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Abstract

This paper proposes a new procedure for estimating the number of structural changes in
the persistence of a univariate time series. While the extant literature primarily assumes
(regime-wise) stationarity, our framework also allows the underlying stochastic process
to switch between stationary [I (0)] and unit root regimes [I (1)]. We develop a sequential
testing approach that maintains correct asymptotic size regardless of whether the regimes
are I (0) or I (1). We also propose a novel procedure for distinguishing persistence change
processes from those with pure level and/or trend shifts. Monte Carlo simulations and an
application to OECD inflation rates highlight the practical usefulness of the procedures.

I. Introduction

The twin problems of testing for and estimation of structural changes in time series models
have generated a vast literature in both econometrics and statistics (see Perron, 2006,
for a survey). Determining the number of structural changes is a crucial component of
empirical analysis from the viewpoint of model selection. An early contribution in this
regard is by Yao (1988) who proposed choosing the number of breaks by minimizing the
Bayesian Information Criterion (BIC). Bai and Perron (1998, BP henceforth) propose a
sequential testing procedure in a general regression framework based on the sup-Wald
test for structural change that involves successively applying the test to evaluate the null
hypothesis of, say, l changes against the alternative of l + 1 changes starting with l = 0.1

Monte Carlo evidence presented in Bai and Perron (2006) shows that the sequential testing
approach dominates information criteria-based selection for a variety of data-generating
processes.
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An assumption common to the aforementioned methods of break selection is one of
short memory or stationarity [referred to as I (0), henceforth]. In the univariate context,
this implies that the process is either I (0) over the full sample (in the no break case)
or I (0) within regimes specified by the break dates. While convenient in theory, it rules
out the possibility of a unit root [referred to as I (1), henceforth] in a subsample of the
data or over the whole sample. Perron (1989) showed that there is an intricate interplay
between structural change and unit roots so that standard unit root tests are biased to-
wards the unit root null if the time series is stationary around a broken deterministic trend
(see Leybourne, Mills and Newbold, 2003 for a converse phenomenon). Similarly, Ke-
jriwal and Perron (2010a) show that ignoring the possible presence of a unit root can
generate spurious breaks thereby resulting in an inconsistent estimate of the number
of breaks. When testing for the presence of one of these features (unit roots or struc-
tural change), it is therefore a prudent approach to allow for the possibility of the other
feature.

A plethora of procedures now exists for testing structural change in persistence that
allow for the possibility of a unit root under the null and/or alternative hypotheses. Harvey,
Leybourne and Taylor (2006) propose test statistics for a single break based on partial sums
of residuals that allow the process to be I (1) or I (0) throughout under the null hypothesis.
Leybourne, Kim and Taylor (2007) develop recursive tests of the unit root null that can
accommodate multiple changes in persistence. Kejriwal, Perron and Zhou (2013, KPZ
henceforth) propose sup-Wald tests for detecting multiple persistence breaks allowing the
process to be either I (1) or I (0) under the null hypothesis assuming the number of breaks
to be known a priori. It thus appears relevant from a practical perspective to develop a
procedure for break selection that allows the process to be either I (1) or I (0) in the stable
case and also remains valid regardless of whether the breaks are I (0) preserving or involve
switches between I (0) and I (1) regimes.

This paper proposes a new sequential procedure for estimating the number of breaks in
the persistence of a univariate time series that is robust to the presence of a unit root over the
full sample or in any (asymptotically non-negligible) subsample of the data. The procedure
is based on simultaneous application of two Wald-type tests for structural change, one of
which assumes the process is I (0) stable under the null hypothesis while the other assumes
the stable I (1) model as the null hypothesis. Using the intersection of the two critical re-
gions as the relevant critical region enables the procedure to maintain correct asymptotic
size regardless of whether the regimes are I (0) or I (1) as well as possess respectable power
for detecting a variety of persistence change alternatives. The relevant asymptotic critical
values are obtained from the appropriate quantiles of the single break limit distributions
and tabulated for a range of trimming values. We also discuss how our procedure can be
employed to address the important practical issue of distinguishing processes with pure
level and/or trend breaks from those that are characterized by concurrent shifts in per-
sistence as well. Our Monte Carlo experiments demonstrate that the advocated approach
compares favourably relative to the commonly employed BP approach, especially when
the data contain an I (1) segment. An empirical application to OECD inflation rates fur-
ther highlights the discrepancies between the two approaches, with the robust procedure
selecting a smaller number of breaks when the series has one or more high persistence
segments.
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The rest of the paper is organized as follows. Section II lays out the persistence change
model and the associated assumptions. Section III develops the proposed sequential testing
procedure and its large sample properties while section IV considers a modification of
the analysis to allow for deterministic trends. Section V suggests procedures for dealing
with pure level and/or trend breaks. The extension to higher order serial correlation is
considered in section VI. Section VII presents Monte Carlo evidence to assess the finite
sample adequacy of the asymptotic approximations. Section VIII presents an application to
OECD inflation rates and section IX concludes.All proofs are included in OnlineAppendix
A with the full set of simulation results reported in Online Appendix B.

As a matter of notation, we let
p→ denote convergence in probability,

d→ conver-
gence in distribution and ⇒ weak convergence of the associated probability measures.
Let B1(.) and B2(.) denote standard independent Brownian motions on [0, 1] and B(.) =
[B1(.), B2(.)]′. Let B̃

(i)

j (.) represent Bj(.) demeaned over [�i−1,�i], that is, B̃
(i)

j (r) = Bj(r) −
(�i −�i−1)−1

∫ �i

�i−1
Bj, r ∈ [�i−1,�i].The Brownian motions demeaned over the full sample are

denoted as B̃j(.)=Bj(.)−
∫ 1

0 Bj. All integrals of the form
∫ b

a g(r)dr are expressed as
∫ b

a g.

II. The persistence change model

Consider a univariate time series yt with data-generating process (DGP)

yt =�i +ut , ut =uT 0
i−1

+ht

ht =�iht−1 + et , hT 0
i−1

=0 (1)

for t = T 0
i−1 + 1, T 0

i−1 + 2,…, T 0
i ; i = 1,…, m + 1, with T 0

0 = 0 and T 0
m+1 = T , where T is the

sample size. The process is therefore subject to m breaks or m+1 regimes with break dates
(T1,…, Tm). The same DGP was considered by Leybourne et al. (2007) and is designed to
ensure that the successive I (1) and I (0) regimes join up at the breakpoints thereby avoiding
the problem of spurious jumps to zero in ut . We make the following assumptions on the
break dates and the noise component et:

Assumption A1. T 0
i = [T�0

i ], where 0 <�0
1 < · · ·<�0

m < 1.

Assumption A2. {et} is a martingale difference sequence with respect to {Ft}, with
Ft =�-field{es, s � t}, E(e2

t |Ft−1)=�2, sup E(|et|4+�|Ft−1) <∞ for some � > 0.

AssumptionA1 allows the development of the asymptotic theory by requiring the break-
points to be asymptotically distinct and is standard in the structural change literature. As-
sumption 2 rules out serial correlation in the innovation sequence and requires conditional
homoscedasticity. The case with serial correlation where et follows a general linear process
will be considered in section VI.

From (1), we can write

yt = ci +�iyt−1 + et (2)

where ci = (�i +uT 0
i−1

)(1−�i). KPZ consider tests of the null hypothesis H (1)
0 : �i =1 for all

i. [We use the notation H (a)
0 to denote the I (a) null hypothesis, a = 0, 1]. Note that under

H (1)
0 , ci = 0 for all i so that the time series follows a stable unit root process. Under the

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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alternative hypothesis of unstable persistence, the following two models are considered
depending on whether the initial regime contains a unit root or not:

Model 1a. �i =1 in odd regimes and |�i|< 1 in even regimes; Model 1b. �i =1 in even
regimes and |�i|< 1 in odd regimes.

KPZ consider a variety of tests of H (1)
0 . For a given number of m = k of changes, the

Wald test against model 1a is defined as

F1a(�, k)= (T − k)(SSR(1)
0 −SSR(1)

1a,k)/ [kSSR(1)
1a,k] if k is even

F1a(�, k)= (T − k −1)(SSR(1)
0 −SSR(1)

1a,k)/ [(k +1)SSR(1)
1a,k] if k is odd (3)

In equation (3), SSR(1)
0 denotes the sum of squared residuals under H (1)

0 while SSR(1)
1a,k denotes

the sum of squared residuals obtained from estimating (2) under the restrictions imposed
by Model 1a. The test F1b is defined similarly. We denote the corresponding alternative
hypotheses as H (1)

1a,k and H (1)
1b,k respectively. For some small positive �, define �k

� = {� :
|�i+1 −�i| � �,�1 � �,�k � 1 − �, i = 1,…, k − 1}. The sup-Wald tests are then defined as
F1a(k)= sup�∈�k

�
F1a(�, k) and F1b(k)= sup�∈�k

�
F1b(�, k). When the persistence of the initial

regime is assumed to be unknown, the relevant test is W1(k)=max[F1a(k), F1b(k)]. Finally,
when the number of breaks is unknown up to some maximal value A, the statistic is
Wmax1 =max1�k�A W1(k).

The stable I (0) null can be tested by employing the BP procedure. Specifically, consider
testing H (0)

0 : ci = c,�i = �, for all i with |�| < 1 in equation (2) with ci = �i(1 − �i). The
relevant alternative hypothesis within the BP framework is H (0)

1,k : �1 �=�2 �=… �=�k+1, |�i|<
1, i =1,…, k +1. The time series is thus regime-wise I (0) under H (0)

1,k . The BP test for m=k
changes is

G1(�, k)= [T −2(k +1)](SSR(0)
0 −SSR(0)

1,k)/ [kSSR(0)
1,k] (4)

In equation (4), SSR(0)
0 denotes the sum of squared residuals under H (0)

0 while SSR(0)
1,k

denotes the sum of squared residuals obtained from unrestricted OLS estimation of (2).The
BP test is then defined as G1(k)= sup�∈�k

�
G1(�, k). When the number of breaks is unknown,

the relevant test statistic is UDmax1 =max1�k�A G1(k). For details on the computation of
the KPZ and BP test statistics, we refer the reader to the original articles.

III. A robust sequential procedure

The KPZ tests are based on the stable I (1) null hypothesis and diverge to positive infinity
when the process is stable I (0) while the BP test does not have correct asymptotic size
when the process is stable I (1). Let H0 =H (1)

0 ∪H (0)
0 . Define the following test statistics:

H1(k ,�)=min
[

W1(k),
cvw,k(�)

cvg,k(�)
G1(k)

]
, Hmax1(�)=min

[
Wmax1,

cvw, max(�)

cvg, max(�)
UDmax1

]

where, at level �, cvw,k(�), cvg,k(�), cvw, max(�), andcvg, max(�) are the critical values of the
tests W1(k), G1(k), Wmax1 and UDmax1 respectively. In order to control asymptotic size
under H0, KPZ recommend employing the following decision rule for a fixed number of
breaks k:

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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‘Reject H0 if H1(k ,�) > cvw,k(�)’ (5)

(5) is equivalent to rejecting H0 when both W1(k) and G1(k) reject. When the number of
breaks is unknown, the relevant decision rule is

‘Reject H0 if Hmax1(�) > cvw, max(�)’ (6)

Consider using decision rule (5) with a given nominal level � for each of W1(k) and G1(k).
Since W1(k) and G1(k) are correctly sized under H (1)

0 and H (0)
0 respectively, it follows that

H1(k ,�) has asymptotic size at most � under H0. A similar argument holds for (6).
We now develop a sequential test of the null hypothesis of l breaks against the alternative

hypothesis of (l +1) breaks in equation (2). First, we obtain the estimates of the break dates
(T̂ 1,…, T̂ l) as global minimizers of the sum of squared residuals from the unrestricted
model with l breaks (i.e. SSR(0)

1,l) estimated by least squares.
Next, we test for the presence of an additional break in each of the (l + 1) segments

obtained using the estimated partition (T̂ 1,…, T̂ l). Let �l+1 =1− (1−�)1/ (l+1). Define

H (i)
1 (1,�l+1)=min

[
W (i)

1 (1),
cvw,1(�l+1)

cvg,1(�l+1)
G(i)

1 (1)
]
, H1(l +1 | l)= max

1�i�l+1
{H (i)

1 (1,�l+1)}

where W (i)
1 (1) denotes the W1(1) test computed using data in the (estimated) regime i, that

is, [T̂ i−1 + 1, T̂ i] and G(i)
1 (1) denotes the G1(1) test computed using the observations in

[T̂ i−1 +1, T̂ i]. We conclude in favour of a model with (l +1) breaks if

H1(l +1 | l) > cvw,1(�l+1) (7)

The test thus amounts to the computation of (l +1) tests of the null hypothesis of no change
vs. the alternative hypothesis of a single change and assessing whether their maximum is
sufficiently large. The threshold value cvw,1(�l+1) is the (1 − �l+1)-th quantile of the limit
distribution of W1(1). The following result shows that the decision rule (7) has asymptotic
size at most � under the null hypothesis of l breaks.

Theorem 1. Let Assumptions A1 and A2 hold. Under the null hypothesis that the true
number of breaks is l, we have limT→∞ P(H1(l +1|l) > cvw,1(�l+1))��.

This result uses the fact that the estimated break fractions (T̂ 1/T ,…, T̂ l /T ) converge
at rate T regardless of the direction of change in persistence. While BP establish the T
consistency of the estimated break fractions in regime-wise stationary models, Chong
(2001); Kejriwal and Perron (2012) show, respectively, a similar result for a switch from
an I (0) to an I (1) regime and from an I (1) to an I (0) regime.

The test based on H1(l +1|l) can be used to provide an estimate of the number of breaks
m̂ in the following way:

(i) First, apply the decision rule (6) that tests the null hypothesis H0 against an unknown
number of breaks. If a non-rejection is obtained, set m̂=0 and the procedure stops.
Otherwise, go to step 2.

(ii) Upon a rejection in step 1, use the rule (7) with l =1 to determine if there is more
than one break. This process is repeated by increasing l sequentially until the test
fails to reject the null hypothesis of no additional structural breaks.

(iii) The estimate m̂ is then obtained as the number of rejections.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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The following result shows that the proposed algorithm guarantees that the probability
of selecting the true number of breaks is at least (1−�) in large samples:

Theorem 2. Let Assumptions A1 and A2 hold. Let m be the true number of breaks and
m̂ be the estimated number of breaks obtained using nominal level �. Then limT→∞P(m̂=
m)�1−�.

The sequential procedure can be made consistent by allowing the significance level of
the tests Hmax1 and H1(l + 1|l) to decrease to zero at a suitable rate as the sample size
increases. It can be shown that if the true number of breaks is at least l + 1, Hmax1 and
H1(l + 1|l) diverge at rate Op(T ). Thus, if the critical values cvw,1, cvg,1, cvw, max, cvg, max

are allowed to increase at rate Op(T 1−"), 0 < " < 1, the size of the tests converges to
zero at T increases while ensuring their consistency under the alternative. We thus have
the following corollary whose proof is similar to that of Hosoya (1989) and is thus
omitted:

Corollary 1. Let m be the true number of breaks and m̂ be the number of breaks
obtained using the sequential procedure based on the test statistic H1(l + 1|l) applied
with significance level �T . Consider a sequence of critical values cvw,1 = c1T 1−", cvg,1 =
c2T 1−", cvw, max = cmaxT 1−" (c1, c2, cmax are positive constants) so that �T converges to zero
while ensuring that H1(l +1|l) remains consistent. Then, P(m̂=m)→1 as T →∞.

Remark 1. Using the rule (6) in the first step instead of the H1(1|0) statistic is mo-
tivated by the fact that single break tests can suffer from low power in the presence of
multiple breaks. Power can potentially still be an issue with more than three breaks, for
example, the DGP has four breaks with two breaks on either side of the first estimated
breakpoint.

Remark 2. Theorem 2 and Corollary 1 hold not only under the alternative hypotheses
H (1)

1a,m, H (1)
1b,m and H (0)

1,m but also under more general alternatives where the process involves
a mix of I (1) and I (0) regimes with possibly adjacent I (0) regimes.

Remark 3. While Theorem 2 suggests that the probability of break selection can be
guaranteed to exceed any preassigned value by choosing a sufficiently small �, it must be
borne in mind that it is a large sample result that uses the fact that the test H1(l + 1|l)
is consistent under the alternative hypothesis of at least (l + 1) breaks. In finite samples,
however, the power of the test depends on the significance level used and using too small
a level can lead to underestimating the true break number.

IV. Deterministic trends

This section discusses how the sequential procedure proposed in section III can be extended
to allow for the presence of deterministic trends. We consider an extension of (1) that
includes the possibility of m breaks in the deterministic trend:

yt =�0 +�0t +
m∑

j=1

�jDUjt +
m∑

j=1

�jDTjt +ut (8)

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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where DUjt = I (t > T 0
j ), DTjt = I (t > T 0

j )(t −T 0
j ); j =1,…, m, and ut as specified in equation

(1). The DGP (8) can be expressed as

yt = ci +bit +�iyt−1 + et (9)

The difference between (2) and (9) is the presence of the deterministic trend in the latter
and that the intercept ci is now a function of the trend parameters appearing in equation
(8). KPZ propose tests of the null hypothesis H̃

(1)

0 : ci = c,�i = 1 for all i in equation (9).

Under H̃
(1)

0 , bi = 0 for all i so that the process follows a stable unit root process with pos-
sible drift. As in the trendless case, KPZ consider two models (denoted as 2a and 2b)
under the alternative hypothesis depending on whether the initial regime is trend or dif-
ference stationary. The test statistics are accordingly denoted by F2a(�, k), F2b(�, k), W2(k)
and Wmax2.

We now turn to testing the null of a stable trend stationary process, that is, H̃
(0)

0 : ci =
c, bi = b,�i =� for all i where |�| < 1 in equation (9). The test statistic for a fixed number
m= k changes is based on

G2(�, k)= [T −3(k +1)](S̃SR
(0)

0 −SSR(0)
2,k)/ [kSSR(0)

2,k] (10)

In equation (10), S̃SR
(0)

0 denotes the sum of squared residuals under H̃
(0)

0 , that is, that
obtained from OLS estimation of (9) subject to the restrictions ci =c, bi =b,�i =� for all i.
The quantity SSR(0)

2,k denotes the sum of squared residuals obtained from unrestricted OLS
estimation of (9). The test statistic is then defined as G2(k) = sup�∈�k

�
G2(�, k). When the

number of breaks is unknown, the relevant test statistic is UDmax2 =max1�k�A G2(k).
The limit distributions of G2(k) and UDmax2 are not the same as those of G1(k) and

UDmax1 and therefore the BP critical values cannot be used. The relevant limit result is
stated in the following theorem:

Theorem 3. Suppose Assumptions A1 and A2 hold. Let F(r)= (1, r)′, r ∈ [0, 1]. Under
H̃

(0)

0 ,

G2(k)⇒G2*(k), UDmax2 ⇒ max
1�k�A

G2*(k)

The expression for the limiting random variable G*
2(.) is provided in Appendix B. It

depends on F(.) and B1(.) but not on any nuisance parameters (given �). While the limit is
different from that in BP, asymptotic critical values can be obtained through simulation.

Remark 4. The sequential procedure described in section III can be applied in the
trending case with G1(1), W1(1), UDmax1 and Wmax1 replaced by G2(1), W2(1), UDmax2

and Wmax2, respectively.Theorems 1 and 2 still hold for this modified sequential procedure.

Remark 5. Bai (1999) proposes an alternative likelihood-ratio–based procedure allow-
ing for trending regressors based on estimating l breaks simultaneously under the null and
estimating (l + 1) breaks simultaneously under the alternative. While his critical values
depend on the true breakpoints and thus must be computed on a case-by-case basis, ours
can be tabulated for general use. His procedure does not allow for the possibility of a unit
root.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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V. Structural breaks in level and trend

This section addresses the empirically important issue of distinguishing between processes
with pure level shifts and/or trend breaks from those where these breaks are accompanied
by concurrent shifts in persistence. Appendix B provides Monte Carlo evidence on the
finite sample performance of these procedures.

Breaks in level

The KPZ and BP tests are consistent against processes with pure shifts in level but a stable
I (0) persistence parameter and so therefore cannot be directly used to distinguish between
processes characterized by level shifts only and those that are characterized by concurrent
shifts in level and persistence. Our proposed procedure for distinguishing between these
two possibilities is related to the two-step approach taken in Hsu and Kuan (2001) for
disentangling a slope change from a level shift in a time trend model with stable I (0)
errors. In a first step, the joint null of stability in both coefficients is tested and, conditional
on a rejection, the break date is estimated by minimizing the sum of squared residuals and
used in a second step to test the stability of the intercept or trend coefficient, while allowing
the other coefficient to change.

Our approach is based on the fact that the estimated number of breaks obtained from
applying the robust sequential procedure is still consistent even if the process is only
subject to shifts in level. Furthermore, the estimated breakpoints �̂= (�̂1,…, �̂m̂)′ obtained
by minimizing the global sum of squared residuals from the unrestricted model (2) are T
consistent for the corresponding true breakpoints regardless of whether the level shifts are
accompanied by concurrent shifts in persistence (Bai, 1994; BP). Specifically, consider
the standard Wald statistic for testing �i =� for all i in the model

yt = ci +�iyt−1 + et , t ∈ [T̂ i−1 +1, T̂ i]; i =1,…, m+1 (11)

Denote the resulting statistic at W *(m). The following result establishes the limit dis-
tribution of W *(m) under the null hypothesis that the process has a stable I (0) persistence
parameter with m shifts in level:

Theorem 4. Suppose Assumptions A1 and A2 hold. Under the null hypothesis �i =�∀i

where |�|< 1, W *(m)
d→�2(m).

We thus recommend the following three-step procedure. First, we determine the number
of breaks (m̂) applying the robust sequential procedure proposed in section III. Second, con-
ditional on m̂ and the corresponding estimates of the breakpoints (T̂ 1, T̂ 2,…, T̂ m̂) obtained
from the unrestricted model (2), we compute the Wald statistic for testing the stable I (0)
null hypothesis (i.e. constancy of �i over all i in equation (11) while allowing the intercept
to vary across the (m̂+1) regimes. Third, the null hypothesis of stable I (0) persistence is
rejected if the Wald statistic is significant at the specified level where the critical value is
obtained from the �2(m̂) distribution. Otherwise, the null is not rejected and we conclude
in favour of a model with pure level shifts.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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Breaks in trend

The trending case is further complicated by the fact that with pure trend breaks, the process
can be either trend stationary or difference stationary, that is, the persistence parameter
can be either I (1) stable or I (0) stable. We exploit the fact that Theorem 2 remains valid
for the robust sequential procedure even when the process is subject to trend breaks only,
given the joint nature of the null hypotheses. Furthermore, the estimates of the break-
points obtained by global minimization of the sum of squared residuals in the unrestricted
model (9) that allows concurrent trend and persistence breaks are T consistent regard-
less of whether the trend breaks are accompanied by shifts in persistence in the true
DGP. In the pure trend break case, this result follows from the results in Perron and Zhu
(2005) while in the concurrent case, it follows from the results in Chong (2001); Kejriwal
and Perron (2012). Based on the estimated break number and the corresponding break-
points, the null hypothesis of constant persistence can be evaluated by testing for structural
change in the persistence parameter while allowing the trend parameters to change across
regimes.

For testing I (0) stability, we consider the standard Wald statistic for testing �i =� for
all i in the model

yt = ci +bit +�iyt−1 + et , t ∈ [T̂ i−1 +1, T̂ i], i =1,…, m+1 (12)

Denote the resulting statistic as W̃ 0(m). For testing I (1) stability, we compute the Wald
statistic based on the difference between the restricted and unrestricted sum of squared
residuals where the former is obtained by estimating the restricted model

�yt = ci + et , t ∈ [T̂ i−1 +1, T̂ i], i =1,…, m+1 (13)

while the latter is obtained by estimating the unrestricted model (12).We denote this statistic
as W̃ 1(m). The following theorem states the limit distributions of W̃ 0(m) and W̃ 1(m) under
the respective null hypotheses:

Theorem 5. Suppose that Assumptions A1 and A2 hold. Let F(r)= (1, r)′. Then, under
the null hypothesis of m trend breaks,

(i) If �i =� ∀i with |�|< 1, W̃ 0(m)
d→�2(m).

(ii) If �i =1 ∀i, W̃ 1(m)⇒ W̃
*

1(m,�0).

While the statistic W̃ 0(m) has a standard chi-squared limiting distribution, W̃ 1(m) has
a non-standard limit distribution depending on m and �0 = (�0

1,…,�0
m)′. The expression

for the limiting random variable W̃
*

1(., .) is provided in Appendix B. To obtain the critical
values, the limit can be approximated via Monte Carlo simulation by replacing �0 with the
estimated break fractions �̂ = (�̂1,…, �̂m̂)′ obtained from the unrestricted model (12) and
replacing the Wiener process B1(.) by partial sums of i.i.d. standard normal deviates. A
three-step sequential approach akin to that described in the previous subsection can then
be implemented with the modification that in the final step the null hypothesis of constant
persistence [I (1) or I (0)] is rejected if both statistics W̃ 0(m̂) and W̃ 1(m̂) are significant at
the specified level.
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VI. Higher order serial correlation

We now provide an extension of model (1) that allows the time series {yt} to be generated
by an AR(p) process. Specifically, we make the following assumption that allows at most
one unit root in each regime while requiring all remaining roots to be stationary.

Assumption A3 The errors ht in equation (1) are generated as

ht =�iht−1 +
p−1∑
j=1

	ij�ht−j + et

hT 0
i−1

=…=hT 0
i−1−p+1 =0

⎫⎬
⎭ t =T 0

i−1 +1, T 0
i−1 +2,…, T 0

i ;
i =1,…, m+1

(14)

where all roots of the polynomial 	(L) = 1 −	i1L −	i2L2 −… −	i,p−1Lp−1 lie outside the
unit circle and {et} satisfies Assumption A2.

In the non-trending case, yt =�i +ut which leads to the test regression

�yt = ci + (�i −1)yt−1 +
p−1∑
j=1

	j�yt−j + et* (15)

where ci = (�i +uT 0
i−1

)(1−�i) and e*
t is the regression error. In the trending case, we augment

(15) with a deterministic time trend regressor. The test statistics in the serially correlated
case are constructed in a similar way as in section III except that the relevant test regression
is now (15) instead of (2). Under Assumptions A1–A3, Theorems 1–5 are expected to hold
for the KPZ and BP test statistics computed from (15). This follows from the fact that all
limit results for the test statistics (under the null and alternative hypotheses considered in
the AR(1) case) remain valid in the general case as long as the statistics are computed from
(15) [see Theorems 2 and 3 in KPZ].

The true lag order p is assumed unknown so an important practical issue regarding the
implementation of the sequential approach concerns the choice of the lag order (say lT )
in estimating the specification (15). Based on extensive simulation experiments, we found
the following approach to be both computationally efficient as well as deliver robust results
with respect to selecting the true number of breaks. First, we determine the lag length using
BIC based on the stable I (0) and stable I (1) null hypotheses respectively. The maximum
of the two lag lengths is then used to compute the Wmax1 and UDmax1 (or Wmax2 and
UDmax2 in the trending case) tests in step 1 of the sequential procedure. Second, upon a
rejection, the unrestricted single break model is estimated over the full sample for each
allowable lag length (zero to, say, lmax), whereby all regression coefficients including those
of the lagged differences are allowed to change across regimes. Choose the lag length as the
minimizer of the BIC over [0, lmax].Third, the lag length thus determined is used to compute
the test statistics in the two regimes specified by the estimated break date. Subsequently,
at each stage ‘j’ of the procedure, choose the lag length by minimizing the BIC across
permissible lag lengths where each model is estimated by global minimization of the sum
of squared residuals allowing for j breaks. The test statistics in the (j +1) estimated regimes
are then computed using this choice. In this way, the choice of the lag length adapts to the
null hypothesis under consideration at each step (j vs. (j +1) breaks). This approach to lag
selection was observed to dominate an approach based on a fixed number of lags as well
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as one where the lag choice was made once and for all under either the stable I (0) or I (1)
null.

VII. Monte Carlo evidence: Summary

This section summarizes results from a set of Monte Carlo experiments designed to evaluate
the finite sample performance of the proposed approach (denoted SeqR) relative to the BP
approach (denoted SeqBP). The full set of results is available in Appendix B. Asymptotic
critical values for implementing the sequential test of l vs. (l + 1) breaks (l = 0, 1,…, 5)
are obtained by Monte Carlo simulation and provided in Tables 1 and 2 for three trimming
choices: �=0.15, 0.20, 0.25.

We considered an AR(1) DGP for {yt} with zero, one and two persistence breaks re-
spectively. The breaks either involve a switch between I (1) and I (0) regimes or between
different I (0) regimes. Three types of error structures based on N(0,1) innovations were
entertained: i.i.d; AR(1); MA(1). Three sample sizes are considered: T = 200; 400; 600.
The sequential test (for both procedures) at each step is evaluated at the 10% nominal level
(i.e. �= .10 in section III). We also considered using �= .05 but found that for T �400, the
underestimation probabilities were considerable and that �= .10 appeared to provide the
best compromise in terms of the size-power trade-off while the two levels delivered com-
parable results for T =600. The trimming parameter was set at �= .15 and the maximum
number of breaks at A=5. All experiments are based on 1000 replications. To account for
serial correlation, we implement the lag selection procedure outlined in section VI with
lmax =4.2 The principal findings are summarized as follows.

(i) In the no breaks scenario with i.i.d. errors, when the process is relatively less
persistent (�� .7), the performance of the two procedures is very similar. However,
as � increases further, the differences become quite prominent with SeqBP selecting
at least one break far more frequently.

(ii) With at least one persistence break and i.i.d. errors, SeqBP continues to be oversized
as long as one regime is highly persistent. This is true even when the breaks are I (0)
preserving where the BP approach is asymptotically valid. On the other hand, SeqR

exhibits a more reliable performance in identifying the true model across different
break locations for a given DGP.

(iii) With serially correlated errors, the relative performance of the two approaches
hinges on the nature of serial correlation. While SeqR continues to be accurate for
positively correlated errors, it can be subject to substantial underestimation when
a negative MA component is present. This is due to the fact that the autoregressive
approximation (15) does not adequately account for the serial correlation in this
case. Therefore, just as not accounting for positive serial correlation (i.e. a unit
root) causes a bias in favour of a model with structural change, negative serial
correlation induces a bias against a model with structural change. This issue is,

2
Given that the sequential tests are computed from successively smaller subsamples, it is important to use a

relatively small number of lags from a parsimony standpoint when constructing the various statistics. Nevertheless,
we also implemented the procedure with lmax =6 and found the results to be inferior in terms of true break selection
probabilities across procedures compared to using lmax =4.
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Table 1

Asymptotic critical values of the Hj(l +1|l) tests for j =1, 2 [i.e. cvw,j(�l+1),
cvw,max(�)]

l

� 1−� 0 1 2 3 4 5 Wmax1

Non-trending case
.15 .90 8.09 8.94 9.53 9.96 10.29 10.51 9.86

.95 8.99 10.00 10.52 10.91 11.20 11.44 10.90

.975 10.00 10.95 11.46 11.68 12.06 12.34 11.95

.99 11.21 12.06 12.66 1.90 13.24 13.53 13.02

.20 .90 7.85 8.80 9.32 9.84 10.18 10.34 9.30
.95 8.85 9.86 10.34 10.64 11.00 11.28 10.23
.975 9.88 10.67 11.29 11.72 11.99 12.10 11.16
.99 11.03 11.99 12.18 12.44 12.97 13.72 12.12

.25 .90 7.61 8.52 8.98 9.40 9.76 10.07 8.63
.95 8.55 9.43 10.11 10.41 10.75 10.97 9.49
.975 9.45 10.43 11.00 11.33 11.71 11.81 10.36
.99 10.77 11,71 11.99 12.17 14.44 12.62 11.57

l

� 1−� 0 1 2 3 4 5 Wmax2

Trending case
.15 .90 7.28 7.96 8.39 8.72 8.91 9.10 7.71

.95 7.98 8.74 9.11 9.56 9.72 9.80 8.43

.975 8.75 8.75 9.84 10.26 10.60 10.66 9.18

.99 9.73 9.73 10.60 10.75 11.12 11.18 10.07

.20 .90 7.15 7.82 8.19 8.47 8.60 8.89 7.42
.95 7.82 8.48 8.91 9.09 9.20 9.38 8.08
.975 8.51 9.10 9.39 9.60 9.94 10.10 8.65
.99 9.21 9.94 10.43 10.70 10.89 11.23 9.42

.25 .90 6.97 7.66 8.07 8.37 8.55 8.67 7.14
.95 7.69 8.38 8.68 9.02 9.16 9.27 7.82
.975 8.41 9.03 9.30 9.44 9.64 9.94 8.51
.99 9.16 9.64 10.16 10.69 10.85 11.23 9.22

however, ameliorated as the sample size increases and SeqR is seen to dominate
SeqBP when T � 400. Overall, the performance of SeqR is accurate for T � 400
unless a large negative MA component is present.

(iv) An empirically important issue concerns the choice of the maximum allowable
number of breaks in relation to the sample size. Given that the sequential tests
are implemented on subsamples of the data, allowing for too many breaks with
a relatively small sample size is likely to result in size distortions/low power re-
sulting in overestimating/underestimating the number of breaks. Based on our ex-
periments, it appears reasonable to allow for a maximum of five breaks when
T =400.
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TABLE 2

Asymptotic critical values of the BP tests [i.e. cvg,1(�l+1), cvg,max(�)],
trending case

l

� 1−� 0 1 2 3 4 5 UDmax2

.15 .90 10.77 12.60 13.56 14.28 14.71 15.00 11.04
.95 14.33 15.02 15.79 16.51 16.82 16.82 12.85
.975 14.36 15.82 16.89 17.27 17.63 18.09 14.40
.99 16.57 17.63 18.52 18.85 19.27 19.42 16.57

.20 .90 10.43 12.20 13.27 13.95 14.54 14.88 10.59
.95 12.23 14.01 14.96 15.63 16.26 16.59 12.40
.975 14.12 15.68 16.60 17.13 17.47 17.87 14.13
.99 16.34 17.47 18.27 18.85 19.42 20.03 16.34

.25 .90 10.09 11.87 12.88 13.56 14.26 14.58 10.21
.95 11.95 13.61 14.64 15.26 15.96 16.39 12.01
.975 13.69 15.38 16.47 16.92 17.37 17.47 13.70
.99 15.99 17.37 18.09 18.50 19.42 19.60 16.00

VIII. Empirical application: OECD inflation persistence

This section applies the proposed methodology to analyze the nature of the inflation process
for a set of OECD countries. Given the adoption of inflation targeting as the primary
objective of long-run monetary policy in many countries, an issue that has been subject
to intense debate among academics and policymakers is whether inflation persistence is
an inherent characteristic of the economy that should be explicitly incorporated while
formulating macroeconomic models. According to one view, inflation persistence is stable
and high, that is, consistent with the presence of a unit root. For instance, Stock (2001);
Pivetta and Reis (2007) present evidence supporting this view for the USA while O’Reilly
and Whelan (2005) provide corroborating evidence for the Euro area. In contrast, another
strand of the literature argues that inflation persistence is time varying and depends on
the transparency and credibility of the underlying monetary policy regime. Taylor (2000);
Cogley and Sargent (2001) find that both the level and persistence of US inflation has
decreased over time (see Benati, 2008 for similar evidence on Euro area inflation). Yet
another strand of the literature argues that inflation persistence is low and stable once one
allows for time variation in the level of inflation (Levin and Piger, 2004).

The bulk of the empirical literature addressing this debate has focused on the applica-
tion of unit root tests with or without allowing for mean shifts and standard structural break
tests (Andrews, 1993; Bai and Perron, 1998) on the mean and/or persistence parameters.
Two recent contributions in this context are Noriega, Capistrán and Ramos-Francia (2013);
Belaire-Franch (2019). The former is based on the application of the methodology advo-
cated by Leybourne et al. (2007) which restricts the null to be stable I (1) while the latter
employs the original KPZ procedure which does not address the issue of model selection,
that is, the number and nature of breaks driving the time series.

Our empirical analysis is based on monthly CPI inflation data for 19 OECD coun-
tries used in Noriega et al. (2013); Belaire-Franch (2019). The data span the period
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1960:01–2008:06 so that T =582, except for Germany and Korea where the starting point
is 1960:02.3 The inflation rate is computed as it =1200(ln Pt − ln Pt−1), where Pt denotes
the CPI at time t. All inflation rates are seasonally unadjusted.4 The results are reported in
Table 3. The estimates of the number of breaks from the robust and BP approaches are de-
noted m̂R and m̂BP respectively. We also report the largest least squares persistence estimate
across the (m̂R + 1) regimes demarcated by the estimated break dates, the corresponding
median unbiased estimate and the 90% confidence band computed using Hansen’s (1999)
grid bootstrap procedure based on 999 bootstrap replications and 200 grid points.5 The
parameter estimates were obtained from a specification in which the lag length was chosen
using the BIC with a maximum permissible length of 12. Conditional on the estimate m̂R,
we conducted tests for the null hypothesis of pure mean shifts as discussed in section V in
order to determine the nature of the breaks. Finally, the last two columns report the model
selected by m̂R and the estimated break dates respectively.

Several features of the findings are noteworthy. First, SeqBP selects more breaks (m̂BP >
m̂R) in 13 out of the 19 countries. Of these, the BP approach estimated one additional
break for Italy and Germany while at least two additional breaks for the other 11 countries.
Second, comparing the cases where m̂BP = m̂R with those where m̂BP > m̂R, a clear pattern
emerges. For the six countries where the two procedures concur, the largest least squares
persistence estimate lies in the range [.00,.69] while the median unbiased estimate lies in
[.00,.73]. In sharp contrast, in 10 out of the 13 countries where the procedures disagree, the
corresponding range for the former is [.82,.91] while that for the latter is [.87,.98]. Further-
more, the 90% confidence bands include unity in nine of the ten countries (the exception
being USA). The empirical evidence is therefore consistent with the evidence presented
earlier which indicated that the BP approach is likely to overestimate the number of breaks
in the presence of a highly persistent segment in the time series. Third, the data provide
evidence in favour of a pure mean shifts model in only six countries.6 The implication
is that one might obtain misleading evidence on the degree of inflation persistence when
relying on a model that only allows for breaks in level as opposed to a model that allows
for a break in both level and persistence.

Turning to model selection, we classify a regime as I (1) if the 90% confidence band
for the persistence parameter includes unity and I (0) otherwise.7 The results show that the

3
The data set used in Noriega et al. (2013) and Belaire-Franch (2019) contains five additional OECD countries

(Australia, New Zealand, Hungary, Iceland, Ireland) which we excluded from our analysis as the data for these
countries were available for considerably shorter time spans.

4
We prefer to use seasonally unadjusted rates since commonly used adjustment procedures such as Census X-11

or X-12 can have adverse effects on the power of structural change tests by smoothing the time series of interest (see
Ghysels and Perron, 1996).

5
To save space, we do not report the autoregressive estimates for each regime. The results are available upon

request.
6
For Canada, the null hypothesis of a pure mean shift model was not rejected at the 10% level. However, the 90%

confidence band for the persistence parameter based on this model was found to be [.81,1.03] which includes unity.
We therefore also estimated a model that allows a break in both level and persistence and obtained 90% confidence
bands for the first and second regimes as [.86,1.05] and [.07,.39] respectively (with corresponding median unbiased
estimates .98 and .23). Based on this finding, our preferred specification for Canada is one that allows a concurrent
break in mean and persistence.

7
For brevity, we do not present the persistence estimates for each regime. The full set of results is available upon

request.
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TABLE 3

Break selection in OECD inflation rates

Country m̂R m̂BP PMS LARS 90% Band MUB Selected model Break dates
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Austria 3 5 Yes .13 [-.11,.46] .17 I(0) with three mean
shifts

70:3; 85:3; 96:1

Belgium 1 5 No .82 [.74,1.03] .87 I(0) - I(1) 74:9
Canada 1 5 No .91 [.86,1.05] .98 I(1) - I(0) 99:2
Finland 1 3 No .87 [.82,1.01] .90 I(0) - I(1) 73:5
France 2 2 No .65 [.50,1.02] .72 I(0) - I(1) - I(0) 73:1; 83:4
Germany 4 5 No .46 [.29,.72] .53 I(0) - I(0) - I(0) - I(0)

- I(0)
70:9; 82:2; 92:6; 00:12

Greece 1 4 No .87 [.81,1.04] .92 I(0) - I(1) 70:8
Italy 4 5 No .66 [.58,.84] .71 I(0) - I(0) - I(0) - I(0)

- I(0)
72:6; 79:9; 87:7; 96:5

Japan 1 5 No .88 [.82,1.06] .97 I(0) - I(1) 71:11
Korea 1 1 Yes .14 [.06,.23] .14 I(0) with one mean

shift
81:9

Luxembourg 1 5 No .87 [.80,1.06] .95 I(1) - I(0) 99:1
Netherlands 5 5 Yes .00 [−.04,.05] .00 I(0) with five mean

shifts
67:12; 75:2; 82:4; 89:6; 01:1

Norway 2 2 Yes .30 [.10,.56] .33 I(0) with two mean
shifts

69:12; 88:9

Portugal 5 5 Yes .13 [.07,.20] .14 I(0) with five mean
shifts

70:10; 78:2; 85:4; 92:6; 99:10

Spain 0 4 No .88 [.82,1.04] .92 I(1) —
Sweden 0 2 No .82 [.74,1.03] .87 I(1) —
Switzerland 1 1 Yes .69 [.57,.89] .73 I(0) with one mean

shift
93:4

UK 1 3 No .87 [.79,1.08] .98 I(1) - I(0) 81:4
USA 1 4 No .87 [.81,.98] .89 I(0) - I(0) 81:9

Notes: (1) the country, (2) the number of breaks selected by SeqR[m̂R], (3) the number of breaks selected by SeqBP[m̂BP],
(4) whether the series is only subject to pure mean shifts (PMS), (5) largest sutoregressive sum (LARS) estimate across
regimes, (6) 90% confidence band computed using Hansen’s (1999) grid bootstrap, (7) the median unbiased estimate
(MUB) based on the grid bootstrap, (8) the model selected by SeqR[m̂R], (9) break date estimates.

data are consistent with the presence of an I (1) segment in ten countries. Interestingly, in
all five countries that experienced a switch from I (0) to I (1) behavior, the estimated break
date lies between the late 1960s and the mid 1970s, a period that is commonly believed
to be associated with high levels of inflation as well as high inflation persistence (the
so called ‘Great Inflation’).8 On the other hand, I (1)-I (0) switches (or high to low I (0)
changes) are estimated to occur in the 1980s and 1990s, a period where inflation targeting
was adopted by Central banks in several countries as the principal objective of monetary
policy. Interestingly, the evidence for USA favours an inflation process that is subject to
a single I (0)-preserving break at 1981:09. The least squares autoregressive estimate (the
median-unbiased estimate) declined from .87 (.89) in the pre-break regime to .27 (.28) in the
post-break regime with corresponding 90% bands [.81,.98] and [.18,.38] respectively. This

8
Even for Italy with I (0) preserving persistence changes in the 1970s, these changes were associated with a

movement from a low persistence regime to a high persistence one.
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pattern is consistent with evidence suggesting the role of an aggressive policy stance taken
by then Federal Reserve Chairman Paul Volcker to combat inflation (see, e.g., Cogley and
Sargent, 2001). In summary, the empirical evidence suggests that the proposed procedure
offers a useful alternative to existing approaches in facilitating reliable determination of
the number of breaks in the level and/or persistence of economic time series.

IX. Conclusion

This paper proposes a new sequential procedure for estimating the number of breaks in the
persistence of a univariate time series, when it is not known a priori whether the regimes
are I (1) or I (0). Two extensions are worth noting. First, it would be useful to extend our
approach to the case of error heteroscedasticity given the pervasive evidence on volatility
shifts in economic time series (McConnell and Perez-Quiros, 2000). A wild bootstrap
approach can potentially be employed to construct versions of the KPZ and BP tests that
are robust to volatility shifts, a topic of ongoing research by the author (Kejriwal and Yu,
2019). Second, a more general framework for assessing persistence change that allows the
process to be stationary long memory in some regimes (i.e. I (d), d > 0) should pave the
way for a wide range of interesting empirical applications.

Final Manuscript Received: September 2019
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