0.10, low ​λ​2, n​) −0.000 0.001 −0.000 0.001 −0.000 0.002
d​e​2​/d​e​1​(v=£2, average ​λ​2, n​) −0.030*** 0.011 −0.028** 0.013 −0.025* 0.013
d​e​2​/d​e​1​(v=£3.90, high ​λ​2, n​) −0.127*** 0.026 −0.107*** 0.034 −0.100*** 0.019

OI test 25.555 [0.224] 13.435 [0.858] 61.480 [0.000]

Own-choice-acclimating Own-choice-acclimating Full sample:
reference point (g2 = 0) reference point (g2 = 1) 60 Second Movers

Estimate SE Estimate SE Estimate SE

​​   λ​​2​ 2.070*** 0.426 1.909*** 0.664 1.200*** 0.426
​σ​λ​ 1.476** 0.643 1.201** 0.534 1.206* 0.654
b −0.615*** 0.017 -0.591*** 0.015 −0.486*** 0.024
κ 2.187*** 0.103 2.102*** 0.060 1.769*** 0.071
​σ​μ​ 0.526*** 0.050 0.578*** 0.077 0.600*** 0.110
​σ​π​ 0.410*** 0.086 0.345*** 0.062 0.317*** 0.122
α 0.944*** 0.236 0.986*** 0.156 — —
ψ — — — — — —
d​e​2​/d​e​1​(v=£0.10, low ​λ​2, n​) −0.001 0.001 −0.001 0.001 −0.000 0.001
d​e​2​/d​e​1​(v=£2, average ​λ​2, n​) −0.034*** 0.012 −0.032*** 0.012 −0.024** 0.011
d​e​2​/d​e​1​(v=£3.90, high ​λ​2, n​) −0.106*** 0.027 −0.099*** 0.026 −0.096*** 0.028

OI test 11.583 [0.930] 20.980 [0.398] 24.005 [0.293]

Notes: Where applicable, standard deviations of the transitory and persistent unobservables in the cost of effort 
function, ​σ​π​ and ​σ​μ​ , are computed from the estimates of the parameters of the Weibull distribution. Estimates of κ,  
​σ​π​ and ​σ​μ​ have been multiplied by 100. All specifications further include dummy variables for each of rounds 2–10 
inclusive. In the preferred specification, the coefficients on these variables, scaled as per κ, are between −0.1 and 
−0.5, significantly less than zero, and tend to decrease over the rounds. Reaction functions and their gradients 
were obtained using simulation methods. Using the estimated parameters of the cost of effort function for round 5, 
we simulated a large number of hypothetical Second Mover optimal efforts conditional on specific values of First 
Mover effort and the prize, and computed the mean best response. The reaction functions are linear, except in the 
case of nonquadratic effort costs where we evaluate the gradients at e1 = 20. Low, average, and high ​λ​2, n​ refer to 
the 20th, 50th, and 80th percentiles of the distribution of ​λ​2, n​ . The construction of the test statistic for the validity 
of overidentifying restrictions (OI test) is detailed in Newey (1985). p-values are shown in brackets. Unless stated 
otherwise, all results were obtained using our preferred sample of 59 Second Movers.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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this estimate in the context of the related literature but we note here that a figure of 
1.729 is in line with previous studies that estimate the strength of loss aversion around 
a fixed reference point. We find that ​σ​λ​ is significantly greater than zero, thus providing 
evidence for heterogeneity in disappointment aversion across individuals. Our param-
eter estimates imply that ​λ​2, n​ is greater than 3.3 for 20 percent of individuals, and is less 
than 0.2 for 20 percent. For 17 percent of individuals, ​λ​2, n​ is less than zero.

The results further show that the cost of effort function exhibits significant con-
vexity. In addition, there is significant transitory and permanent variation over 
Second Movers in the cost of effort, with persistent unobserved differences being 
more important than transitory differences.24 Our estimate of b, the linear compo-
nent of the cost of effort function, is negative, indicating that the cost of effort is 
declining at low effort levels. This negative coefficient is required to fit accurately 
observed average Second Mover effort. The linear component of the cost of effort 
function, however, does not affect how Second Movers respond to the First Movers’ 
efforts. Moreover, it is not surprising that the cost of effort is at first declining, as the 
experimental subjects have self-selected into participating in the experiment and the 
outside option during the task is to do nothing for 120 seconds. Other experiments 
have also found that subjects derive some utility from carrying out real effort tasks, 
e.g., Brüggen and Strobel (2007).

Figure 3 shows the extent to which heterogeneity in disappointment aversion 
translates into differences in mean Second Mover responses to First Mover effort, 
evaluated at the average prize of £2 and at the highest prize of £3.90. Second Movers 
with low values of ​λ​2, n​ , defined to be the 20th percentile of the distribution of ​λ​2, n ​, 
do not respond appreciably to changes in First Mover effort. In contrast, we observe 
a significant discouragement effect (at the 1 percent level) for Second Movers with 
average values of ​λ​2, n​ , or with high values, defined to be the 80th percentile of the 
distribution of ​λ​2, n​ . At the highest prize of £3.90, a 40 slider increase in First Mover 
effort decreases optimal Second Mover effort by 2.5 sliders for an individual with 
the average ​λ​2, n​ , and by 5.1 sliders for an individual with a high ​λ​2, n​ . In the con-
text of an average Second Mover effort of 25, these effects represent reductions of 
10 percent and 20 percent, respectively, in optimal Second Mover effort.25

It is important to emphasize that the impact of disappointment aversion on Second 
Movers’ average monetary payoff is small. Given the estimated Second Mover cost 
of effort function and the observed distribution of First Mover efforts and prizes, the 
Second Movers would each have earned just under £0.01 more on average over the 
course of the experiment had they not been disappointment averse. Nonetheless, we 
do find that disappointment aversion induces a significant discouragement effect and 
the impact on behavior is big enough to allow us to estimate the strength of disap-
pointment aversion on average and the heterogeneity in disappointment aversion 

24 The magnitude and significance of the parameters controlling the persistent unobservables are indicative of 
the importance of our assumptions about persistent unobserved heterogeneity; to confirm their importance, we also 
estimated a simpler model (parameter estimates not reported) in which all unobserved heterogeneity comes through 
a mean zero normally distributed error term, assumed to be independent over both rounds and subjects, and found 
that the Newey test rejects this specification ( p-value of 0.000).

25 The magnitudes of the estimated slopes are somewhat lower than the corresponding estimates implied by 
the reduced form analysis in Section IIIB. This is because MSM seeks to fit simultaneously a variety of different 
moments. If we arbitrarily put a higher weight on the moments identifying these slopes, the estimated magnitudes 
would be larger.
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across the population. Furthermore, given the estimated parameters of our model 
and the observed First Mover efforts and prizes, Second Movers would be willing 
to pay about £0.79 each on average per round to rid themselves of disappointment 
aversion. This has important implications for the design of labor market incentive 
schemes, as employers will be keen to design schemes that lower workers’ expected 
disappointment in order to soften their participation constraint. For example, Gill 
and Stone (2010, Section 5.2) consider how worker loss aversion around expec-
tations-based reference points impacts on an employer’s choice of relative perfor-
mance incentive contract.

4. Robustness: Own-Choice-Acclimating Reference Point.—The expectations-
based reference point in our model adjusts to both the First Mover’s and the Second 
Mover’s effort choices. Thus, our finding of significant disappointment aversion 
provides evidence of loss aversion around choice-acclimating reference points when 
agents compete.

With a fixed reference point, including one given by a prior expectation, Proposition 
1 shows that we should observe no discouragement effect. If the expectations-based 
reference point adjusted only to the First Mover’s effort, however, there would still 
exist a discouragement effect.26 In order to test whether the expectations-based ref-
erence point adjusts only to the First Mover’s effort, we generalize the reference 
point (6) as follows for α ∈ [0, 1]:

(15)	​ R​2​  =  αv​ P​2​(​e​2​, ​e​1​)  +  (1  −  α)v​P​2​(​​   e​​2​,​ e​1​),

where ​​   e​​2​ is fixed, and so does not adjust to the Second Mover’s choice of effort (​​   e​​2​ 
could for instance arise from a prior expectation).

26 Similarly, in Abeler et al. (2011) the main empirical findings are consistent with a reference point that adjusts 
to the fixed payment but not the subjects’ effort choices.

Figure 3. Reaction Functions Implied by the Preferred Specification of the Structural Model

Notes: We illustrate the reaction functions over the range 0 to 40 sliders as Table 1 shows First Mover efforts varied 
over this range. See notes to Table 3 for an explanation of how these reaction functions are constructed. Error bars 
are omitted; standard errors for the average ​λ​2, n​ case in panel A and for the high ​λ​2, n​ case in panel B are reported in 
Table 3. Low, average and high ​λ​2, n​ refer to the 20th, 50th, and 80th percentiles of the distribution of ​λ​2, n​ .
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We reestimate our model, simultaneously estimating α as well as the 17 other 
parameters from the preferred specification.27 The bottom lower and bottom middle 
panels of Table 3 show that we estimate α to be close to 1, so the Second Movers 
place little weight on the part of the reference point that does not adjust to their own 
effort choice. Moreover, the estimates of α are significantly different from zero at 
the 1 percent level. We argue that this provides strong evidence that the Second 
Movers’ reference points are indeed own-choice-acclimatizing, as assumed in the 
preferred specification.

5. Further Robustness.—The remaining panels in Table 3 provide further robust-
ness checks for various features of our analysis. The upper middle panel of Table 3 
reports the results for a specification in which the cost of effort function is not con-
strained to be quadratic, but instead takes the form C(​e​2​) = b​e​2​ + (c​e​ 2​ 

ψ​)/ψ, where ψ 
is an additional parameter to be estimated. We estimate ψ to be approximately 2.5.28 
In the upper right panel, we report estimates of a specification in which the unob-
servables appearing in the cost of effort function are normally distributed, rather 
than being drawn from Weibull distributions. The Newey test for the validity of 
overidentifying restrictions (OI test) rejects this specification, which illustrates the 
flexibility of the Weibull distribution. Finally, the bottom right panel shows results 
obtained for the preferred specification but estimated with the full sample of 60 
Second Movers (see Footnote 17 for details concerning the omitted Second Mover).

We see that irrespective of the choice of sample and the specification of the cost 
of effort function, our estimate of the strength of disappointment aversion on aver-
age ​​   λ​​2​ is significantly different from zero. Also, all specifications show significant 
variation across individuals in the strength of disappointment aversion. Finally, the 
estimated response of a Second Mover to a change in First Mover effort varies little 
across specifications.

6. Relationship to Existing Estimates of Loss Aversion.—The endogeneity of the 
reference point means that behavior in our model is driven by the size of the kink in 
gain-loss utility ​λ​2​ = ​l​2​ − ​g​2​. Other models of choice-acclimating reference points 
share the same feature. To see this, we introduce the parameterization of K​     o​szegi 
and Rabin (2006, 2007), which involves a weighting on gain-loss utility relative 
to material utility, η ≥ 0, and a coefficient of loss aversion for gain-loss utility, λ, 
which measures the ratio of the slopes of gain-loss utility alone in the loss and gain 
domains. We estimate the size of the kink in gain-loss utility, scaled relative to mate-
rial utility, and ​λ​2​ = ηλ − η = η(λ − 1). In their model of single-agent effort provi-
sion, the first-order conditions of Abeler et al. (2011) also depend on η(λ − 1), as 

27 With this more general reference point, the fixed ​​   e​​2​ and the slope of gain-loss utility in the gain domain, ​g​2​, 
become relevant to the determination of the level of effort (but not to how the Second Movers respond to First 
Mover effort). As ​g​2​ and ​​   e​​2​ are not identified under the null that α = 1, we do not attempt to estimate these param-
eters, instead estimating the model for various values of ​g​2​ and ​​   e​​2​. Results for ​g​2​ = 0 and ​g​2​ = 1 with ​​   e​​2​ equal to 
the average level of effort of 25 are reported in Table 3. We further estimated the model with ​g​2​ = 1/2, and also 
with ​​   e​​2​ = 0 together with different values of ​g​2​. The results were not substantially different.

28 At the estimated parameters of this specification, the qualitative predictions of Proposition 3 continue to hold 
numerically. For every possible First Mover effort, the simulated Second Mover reaction function evaluated at the 
average ​λ​2, n​ becomes steeper as the prize moves from £0.10 to £2 and from £2 to £3.90. Similarly, at the average 
prize of £2, the reaction function becomes steeper as we move from low ​λ​2,  n​ to the average ​λ​2, n​ and from the aver-
age ​λ​2, n​ to high ​λ​2, n​ . The notes to Table 3 detail the construction of these reaction functions.
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do preferences over lotteries in the choice-acclimating version of the model of 
K​     o​szegi and Rabin (2007, p. 1,059 and Proposition 12(i)). The original disappoint-
ment aversion model of Bell (1985) also builds on the size of the kink. We cannot 
estimate λ directly, as this coefficient interacts with the weight put on gain-loss 
utility to determine the size of the kink in gain-loss utility; nonetheless, because we 
estimate that ​​   λ​​2​ > 0, it follows that η > 0 and λ > 1.

Our measure of disappointment aversion is therefore not directly comparable to 
previous measures of loss aversion around fixed reference points. Evidence from 
previous studies suggests a coefficient of loss aversion of about 2 for the value func-
tion of Kahneman and Tversky (1979) (Kahneman 2003); i.e., the value function 
is about twice as steep in the loss domain as it is in the gain domain. For example, 
from choices over lotteries, Tversky and Kahneman (1992) estimate a coefficient of 
2.25 for their median subject. The value function of Kahneman and Tversky (1979) 
is defined only over gains and losses: if we consider this value function to include 
implicitly any consumption value of losses and gains as well as psychological ela-
tion and pain from deviating from the reference point, then the comparable figure 
in our setting to the usual loss aversion coefficient is the ratio of the slopes of total 
utility in the loss and gain domains, given by

(16)	​ 
1  + ​ l​2​ _ 
1  + ​ g​2​

 ​  =  1  + ​   ​λ​2​ _ 
1  + ​ g​2​

 ​ .

Given an assumption about ​g​2​, our estimate of ​​   λ​​2​ therefore implies an estimate of the 
average value of (16) in the population. For example, if we assume that ​g​2​ ∈ (0, 1), 
so the elation associated with receiving more than expected is positive but less 
important than the associated material utility, then our estimate ​​   λ​​2​ = 1.729 implies 
that (16) ∈ (1.865, 2.729), which matches previous estimates of the coefficient of 
loss aversion.

IV.  Alternative Behavioral Explanations

Our model of disappointment aversion fits our data well: as explained in 
Section IIIC.3, all fitted moments correspond closely to the values observed in our 
experimental sample and the Newey test shows that our preferred specification is 
not rejected by the data. This is good statistical evidence that there are not important 
additional factors that would help to explain our data better. Furthermore, the bur-
geoning empirical literature showing the importance of expectations-based reference 
points in many different contexts (summarized in the introduction) lends weight to 
our thesis that expectations might be salient when agents compete. Nonetheless, we 
argue below that a number of alternative behavioral explanations of the observed 
discouragement effect are unconvincing.

Confusion: To test whether Second Movers understood the compensation scheme, 
we conducted an incentivized comprehension quiz in early December 2010 using a new 
sample of 60 students selected randomly from the pool of subjects at the University of 
Arizona’s Economic Science Laboratory. The instructions and questions are reported 
in Appendix D (in the online Appendix). The quiz was designed to test whether Second 
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Movers understood that the marginal effect of an extra unit of effort on their probabil-
ity of winning did not depend on the effort of the First Mover they were paired with. In 
particular, question 5 asked the subjects by how much a specific one unit increase in a 
Second Mover’s points score increases her probability of winning given a First Mover 
points score of 20, and question 10 asked the same question given a First Mover score 
of 30. The data provide good evidence that most subjects understood the experimental 
instructions. Ninety percent of the subjects answered all 10 of the questions correctly. 
Of the 6 subjects who made at least one mistake, half nonetheless answered ques-
tions 5 and 10 correctly, and a further 2 subjects’ answers to questions 5 and 10 were 
incorrect but did not vary between the two questions. A single subject gave a lower 
answer for question 10 than for question 5, but overall the average difference between 
the subjects’ answers to questions 5 and 10 was not statistically significantly different 
from zero ( p-value of 0.317). Footnote 20 also provides evidence that behavior did 
not change during the course of our experiment, so learning about the payoff function 
does not appear to have played an important role.

Peer Effects: Second Movers who imitate the behavior of their peers (Falk and Ichino 
2006), or who compete by matching or beating their rival’s effort level, would respond 
positively rather than negatively to the effort of the First Mover they are paired with. 
Moreover, we find no evidence of matching or beating. Specifically, if Second Movers 
have a tendency to match their rival’s effort, we should see few Second Movers com-
pleting one slider fewer or one slider more than their rival. Similarly, if Second Movers 
tend to want to beat their rival’s effort, we should see few Second Movers completing 
the same number of sliders or two sliders more than their rival. Formal tests of these 
hypotheses reveal no significant evidence of either matching or beating behavior.29 
Furthermore, by looking at the behavior of First Movers, we provide evidence that 
our estimates of disappointment aversion are not biased by a more general desire to 
mimic peer behavior. In particular, we look to see whether First Movers’ efforts in a 
given round respond to the effort of their Second Mover rivals in the previous round. 
A general desire to mimic one’s peers should lead to a positive relationship, untainted 
by any role for disappointment, as the uncertainty arising from the previous round’s 
competition has been resolved. We find no evidence that First Movers respond to the 
effort of their peers in the previous round.30

Probability Weighting: Kahneman and Tversky (1979) propose that agents 
apply decision weights to probabilities, overweighting small probabilities and 

29 In more detail, let Prop(x) ≡ ( ​∑ n=1​ 
59

  ​  ​​∑ r=1​ 
10

  ​  ​​1​​e​2, n, r​−​e​1, n, r=x​​)/590 be the proportion of Second Mover efforts 
for which the difference between the Second Mover’s effort and that of the First Mover she is paired with is 
exactly x. To test for matching behavior we conduct two joint nonparametric bootstrapped tests. Our first test 
cannot reject the null that Prop(−1) = Prop(−2) and Prop(−1) = Prop(0), and the second cannot reject the null 
that Prop(1) = Prop(0) and Prop(1) = Prop(2), where in each case the one-sided alternative is that the middle 
proportion is significantly lower than either of the proportions above or below (or lower than both). The p-values 
are, respectively, 0.481 and 0.937. Similarly, when testing for beating behavior, our first test cannot reject the null 
that Prop(0) = Prop(−1) and Prop(0) = Prop(1), and the second cannot reject the null that Prop(2) = Prop(1) and 
Prop(2) = Prop(3). The p-values are, respectively, 0.832 and 0.138.

30 Specifically, we estimate a reduced form model similar to (11), where First Mover effort depends on the prize in 
the current round, the prize in the previous round, the previous round effort of the Second Mover that the First Mover 
was paired with in the previous round and this Second Mover’s effort interacted with the prize in the previous round. 
The coefficients on these last two are not statistically significantly different from zero ( p-values of 0.433 and 0.680).
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underweighting large ones. The evidence further suggests that the probability weight-
ing function w(P) is concave for probabilities smaller than about 35 to 40 percent 
and convex thereafter (Wu and Gonzalez 1996; Prelec 1998). A Second Mover who 
evaluated the prospect arising from her choice of effort using probability weighting 
would show a discouragement effect in the convex region to the right of the inflec-
tion point, but an opposite encouragement effect in the concave region to the left 
of the inflection point.31 To test for such a pattern, we estimate the reduced-form 
model from Section IIIB with separate coefficients on First Mover effort and First 
Mover effort interacted with the prize for the highest 50 percent of First Mover efforts 
(which, on average, give rise to low Second Mover winning probabilities) and for the 
lowest 50 percent of First Mover efforts (which tend to give rise to higher Second 
Mover winning probabilities). The parameter estimates are of similar magnitude and 
have the same signs as those estimated in Section IIIB; furthermore, the parameters 
corresponding to the lower half of First Mover efforts are not statistically signifi-
cantly different from those corresponding to the upper half ( p-value of 0.830).32 This 
provides evidence that, in contrast to the pattern predicted by probability weighting, 
the discouragement effect that we observe in the data operates throughout the range 
of Second Mover winning probabilities.

Regret: It is not straightforward to introduce a notion of regret (Bell 1982; Loomes 
and Sugden 1982) into our setup as the agents have more than two possible choices 
and uncertainty about the outcome of alternative choices is only partially resolved 
ex post (Bell 1983 discusses partial resolution of uncertainty in a two action model). 
Furthermore, we believe that, because our subjects have only limited potential to 
learn what would have happened in the counterfactual in which they chose a differ-
ent level of effort, regret will not be particularly salient in the context of our experi-
ment; as Larrick (1993, p. 446) puts it, “expecting vivid, concrete feedback about 
what definitely would have occurred produces a greater potential for regret than 
pallid, abstract knowledge of what statistically was likely to occur.” Nonetheless, 
we estimate a structural model that includes both regret and disappointment to see 
whether omitting regret considerations from our preferred specification impacts on 
our estimate of disappointment aversion. We assume that regret is felt when the real-
ized payoff ​u​2​(​y​2​) − ​C​2​(​e​2​) is less than the ex post expected payoff from the ex post 
best alternative action.33 We find that the parameter measuring the intensity of regret 

31 The prospect arising from an effort choice ​e​2​ is “simple” (one nonzero outcome) and, with ​u​2​(0) = 0, is valued 
at w(​P​2​)​u​2​(v) (see Prelec 1998, p. 500). Given ∂​P​2​ / ∂​e​2​ = − ∂​P​2​ / ∂​e​1​ = 1/(2γ) > 0, (∂w / ∂​P​2​)(∂​P​2​ / ∂​e​2​)​u​2​(v) is 
increasing (decreasing) in ​e​1​ when w(​P​2​) is concave (convex) in ​P​2​, so the Second Mover’s marginal incentive to 
exert effort rises (falls) locally in ​e​1​ for a given ​e​2​.

32 As noted above, the literature suggests that the probability weighting function’s inflection point lies somewhat 
to the left of P = 0.5. Thus we also estimated the reduced form model with separate coefficients for the highest 
20 percent of First Mover efforts (which give rise to particularly low Second Mover winning probabilities) and for 
the lowest 80 percent. The results were similar.

33 In a theoretical analysis of regret with partial resolution of uncertainty, Krähmer and Stone (2008) make the 
same assumption. Formally, we estimate the same structural model as in Section IIIC1, adding in an expected regret 
term as follows

​P​2​(​e​2​,​ e​1​)ρ min {v − ​C​2​(​e​2​) − ​ max    
​e​ 2​ 

a​∈\​e​2​
​(v​P​ 2​ 

W​(​e​ 2​ 
a​, ​e​2​, ​e​1​) − ​C​2​(​e​ 2​ 

a​)), 0} 

+  (1 − ​P​2​(​e​2​, ​e​1​))ρ min {− ​C​2​(​e​2​) − ​ max   
​e​ 2​ 

a​∈\​e​2​
​(v​P​ 2​ 

L​(​e​ 2​ 
a​, ​e​2​, ​e​1​) − ​C​2​(​e​ 2​ 

a​)), 0 },
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is not statistically significantly different from zero ( p-value of 0.852). Furthermore, 
the estimate of the strength of disappointment aversion ​​   λ​​2​ = 1.710, which is similar 
to that from the preferred specification, and we continue to find significant hetero-
geneity in disappointment aversion.

Pressure: Choking under pressure (Baumeister 1984), where an agent’s performance 
deteriorates when incentives or stakes are higher, is also an implausible explanation 
of the discouragement effect. First, the Second Movers’ marginal incentives do not 
depend on First Mover effort, so an incentives-based story for choking has no bite. 
Furthermore, if the level of the stakes matter, Second Movers should choke more when 
their probability of winning is higher, i.e., when the First Mover has worked less hard.

Collusion and Reciprocity: Even though effort is socially wasteful, the subjects 
are not able to collude in our experiment. As explained in Section IB, the rotation-
based matching algorithm that we use ensures that each pair of subjects plays a 
truly one-shot game: the pair meets only once and a subject’s action in one round 
cannot have a direct or indirect effect on the actions of other subjects that the sub-
ject is paired with later on. A taste for reciprocity (Rabin 1993) can sometimes 
allow agents to cooperate even in one-shot prisoners’ dilemma-type games: in our 
setup, low First Mover effort can be considered a kind action to be reciprocated 
with low effort, so positive reciprocity could conceivably allow the agents to coor-
dinate on low effort. In Section IIIC.3, however, we find substantial variation in 
subjects’ effort costs. This variation clouds inferences that subjects can make about 
a rival’s intentions: subjects only meet the rival once and so will have difficulty 
distinguishing the rival’s kind or unkind intention from a low or high cost of effort. 
Furthermore, our data show that Second Movers respond to a kinder action (lower 
First Mover effort) with a meaner action (higher effort) instead of the kinder action 
(lower effort) predicted by reciprocity. To the extent that the First Movers are able 
to signal kindness by putting in low effort, the response by the Second Movers to 
increase effort will destroy any incentive on the part of the First Movers to be kind.

In order to provide some more direct evidence that reciprocity does not play an 
important role in our experiment, we look at how Second Movers respond to unex-
pectedly high or low effort on the part of the First Mover they are paired with. 
Given that we find substantial variation in our subjects’ effort costs, it is reasonable 
to assume that Second Movers learn about the distribution of First Movers’ effort 
costs from the First Mover efforts they see during the course of the experiment. If 
reciprocity is playing a role, then the greater the average effort seen in earlier rounds 
by a particular Second Mover (after allowing for the effects of prizes in the earlier 
rounds), the lower the inferred average cost of effort, and hence the kinder or less 
unkind any particular First Mover effort is perceived to be in the current round. Thus, 
if Second Movers reciprocate perceived kindness or unkindness, they will want to 

where ρ measures the intensity of regret, ​e​ 2​ 
a​ represents an alternative Second Mover effort to the chosen effort ​e​2​, ​

P​ 2​ 
W​(​e​ 2​ 

a​,​ e​2​, ​e​1​) = min {(​e​ 2​ 
a​ − ​e​1​ + γ)/(​e​2​ − ​e​1​ + γ), 1} is the updated ex post probability of winning from having 

chosen ​e​ 2​ 
a​ for a Second Mover who in fact wins with ​e​2​ and ​P​ 2​ 

L​(​e​ 2​ 
a​, ​e​2​, ​e​1​) = max {(​e​ 2​ 

a​ − ​e​2​)/(−​e​2​ + ​e​1​ + γ), 0} is the 
ex post probability of winning function after losing (some updating occurs because winning or losing is somewhat 
informative about whether the random draws that determine the winner were favorable or unfavorable to the Second 
Mover).
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reward any given First Mover effort more or punish it less when they have observed 
higher First Mover efforts in earlier rounds, and so we should see a negative rela-
tionship between the average effort a Second Mover has seen in earlier rounds and 
her effort in the current round. We find no evidence of such a relationship.34

Equity: As we explain in Section IIB, if the Second Movers disliked inequity 
in monetary payoffs, their marginal incentives to exert effort would continue to 
be independent of First Mover effort, so such inequity aversion would not lead 
to a discouragement effect, as Proposition 1 would continue to apply. A notion 
of equity in which agents like to align efforts as inputs and monetary payoffs as 
outputs might provide part of the psychological basis for why our subjects are dis-
appointment averse (see Gill and Stone 2010 for details) and so exhibit a discour-
agement effect. (As noted in footnote 23, our empirical results provide no direct 
evidence about the psychological processes that might underlie disappointment 
aversion in our experiment.)

V.  Conclusion

People compete all the time, e.g., for: promotions; bonuses; professional partner-
ships; elected positions; social status; and sporting trophies. In these situations, the 
competitors exert effort to improve their prospects of success, and clear winners and 
losers emerge. Our results indicate that winners are elated while losers are disap-
pointed, and that disappointment is the stronger emotion. In particular, we show that 
when our experimental subjects compete in a sequential-move real-effort competition, 
they are loss averse around an endogenous expectations-based reference point that 
is conditioned on their own work effort and that of their rival. Disappointment aver-
sion creates a discouragement effect, whereby a competitor slacks off when her rival 
works hard. Our results speak to the debate about the speed at which reference points 
adjust. K​     o​szegi and Rabin (2007) note that it is unclear how much time is needed 
between agents making their choices and the outcome occurring for the reference 
point to become choice-acclimating. Given the tiny temporal gap between the agents’ 
effort choices and the outcome of the tournament, our results indicate that, at least in 
our competitive framework, the adjustment process is essentially instantaneous.

We hope that our theoretical model and empirical findings will provide a useful 
building block when predicting how people will behave in competitive situations. 
Furthermore, the findings may be helpful to principals when designing competitive 
environments. For example, employers will want to know how much they need to 
compensate employees for the expected disappointment implicit in different types 
of compensation schemes. They will also be interested in the degree to which a 
given compensation structure might impact on employees’ work efforts, for exam-
ple by creating asymmetries with some employees exerting a lot of effort and others 
becoming discouraged.

34 Specifically, for every round r > 1, and for every Second Mover n, we calculate the average First Mover effort 
that the Second Mover has seen up to (but not including) that round, where previous efforts have been partialed to 
remove prize and round effects. As required by our strategy to identify reciprocity, in our sample we find substantial 
variation in these averages. We then estimate the reduced form model (11) with this average as an extra term. The 
estimated coefficient on this new term is not statistically significantly different from zero ( p-value of 0.782).



496 THE AMERICAN ECONOMIC REVIEW february 2012

Appendix A: Proofs

A. Proof of Proposition 2

Using (1) and (7),

(17)  E​U​2​(​e​2​, ​e​1​)  =  v(​ ​e​2​  − ​ e​1​  +  γ
  _ 2γ ​ )  − ​ λ​2​v(​ ​γ​2​  −  (​e​2​  − ​ e​1​​)​2​

  __ 
4​γ​2​

 ​ )  − ​ C​2​(​e​2​).

We use a proof by contradiction. Suppose that when ​e​1​ increases from ​e​11​ to ​e​12​ > ​e​11​, 
the Second Mover’s optimal effort ​e​ 2​ *​ increases from ​e​ 21​ * ​ to ​e​ 22​ * ​ > ​e​ 21​ * ​. By the opti-
mality of the Second Mover’s effort choices,

(18)  [E​U​2​(​e​ 21​ * ​, ​e​11​)  −  E​U​2​(​e​ 22​ * ​, ​e​11​)]  +  [E​U​2​(​e​ 22​ * ​,​ e​12​)  −  E​U​2​(​e​ 21​ * ​,​ e​12​)]  ≥  0.

Using (17), we get the following:

(19)      E​U​2​(​e​ 21​ * ​, ​e​11​)  −  E​U​2​(​e​ 21​ * ​,​ e​12​)  =  v(​ − ​e​11​  + ​ e​12​ _ 2γ ​ )
	 + ​ λ​2​v(​ (​e​ 21​ * ​  − ​ e​11​​)​2​  −  (​e​ 21​ * ​  − ​ e​12​​)​2​

   ___  
4​γ​2​

 ​ );

(20)      E​U​2​(​e​ 22​ * ​,​ e​12​)  −  E​U​2​(​e​ 22​ * ​,​ e​11​)  =  v(​ − ​e​12​  + ​ e​11​ _ 2γ ​ ) 

	 + ​ λ​2​v(​ (​e​ 22​ * ​  − ​ e​12​​)​2​  −  (​e​ 22​ * ​  − ​ e​11​​)​2​
   ___  

4​γ​2​
 ​ ).

Thus,

(21)	 (18)  = ​  ​λ​2​v _ 
2​γ​2​

 ​ (− ​ e​ 21​ * ​​ e​11​  + ​ e​ 21​ * ​​ e​12​  − ​ e​ 22​ * ​​ e​12​  + ​ e​ 22​ * ​​ e​11​) 

	 = ​  ​λ​2​v _ 
2​γ​2​

 ​ (​e​ 21​ * ​  − ​ e​ 22​ * ​)(​e​12​  − ​ e​11​)  <  0

given ​λ​2​ > 0 for a disappointment averse Second Mover, which contradicts (18) ≥ 0 
from above.

Note that if there are multiple optima, the proof extends naturally to show that 
the highest optimal effort in response to ​e​12​ must lie weakly below the lowest in 
response to ​e​11​.
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B. Proof of Proposition 3

Using (9) and (17),

(22)	​  ∂E​U​2​(​e​2​, ​e​1​)  _ ∂​e​2​
 ​   =   ​ v _ 

2γ ​  + ​  ​λ​2​v(​e​2​  − ​ e​1​)  _ 
2​γ​2​

 ​   −  b  −  c​ e​2​;

(23)	​ 
​∂​2​E​U​2​(​e​2​,​ e​1​)  _ 

∂​e​ 2​ 
2​
 ​   =   ​ ​λ​2​v _ 

2​γ​2​
 ​  −  c.

We assume that 2​γ​2​c − ​λ​2​v > 0, so the objective function is strictly concave.
Suppose first that the action space  is continuous. The first-order condition gives 

the following reaction function:

(24)	  ​_ e​	 if ​e​1​ < ​ γv + ​λ​2​v​
_ e​ − 2​γ​2​(b + c​

_ e​)
  __  ​λ​2​v

  ​

 ​ e​ 2​ *​(​e​1​) = {	​ γv − ​λ​2​v​e​1​ − 2​γ​2​b
  __  

2​γ​2​c − ​λ​2​v
  ​ ∈ [0, ​

_ e​]	 if ​e​1​ ∈ [​ γv + ​λ​2​v​
_ e​ − 2​γ​ 2​(b + c​

_ e​)
  __  ​λ​2​v

  ​, ​ 
γv − 2​γ​2​b

 _ ​λ​2​v
  ​]

	 0	 if ​e​1​ > ​ γv − 2​γ​2​b
 _ ​λ​2​v

  ​ .

Given ​λ​2​ > 0 and 2​γ​2​c − ​λ​2​v > 0, in the interior d​e​ 2​ *​/d​e​1​ is clearly strictly negative 
and strictly decreasing in ​λ​2​ and v.

Suppose second that the action space  is discrete. Take any ​e​2​ ∈  for which 
there exists a higher effort that is a best response to some ​e​1​ ∈ [0, ​

_ e​] and a lower 
effort with the same property. Let ​e​ 2​ 

+​ be the next highest effort in  and let ​e​ 2​ 
−​ be the 

next lowest effort in . Using (9) and (17), E​U​2​(​e​ 2​ 
+​, ​e​1​) − E​U​2​(​e​2​, ​e​1​)

(25)    =   ​ v(​e​ 2​ 
+​  − ​ e​2​)  _ 

2γ ​   + ​ λ​2​v(​ (​e​ 2​ 
+​  − ​ e​1​​)​2​  −  (​e​2​  − ​ e​1​​)​2​

   __  
4​γ​2​

 ​ ) 

	 −  b(​e​ 2​ 
+​  − ​ e​2​)  − ​  c((​e​ 2​ 

+​​)​2​  − ​ e​ 2​ 
2​)  __ 

2
 ​ 

(26)    =   ​ (2γv  −  4​γ​2​b)(​e​ 2​ 
+​  − ​ e​2​)   __  

4​γ​2​
 ​   +  (​ ​λ​2​v  −  2​γ​2​c

 _ 
4​γ​2​

 ​ )((​e​ 2​ 
+​​)​2​  − ​ e​ 2​ 

2​) 

	 −  (​ ​λ​2​v _ 
4​γ​2​

 ​)2​e​1​(​e​ 2​ 
+​  − ​ e​2​).

The cutoff ​e​1​ at which E​U​2​(​e​ 2​ 
+​, ​e​1​) = E​U​2​(​e​2​,​ e​1​) is given by

(27)	​​    e​​1​(​e​ 2​ 
+​,​ e​2​)  = ​  2γv  −  4​γ​2​b

 _ 
2​λ​2​v

 ​   −  (​ 2​γ​2​c  − ​ λ​2​v _ ​λ​2​v
 ​ )(​ ​e​ 2​ 

+​  + ​ e​2​ _ 2 ​ ).
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Given ​λ​2​ > 0 and 2​γ​2​c − ​λ​2​v > 0 by assumption, the cutoffs are strictly 
decreasing in the Second Mover’s effort. From Proposition 2, best responses are 
(weakly) falling in ​e​1​. Thus, if ​e​1​ was continuous but ​e​2​ was discrete, the cutoffs 
would represent the points at which the Second Mover’s reaction function jumped 
down. As both are discrete, the cutoffs define the Second Mover’s reaction func-
tion in the interior: ​e​2​ is a best response for the Second Mover for and only for any 
​e​1​ ∈ [​​ ̆  e​​1​(​e​ 2​ 

+​, ​e​2​), ​​   e​​1​(​e​2​, ​e​ 2​ 
−​)] ∩ . The range [​​ ̆  e​​1​(​e​ 2​ 

+​, ​e​2​), ​​   e​​1​(​e​2​,​ e​ 2​ 
−​)] is of size

(28)	​​    e​​1​(​e​2​,​ e​ 2​ 
−​)  − ​​    e​​1​(​e​ 2​ 

+​, ​e​2​)  =  (​ 2​γ ​2​c  − ​ λ​2​v _ ​λ​2​v
 ​ )(​ ​e​ 2​ 

+​  − ​ e​ 2​ 
−​
 _ 2 ​ ),

which is strictly decreasing in ​λ​2​ and v.
That the cutoffs are strictly decreasing in ​e​2​ is the discrete case analog of the reac-

tion function being strictly downward-sloping in the continuous case. That the size 
of the ranges between the cutoffs is strictly decreasing in ​λ​2​ and v is the discrete case 
analog of the reaction function becoming strictly steeper in ​λ​2​ and v in the continu-
ous case. Note also the functional form similarity: supposing that the permitted ​e​2​’s 
increase in unit steps, (​e​ 2​ 

+​ + ​e​2​)/2 = ​e​2​ + 1/2, so the rate of change of ​​   e​​1​(​e​ 2​ 
+​,​ e​2​) with 

respect to ​e​2​ is the inverse of the slope of the reaction function in the continuous 
case.

Appendix B: MSM: Further Details

A. Construction of Simulated Samples

The construction of each simulated sample is conditional on the First Mover 
efforts and prizes observed in the actual sample. Additionally, we make random 
draws that will later be used to construct the unobservables appearing in the struc-
tural model. Specifically, for each simulated sample s = 1, … , S we construct matri-
ces of dimensions N × 1, N × 1 and N × 10, denoted Q​1​s​ , Q​2​s​, and Q​3​s​, respectively. 
Each element of Q​1​s ​, Q​2​s​, and Q​3​s​ contains a random draw from a standard uniform 
distribution. These matrices are held fixed throughout the estimation.35 Given a trial 
parameter vector ​θ​t​ , the effort choice of the nth Second Mover in the r th round of 
the sth sample is determined as follows:

	 1. 	The Second Mover is assigned values of the unobservables ​λ​2, n​ , ​μ​n​, and ​π​n, r​ in 
accordance with the distributional assumptions made in Section IIIC1. Draws 
from the normal distribution are found by transforming Q​1​s​ as follows:

(29)	​ λ​2,n​  = ​​    λ​​2​  + ​ σ​λ​​Φ​−1​(Q​1​s, n​),

35 Thus, as the trial parameter vector ​θ​t​ is adjusted, the simulated samples vary only due to the change in ​θ​t​ and 
not due to variation in the underlying random draws. This is necessary to ensure convergence of the estimation 
routine (Stern 1997).
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		  where ​Φ​−1​ denotes the inverse of the standard normal distribution function. 
Draws from the Weibull distribution are obtained by transforming Q​2​s​ and Q​3​s​ 
as follows:

(30)	​ μ​n​  =   ​ϕ​μ​(  −  ln(Q​2​s, n​)​)​1/​φ​μ​​;

(31)	​ π​n,r​  =   ​ϕ​π​(  −  ln(Q​3​s, n, r​)​)​1 / ​φ​π​​.

		  The values of the parameters ​​   λ​​2​, ​σ​λ​, ​φ​μ​, ​φ​π​, ​ϕ​μ​ and ​ϕ​π​ are obtained by extract-
ing the relevant elements of ​θ​t​.

	 2. 	Given the assigned values of ​λ​2, n​ , ​μ​n​, and ​π​n, r​ and the remaining parameters 
of the cost of effort function, b, κ and ​δ​r​ for r = 2, … , 10 as given by ​θ​t​ , the 
expected utility associated with each feasible Second Mover effort is com-
puted using (7), (9), and (13).

	 3. 	The Second Mover is assigned the effort choice corresponding to the highest 
expected utility.

Steps 1–3 are repeated for each of the 10 rounds, the N Second Movers and the S 
simulated samples. Note that by comparing the expected utilities associated with 
each of the 49 feasible effort choices, we fully account for the discreteness of effort. 
Additionally, the method of simulation does not rely on the objective function being 
well behaved.

B. Asymptotic Properties, Numerical Methods, Moments, and Goodness of Fit

Under the conditions in Pakes and Pollard (1989),  ​  θ​ is consistent and asymptoti-
cally normal. Specifically, with S fixed,

(32)	​√ 
_

 N ​(​  ​    θ​​  −  θ) ​   d
 _ _ →    ​  N(0, ​ S  +  1 _ 

S
 ​​  (D′ WD)​−1​D′ WΩWD​(D′ WD)​−1​) as N  →  ∞,

where Ω = Ncov(M) is the covariance matrix of the sample moments normalized 
by the sample size, W = plim(​W​N​) and

(33)	 D  = ​  1 _ 
S
 ​  ​​∑ 

s=1
​ 

S

  ​  ​​ 
d​ M​s​(​θ​t​) _ 

d​θ​ t​ ′​
 ​ |​

​θ​t​=θ
​.

When implementing MSM, we use S = 30 simulated samples and therefore simu-
late 17,700 pairings when using N = 59, and we estimate the weight matrix ​W​N​ 
using 2,000 bootstrapped samples each containing N Second Movers sampled with 
replacement from the original sample.

The term ( ​∑ s=1​ 
S
  ​  ​​M​s​(​θ​t​))/S appearing in J (​θ​t​) in (14) is not a continuous func-

tion of the parameter vector ​θ​t​ as small changes in ​θ​t​ may cause discrete changes in 
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some Second Movers’ optimal effort choices. Consequently, gradient and Hessian- 
based optimization methods are unsuitable for minimizing J (​θ​t​). Instead, we use 
Simulated Annealing in the form suggested by Goffe, Ferrier, and Rogers (1994) to 
solve for the MSM estimates.

Table 4—Description of Moments

Moment Description Primarily identifying

SD(​e​2,n,r​) Standard deviation of Second Mover effort ​ϕ​π​, ​ϕ​μ​, ​φ​π​, ​φ​μ​, ​σ​λ​
Prop(​e​2,n,r​ < 15); Prop(​e​2, n, r​ > 35) Proportions of Second Mover efforts below 15 and 

above 35
​ϕ​π​, ​ϕ​μ​, ​φ​π​, ​φ​μ​, ​σ​λ​

SD(​e​2, n, r​ − ​e​2, n, r−1​) Standard deviation of the round on round change 
in Second Mover effort

​ϕ​π​, ​φ​π​

Corr (​e​2, n, r​, ​e​2, n, r−1​); Corr (​e​2, n, r​, ​e​2, n, r−2​) 1st and 2nd order autocorrelations in Second 
Mover effort

​ϕ​μ​, ​φ​μ​, ​σ​λ​

Mean (​e​2,n,r​) for r = 1, … , 10 Round specific means of Second Mover effort b, ​δ​r​ for r = 2, … , 10

Corr (​e​2, n, r​, ​v​n, r​ | ​e​1, n, r ​, ​e​1, n, r​ ​v​n, r ​, RD, FE) Correlation between Second Mover effort and the 
prize after partialing out linear additive effects of 
First Mover effort, First Mover effort interacted 
with the prize, round dummies, and Second Mover 
specific fixed effects

κ

Corr (​e​2, n, r ​, ​e​1, n, r​ | ​v​n, r​ , ​e​1, n, r​ ​v​n, r ​, RD, FE) Correlation between Second Mover effort and First 
Mover effort after partialing out linear additive 
effects of the prize, First Mover effort interacted 
with the prize, round dummies, and Second Mover 
specific fixed effects

​​   λ​​2​

Corr (​e​2, n, r ​, ​v​n, r​ ​e​1, n, r​ | ​e​1, n, r​ , ​v​n, r ​ , RD, FE) Correlation between Second Mover effort and First 
Mover effort interacted with the prize after partial-
ing out linear additive effects of First Mover effort, 
the prize, round dummies, and Second Mover 
specific fixed effects

​​   λ​​2​

​Pc​j​ Cor​r​n ​(​e​2, n, r ​, ​v​n, r ​ | ​e​1, n, r​ , ​e​1, n, r​ ​v​n, r ​, RT ) 
  for j = 17, 33, 50, 66, 83

j th percentile of the Second Mover specific corre-
lation between Second Mover effort and the prize 
after partialing out linear additive effects of First 
Mover effort, First Mover effort interacted with the 
prize, and a linear round trend

​ϕ​π​, ​ϕ​μ​, ​φ​π​, ​φ​μ​ 

​Pc​j​ Cor​r​n ​(​e​2, n, r ​, ​e​1, n, r​ | ​v​n, r ​, ​e​1, n, r​ ​v​n, r​ , RT ) 
  for j = 17, 33, 50, 66, 83

j th percentile of the Second Mover specific cor-
relation between Second Mover effort and First 
Mover effort after partialing out linear additive 
effects of the prize, First Mover effort interacted 
with the prize, and a linear round trend

​σ​λ​ 

​Pc​j​ Cor​r​n​(​e​2, n, r​, ​v​n, r​ ​e​1, n, r​ | ​e​1, n, r​ , ​v​n, r ​, RT ) 
  for j = 17, 33, 50, 66, 83

j th percentile of the Second Mover specific cor-
relation between Second Mover effort and First 
Mover effort interacted with the prize after partial-
ing out linear additive effects of First Mover effort, 
the prize, and a linear round trend

​σ​λ​

Mean(​e​2, n, r​ | ​e​1, n, r​ < 23 ∩ ​v​n, r​ < 1.33) Mean of Second Mover effort conditional on low 
First Mover effort and low prize

κ, ​​   λ​​2​ 

Mean(​e​2, n, r​ | ​e​1, n, r​ < 23 ∩ ​v​n, r​ > 2.55) Mean of Second Mover effort conditional on low 
First Mover effort and high prize

κ, ​​   λ​​2​ 

Mean(​e​2, n, r​ | ​e​1, n, r​ > 28 ∩ ​v​n, r​ < 1.33) Mean of Second Mover effort conditional on high 
First Mover effort and low prize

κ, ​​   λ​​2​ 

Mean(​e​2, n, r​ | ​e​1, n, r​ > 28 ∩ ​v​n, r​ > 2.55) Mean of Second Mover effort conditional on high 
First Mover effort and high prize

κ, ​​   λ​​2​

Notes: RD, FE, and RT denote round dummies, Second Mover specific fixed effects and a linear round trend. 
Partialing out is accomplished by working with the residuals from regressions of the dependent variables on the 
control variables.
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Kőszegi, Botond, and Matthew Rabin. 2007. “Reference-Dependent Risk Attitudes.” American Eco-
nomic Review, 97(4): 1047–73.

Krähmer, Daniel, and Rebecca Stone. 2008. “Regret in Dynamic Decision Problems.” http://www.
wiwi.uni-bonn.de/kraehmer/dyn-reg-thy-171008.pdf.

http://faculty.chicagobooth.edu/devin.pope/research/pdf/berger_pope_manuscript.pdf
http://faculty.chicagobooth.edu/devin.pope/research/pdf/berger_pope_manuscript.pdf
http://www.nd.edu/~kdoran/Doran_Labor_Supply.pdf
http://www.people.fas.harvard.edu/~kericson/papers/EricsonFuster-ExpectationsAsEndowments.pdf
http://www.people.fas.harvard.edu/~kericson/papers/EricsonFuster-ExpectationsAsEndowments.pdf
http://dx.doi.org/10.1257/aer.102.1.469
http://www.wiwi.uni-bonn.de/kraehmer/dyn-reg-thy-171008.pdf
http://www.wiwi.uni-bonn.de/kraehmer/dyn-reg-thy-171008.pdf


503Gill and Prowse: A Structural Analysis of Disappointment AversionVOL. 102 NO. 1

Larrick, Richard P. 1993. “Motivational Factors in Decision Theories: The Role of Self-Protection.” 
Psychological Bulletin, 113(3): 440–50.

Levitt, Steven D., and John A. List. 2007. “What Do Laboratory Experiments Measuring Social Prefer-
ences Reveal about the Real World?” Journal of Economic Perspectives, 21(2): 153–74.

Loomes, Graham, and Robert Sugden. 1982. “Regret Theory: An Alternative Theory of Rational 
Choice under Uncertainty.” Economic Journal, 92(368): 805–24.

Loomes, Graham, and Robert Sugden. 1986. “Disappointment and Dynamic Consistency in Choice 
under Uncertainty.” Review of Economic Studies, 53(2): 271–82.

Loomes, Graham, and Robert Sugden. 1987. “Testing for Regret and Disappointment in Choice under 
Uncertainty.” Economic Journal, 97: 118–29.

McFadden, Daniel. 1989. “A Method of Simulated Moments for Estimation of Discrete Response 
Models without Numerical Integration.” Econometrica, 57(5): 995–1026.

Mellers, Barbara, Alan Schwartz, and Ilana Ritov. 1999. “Emotion-Based Choice.” Journal of Experi-
mental Psychology: General, 128(3): 332–45.

Newey, Whitney K. 1985. “Generalized Method of Moments Specification Testing.” Journal of Econo-
metrics, 29(3): 229–56.

Pakes, Ariel, and David Pollard. 1989. “Simulation and the Asymptotics of Optimization Estimators.” 
Econometrica, 57(5): 1027–57.

Pope, Devin G., and Maurice E. Schweitzer. 2011. “Is Tiger Woods Loss Averse? Persistent Bias in the 
Face of Experience, Competition, and High Stakes.” American Economic Review, 101(1): 129–57.

Post, Thierry, Martijn J. van den Assem, Guido Baltussen, and Richard H. Thaler. 2008. “Deal or No 
Deal? Decision Making under Risk in a Large-Payoff Game Show.” American Economic Review, 
98(1): 38–71.

Prelec, Drazen. 1998. “The Probability Weighting Function.” Econometrica, 66(3): 497–527.
Rabin, Matthew. 1993. “Incorporating Fairness into Game Theory and Economics.” American Eco-

nomic Review, 83(5): 1281–1302.
Stern, Steven. 1997. “Simulation-Based Estimation.” Journal of Economic Literature, 35(4): 2006–39.
Tversky, Amos, and Daniel Kahneman. 1992. “Advances in Prospect Theory: Cumulative Representa-

tion of Uncertainty.” Journal of Risk and Uncertainty, 5(4): 297–323.
van Dijk, Frans, Joep Sonnemans, and Frans van Winden. 2001. “Incentive Systems in a Real Effort 

Experiment.” European Economic Review, 45(2): 187–214.
van Dijk, Wilco W., Joop van der Pligt, and Marcel Zeelenberg. 1999. “Effort Invested in Vain: The 

Impact of Effort on the Intensity of Disappointment and Regret.” Motivation and Emotion, 23(3): 
203–20.

Wu, George, and Richard Gonzalez. 1996. “Curvature of the Probability Weighting Function.” Man-
agement Science, 42(12): 1676–90.


	A Structural Analysis of Disappointment Aversion in a Real Effort Competition
	I. Experimental Design
	A. The Slider Task
	B. Experimental Procedure

	II. Theoretical Predictions
	A. One-Shot Theory Model
	B. No Disappointment Aversion
	C. Disappointment Aversion

	III. Empirical Analysis
	A. Overview and Sample Description
	B. Reduced Form Analysis
	C. Structural Modeling

	IV. Alternative Behavioral Explanations
	V. Conclusion
	Appendix A: Proofs
	A. Proof of Proposition 2
	B. Proof of Proposition 3

	Appendix B: MSM: Further Details
	A. Construction of Simulated Samples
	B. Asymptotic Properties, Numerical Methods, Moments, and Goodness of Fit

	REFERENCES




